Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2863-2879.doi: 10.3864/j.issn.0578-1752.2023.15.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties

MU HaiMeng1(), SUN LiFang1, WANG ZhuangZhuang2, WANG Yu1, SONG YiFan1, ZHANG Rong1, DUAN JianZhao1, XIE YingXin1, KANG GuoZhang1, WANG YongHua1(), GUO TianCai1()   

  1. 1 College of Agronomy, Henan Agricultural University/National Engineering Research Centre for Wheat, Zhengzhou 450046
    2 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002
  • Received:2022-12-20 Accepted:2023-02-10 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 To investigate the interactions between genotype, nitrogen application rate and planting density on the regulation of wheat lodging resistance and grain yield, so as to identify the optimal combination of nitrogen-density that matches the biological characteristics of varieties. The results provide theoretical basis and technical support for stable and abundant winter wheat yield and resistant strain cultivation. 【Method】 A split-split plot field experiment was conducted in Jiaozuo, Henan Province, China, for two consecutive years from 2020 to 2022. Two wheat varieties Xinhuamai 818 and Xinmai 26 with different lodging resistance were selected in the main plots. The nitrogen fertilizer application rates were used as split-plots, and five levels were set: no N application (N0), 180 kg·hm-2 (N1), 240 kg·hm-2 (N2), 300 kg·hm-2 (N3) and 360 kg·hm-2 (N4), the planting densities were used as split-split plots, and three levels were set: 2.25 million plants/hm2 (D1), 3.75 million plants/hm2 (D2) and 5.25 million plants/hm2 (D3). The study focused on analyzing the effects of the three-factor combination of variety, nitrogen application and planting density on the anatomical structure of wheat culms, field lodging rate and yield. 【Result】 The results showed that nitrogen application rate and planting density significantly regulated the vascular bundle structure of both wheat varieties. The number and area of big vascular bundles and the ratio of number and area of big and small vascular bundles were significantly and positively correlated with culm wall thickness and culm breaking strength, while the area of small vascular bundles was significantly and negatively correlated with culm wall thickness. Compared with Xinmai 26, Xinhuamai 818 had more big vascular bundles and larger area, while the number of small vascular bundles was equal and the area was smaller. This may be the anatomical basis for the superiority of Xinhua 818 over Xinmai 26 in terms of lodging resistance. Under the same planting density, the number and area of big vascular bundles of both wheat varieties showed a trend of increasing and then decreasing with the increase of nitrogen application rate, with the largest number and area of big vascular bundles in N3 treatment. The average increase of number and area of big vascular bundles of Xinhuamai 818 and Xinmai 26 under N3 treatment compared with the minimum treatment were 14.61%, 15.80% and 16.18%, 20.10% respectively. The number and area of small vascular bundles showed similar changes. Under the same level of nitrogen application rate, the number and area of big vascular bundles of both varieties were the largest in the low density D1 treatment. Compared with the minimum value of high density D3, the average increase in the number and area of big vascular bundles of Xinhuamai 818 and Xinmai 26 under D1 treatment were 6.14%, 5.20% and 8.95%, 11.42%, respectively.【Conclusion】 Nitrogen-density control combination D1N2 with 240 kg·hm-2 and planting density of 2.25 million plants/hm2 can optimize the vascular bundle structure, coordinate the development of big and small vascular bundles. Specifically, the number and area of big vascular bundles and the number ratio and area ratio of two vascular bundles were increased in this treatment. The combination can also increase the thickness of the culm wall between the basal nodes and improve the breaking strength of the plant. These changes realize the synchronous improvement of lodging resistance and yield of wheat. We think this treatment can be used as a suitable nitrogen-density combination pattern for high-yielding and efficient cultivation of winter wheat in high-yielding irrigation areas in northern Henan.

Key words: winter wheat, nitrogen application rate, plant density, vascular bundle, lodging resistance

Fig. 1

Dynamics of precipitation and temperature during winter wheat growing"

Table 1

Soil properties before sowing"

年份
Year
土层
Soil layers
(cm)
pH 有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Alkaline N
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
有效磷
Available P
(mg·kg-1)
2020—2021 0—20 8.25 13.67 1.16 69.67 223.97 9.80
20—40 8.42 8.26 0.90 49.58 170.38 6.42
2021—2022 0—20 8.34 16.16 1.05 72.81 199.86 11.85
20—40 8.44 10.91 0.82 49.87 139.58 7.94

Table 2

Breaking strength and field lodging rate by treatment"

年份
Year
处理
Treatment
鑫华麦818 Xinhuamai 818 新麦26 Xinmai 26
抗折力 BS (N) 田间倒伏率 FLR (%) 抗折力 BS (N) 田间倒伏率 FLR (%)
2020—2021 D1 N0 8.50a 6.98a
N1 6.33c 5.00c
N2 5.64d 5.06c 5.61
N3 5.15def 4.17d 27.94
N4 5.12def 4.15d 41.73
D2 N0 7.62b 6.41b
N1 5.65d 4.17d 1.45
N2 5.06ef 4.18d 17.46
N3 4.63fg 3.43ef 36.91
N4 4.60fg 3.27fg 54.11
D3 N0 7.10b 5.14c
N1 5.31de 3.64e 13.14
N2 4.98ef 3.71e 13.19
N3 4.61fg 3.14fg 43.53
N4 4.39g 4.00 3.00g 36.87
2021—2022 D1 N0 12.33a 11.54a
N1 9.41c 8.91bc
N2 9.10cd 8.73cd
N3 8.84cd 8.51cde
N4 8.50cde 8.14cdef 2.53
D2 N0 11.73ab 9.87b
N1 8.83cd 7.88defg 1.44
N2 8.28def 7.88defg 3.38
N3 7.70efg 7.54efgh 4.09
N4 7.42fgh 7.17fghi 7.00
D3 N0 10.80b 9.07bc
N1 7.56efg 7.12ghi 0.89
N2 6.82ghi 6.53hij 5.24
N3 6.46hi 6.30ij 7.11
N4 5.97i 5.94j 11.27

Table 3

Culm wall thickness and mechanical tissue thickness by treatment"

年份
Year
处理
Treatment
鑫华麦818 Xinhuamai 818 新麦26 Xinmai 26
茎壁厚度 CWT (mm) 机械组织厚度 MTT (μm) 茎壁厚度 CWT (mm) 机械组织厚度 MTT (μm)
2020—2021 D1 N0 0.63a 48.44cd 0.52a 50.03f
N1 0.59b 56.81a 0.48bc 59.28a
N2 0.57bc 51.34b 0.47cd 57.56ab
N3 0.56bcd 47.94cde 0.45cde 55.99bc
N4 0.54cde 45.45f 0.45de 54.30cd
D2 N0 0.58b 46.19ef 0.50ab 45.62g
N1 0.57bc 49.13c 0.43efg 57.97ab
N2 0.54cde 48.80c 0.44ef 55.79bc
N3 0.53e 45.66f 0.41ghi 51.81ef
N4 0.48fg 44.49fg 0.40hi 51.63ef
D3 N0 0.54de 45.98ef 0.45cde 42.99h
N1 0.49f 49.85bc 0.41fghi 54.79cd
N2 0.47fg 46.48def 0.42fgh 54.15cd
N3 0.46g 45.88ef 0.40hi 52.77de
N4 0.45g 42.79g 0.39i 50.27f
2021—2022 D1 N0 0.74a 50.37abc 0.66a 51.40abc
N1 0.68bc 50.73abc 0.61bc 54.57a
N2 0.62efg 49.86abc 0.58cde 53.86a
N3 0.62fgh 48.06cd 0.58cdef 52.88ab
N4 0.58hij 43.75ef 0.57def 51.81abc
D2 N0 0.71ab 49.10abc 0.63ab 49.57bcde
N1 0.66cde 50.96a 0.59cd 52.95ab
N2 0.61fgh 50.78ab 0.58cde 50.03bcd
N3 0.61fgh 45.98de 0.57def 48.37cdef
N4 0.59ghij 42.87f 0.55ef 45.14f
D3 N0 0.66cd 49.21abc 0.62b 48.85cde
N1 0.63def 50.72abc 0.58cdef 51.69abc
N2 0.60fghi 48.19bcd 0.57def 48.46cdef
N3 0.56ij 44.10ef 0.55f 46.66def
N4 0.55j 42.30f 0.55ef 46.28ef

Fig. 2

Number of vascular bundles by treatment NBV: Number of big vascular; NSV: Number of small vascular. Different lowercase letters indicate significant differences between different treatments (P<0.05). The same as below"

Fig. 3

Area of vascular bundles by treatment ABV: Area of big vascular; ASV: Area of small vascular. The same as below."

Table 4

Ratio of two vascular bundles by treatment"

年份
Year
处理
Treatment
鑫华麦818 Xinhuamai 818 新麦26 Xinmai 26
NBV/NSV ABV/ASV NBV/NSV ABV/ASV
2020—2021 D1 N0 2.54a 18.12ab 2.04a 11.92c
N1 2.25bcd 18.39ab 1.97ab 12.23abc
N2 2.20bcd 19.27a 1.95ab 13.09a
N3 2.15d 18.50ab 1.94ab 13.03ab
N4 2.15d 18.15ab 1.90b 12.55abc
D2 N0 2.44ab 18.51ab 2.02ab 12.07bc
N1 2.17cd 18.62ab 1.98ab 12.60abc
N2 2.11d 18.98ab 1.95ab 12.93ab
N3 2.09d 18.34ab 1.94ab 12.87abc
N4 2.05d 17.65ab 1.89b 12.83abc
D3 N0 2.42abc 18.42ab 2.01ab 12.76abc
N1 2.23bcd 18.37ab 1.99ab 12.90abc
N2 2.20bcd 18.26ab 1.97ab 13.22a
N3 2.13d 17.72ab 1.94ab 12.64abc
N4 2.12d 17.35b 1.90ab 12.44abc
2021—2022 D1 N0 2.29a 17.09ab 1.88a 9.61c
N1 2.10bc 17.14ab 1.82ab 10.71ab
N2 2.03bcd 17.53ab 1.81ab 10.90ab
N3 1.95cd 16.60b 1.80ab 10.28abc
N4 1.91d 16.43b 1.76b 10.04abc
D2 N0 2.31a 17.79ab 1.85ab 9.88abc
N1 2.11b 17.85ab 1.83ab 10.51abc
N2 2.07bcd 17.97ab 1.82ab 10.90ab
N3 2.02bcd 17.54ab 1.80ab 10.47abc
N4 1.97bcd 17.47ab 1.78ab 10.10abc
D3 N0 2.31a 17.96ab 1.85ab 9.85bc
N1 2.11bc 18.60a 1.83ab 10.81ab
N2 2.08bc 18.78a 1.79ab 10.95a
N3 2.05bcd 18.65a 1.78ab 10.78ab
N4 2.05bcd 18.04ab 1.77ab 10.13abc

Table 5

Yield and yield components by treatment"

年份
Year
处理
Treatment
鑫华麦818 Xinhuamai 818 新麦26 Xinmai 26
穗数
SN (×104/hm2)
穗粒数
GS
千粒重
1000GW (g)
产量
GY (kg·hm-2)
穗数
SN (×104/hm2)
穗粒数
GS
千粒重
1000GW (g)
产量
GY (kg·hm-2)
2020—
2021
D1 N0 242.78f 32.81ef 57.80a 3569.59e 233.06d 28.42e 53.82a 2724.63e
N1 444.58d 35.21bcd 57.41ab 8829.20ab 507.18b 34.88ab 52.98a 7917.04a
N2 499.58bc 36.27abc 56.15abcd 8908.99ab 543.89ab 35.58a 51.41ab 7850.39a
N3 514.72abc 37.40a 55.14cde 8910.38ab 549.18ab 35.64a 50.07bc 7100.36bc
N4 500.28bc 37.07ab 54.62def 8574.54bc 543.11ab 35.17a 48.33cd 6617.56c
D2 N0 347.50e 30.27g 56.85abc 4397.57d 353.33c 28.32e 53.70a 3014.02e
N1 474.25cd 34.68cde 56.29abcd 8973.51ab 583.54a 34.16ab 52.83a 7943.43a
N2 530.39ab 35.72abc 55.72bcd 9195.19a 592.17a 34.52ab 51.26ab 7637.88ab
N3 535.56ab 35.96abc 54.54def 8933.57ab 599.93a 34.95ab 48.91bcd 6887.97c
N4 513.25abc 35.49bc 53.20ef 8717.80b 575.01a 33.30bc 47.90cd 6537.83c
D3 N0 432.64d 27.88h 56.82abc 3635.63e 369.72c 27.41e 53.38a 5000.95d
N1 502.56bc 34.49cde 55.60bcd 8858.26ab 542.50ab 30.94d 50.06bc 6868.28c
N2 536.55ab 35.26bc 54.61def 8954.51ab 581.67a 31.72cd 49.57bc 6902.82c
N3 557.31a 33.32def 52.99f 8244.09c 578.77a 31.84cd 46.46d 6537.83c
N4 532.88ab 32.06fg 52.77f 8157.67c 543.25ab 30.51d 46.40d 5615.30d
2021—
2022
D1 N0 345.83f 33.70gh 59.15a 6337.49d 318.75f 31.75d 54.65a 5837.91e
N1 442.50d 35.44cdef 56.04bc 10882.66ab 458.33d 36.10c 51.05bc 9779.03abcd
N2 473.33cd 37.53ab 54.54cd 11105.21ab 487.92bcd 38.50a 50.95bc 10173.21ab
N3 478.33cd 37.84a 53.33de 10651.89ab 497.50abcd 39.40a 50.13cd 9955.14abc
N4 450.42d 36.97abc 51.29efgh 10480.18b 491.25abcd 38.60a 48.84cde 9351.18bcd
D2 N0 383.19ef 33.33gh 57.38ab 7370.47c 343.75ef 30.73d 53.93a 5986.19e
N1 492.54bc 34.71efg 52.92def 10895.18ab 475.00cd 35.84c 48.81cde 10232.41a
N2 505.00abc 36.98abc 52.18efg 11465.81a 511.40abc 38.35ab 47.87def 10377.79a
N3 505.83abc 37.53ab 50.16gh 10934.50ab 511.67abc 38.80a 46.71efg 9763.53abcd
N4 492.50bc 36.36abcd 49.48hi 10544.17b 511.25abc 36.91bc 46.36fg 9199.83cd
D3 N0 392.50e 32.80h 55.86bc 7312.50c 390.00e 28.51e 53.11ab 6513.32e
N1 506.67abc 34.28fgh 50.98fgh 10670.08ab 480.17cd 35.40c 46.65efg 9087.76d
N2 521.25ab 36.44abcd 49.33hi 11146.24ab 531.21ab 36.55c 45.09gh 9287.14cd
N3 538.03a 36.16bcde 48.08i 10775.36ab 538.16a 36.93bc 45.09gh 9211.48cd
N4 528.75ab 35.26def 47.85i 10372.04b 534.97ab 36.90bc 43.95h 9019.66d

Table 6

Analysis of variance on the effects of variety, planting density, nitrogen application and intercropping effects on each indicator"

指标
Item
2020—2021 2021—2022
品种
V
氮肥
N
密度
D
品种×氮肥
V×N
品种×密度
V×D
氮肥×密度
D×N
品种×氮肥×密度
V×D×N
品种
V
氮肥
N
密度
D
品种×氮肥
V×N
品种×密度
V×D
氮肥×密度
D×N
品种×氮肥×密度
V×D×N
抗折力 BS ** *** *** * * NS NS NS *** *** ** NS NS NS
茎壁厚度 CWT ** *** *** NS ** NS NS ** *** ** *** NS NS NS
机械组织厚度 MTT ** *** *** *** NS * *** ** *** *** * * NS NS
大维管束数目 NCBV *** *** *** NS *** NS NS *** *** ** NS NS NS NS
小维管束数目 NSV NS *** *** NS NS NS NS NS *** *** ** NS NS NS
大维管束面积 ABV ** *** *** NS NS NS NS *** *** ** NS NS NS NS
小维管束面积 ASV *** *** *** NS NS NS NS *** *** *** NS NS NS NS
数目比值
Ratio of vascular number
*** *** NS * NS NS NS *** *** NS *** NS NS NS
面积比值
Ratio of vascular area
*** NS NS NS NS NS NS *** * * NS NS NS NS
穗数SN ** *** *** ** * *** NS NS *** *** NS NS NS NS
穗粒数 GS * *** *** NS NS NS ** NS *** *** *** NS NS NS
千粒重 1000GW ** *** ** NS NS NS NS ** *** *** NS NS NS NS
产量 GY ** *** ** *** NS *** *** ** *** NS NS NS NS NS

Fig. 4

Correlation of vascular bundle structure with resistance to collapse and yield *, ** and *** represent correlation levels of P<0.05, P<0.01 and P<0.001, respectively"

Fig. 5

Regulation of culm vascular structure by N application rate and planting density +: Indicates an increase in value"

[1]
BERRY P M, GRIFFIN J M, SYLVESTER-BRADLEY R, SCOTT R K, SPINK J H, BAKER C J, CLARE R W. Controlling plant form through husbandry to minimise lodging in wheat. Field Crops Research, 2000, 67(1): 59-81.

doi: 10.1016/S0378-4290(00)00084-8
[2]
TANG Q Y, PENG S B, BURESH R J, ZOU Y B, CASTILLA N P, MEW T W, ZHONG X H. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Research, 2007, 102(3): 219-227.

doi: 10.1016/j.fcr.2007.04.005
[3]
董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响. 中国农业科学, 2020, 53(21): 4399-4414.

doi: 10.3864/j.issn.0578-1752.2020.21.009
DONG H H, LUO Y L, LI W Q, WANG Y Y, ZHANG Q X, CHEN J, JIN M, LI Y, WANG Z L. Effects of different spring nitrogen topdressing modes on lodging resistance and lignin accumulation of winter wheat. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.21.009
[4]
ACRECHE M M, SLAFER G A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 2011, 122(1): 40-48.

doi: 10.1016/j.fcr.2011.02.004
[5]
BERRY P M, STERLING M, SPINK J H, BAKER C J, SYLVESTER-BRADLEY R, MOONEY S J, TAMS A R, ENNOS A R. Understanding and reducing lodging in cereals. Advances in Agronomy, 2004: 217-271.
[6]
WANG J, ZHU J M, LIN Q Q, LI X J, TENG N J, LI Z S, LI B, ZHANG A M, LIN J X. Effects of stem structure and cell wall components on bending strength in wheat. Chinese Science Bulletin, 2006, 51(7): 815-823.
[7]
袁雅妮, 闫素辉, 刘良柏, 王平信, 邵庆勤, 张从宇, 李文阳. 播期和种植密度对小麦基部节间性状与抗倒指数的影响. 聊城大学学报(自然科学版), 2021, 34(4): 88-94, 110.
YUAN Y N, YAN S H, LIU L B, WANG P X, SHAO Q Q, ZHANG C Y, LI W Y. Effect of planting density and sowing date on characteristics of basal internode and lodging resistance in wheat. Journal of Liaocheng University (Natural Science Edition), 2021, 34(4): 88-94, 110. (in Chinese)
[8]
WANG C, RUAN R W, YUAN X H, HU D, YANG H, LIN T T, LI Y, YI Z L. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Production Science, 2015, 18(2): 218-227.

doi: 10.1626/pps.18.218
[9]
耿文杰, 李宾, 任佰朝, 赵斌, 刘鹏, 张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控. 中国农业科学, 2022, 55(2): 307-319.

doi: 10.3864/j.issn.0578-1752.2022.02.006
GENG W J, LI B, REN B Z, ZHAO B, LIU P, ZHANG J W. Regulation mechanism of planting density and spraying ethephon on lignin metabolism and lodging resistance of summer maize. Scientia Agricultura Sinica, 2022, 55(2): 307-319. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.02.006
[10]
ZHANG M W, WANG H, YI Y, DING J F, ZHU M, LI C Y, GUO W S, FENG C N, ZHU X K. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS ONE, 2017, 12(11): e0187543.

doi: 10.1371/journal.pone.0187543
[11]
TRIPATHI S C, SAYRE K D, KAUL J N, NARANG R S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: Effects of genotypes, N levels and ethephon. Field Crops Research, 2003, 84(3): 271-290.

doi: 10.1016/S0378-4290(03)00095-9
[12]
ZHANG W J, WU L M, WU X R, DING Y F, LI G H, LI J Y, WENG F, LIU Z H, TANG S, DING C Q, WANG S H. Lodging resistance of japonica rice (Oryza Sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016, 9(1): 31.

doi: 10.1186/s12284-016-0103-8
[13]
LI G H, CHEN X, ZHOU C Y, YANG Z J, ZHANG C H, HUANG Z P, PAN W, XU K. Vascular bundle characteristics of different rice variety treated with nitrogen fertilizers and its relation to stem assimilates allocation and grain yield. Agriculture, 2022, 12(6): 779.

doi: 10.3390/agriculture12060779
[14]
JEDEL P E, HELM J H. Lodging effects on a semidwarf and two standard barley cultivars. Agronomy Journal, 1991, 83(1): 158-161.

doi: 10.2134/agronj1991.00021962008300010036x
[15]
董秀春, 韩伟, 杨洪宾. 倒伏对冬小麦病害发生情况和产量的影响. 河南农业科学, 2016, 45(4): 27-30.
DONG X C, HAN W, YANG H B. Effects of lodging on winter wheat diseases occurrence and yield. Journal of Henan Agricultural Sciences, 2016, 45(4): 27-30. (in Chinese)
[16]
WEBSTER J R, JACKSON L F. Management practices to reduce lodging and maximize grain yield and protein content of fall-sown irrigated hard red spring wheat. Field Crops Research, 1993, 33(3): 249-259.

doi: 10.1016/0378-4290(93)90083-Y
[17]
LUO Y L, NI J, PANG D W, JIN M, CHEN J, KONG X, LI W Q, CHANG Y L, LI Y, WANG Z L. Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019, 241: 107572.

doi: 10.1016/j.fcr.2019.107572
[18]
KHAN A, LIU H H, AHMAD A, XIANG L, ALI W, KHAN A, KAMRAN M, AHMAD S, LI J C. Impact of nitrogen regimes and planting densities on stem physiology, lignin biosynthesis and grain yield in relation to lodging resistance in winter wheat (Triticum aestivum L.). Cereal Research Communications, 2019, 47(3): 566-579.

doi: 10.1556/0806.47.2019.21
[19]
WU W, MA B L, FAN J J, SUN M, YI Y, GUO W S, VOLDENG H D. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat. Field Crops Research, 2019, 241: 107584.

doi: 10.1016/j.fcr.2019.107584
[20]
安志超, 黄玉芳, 赵亚南, 汪洋, 刘小宁, 叶优良. 植株氮营养状况与冬小麦倒伏的关系. 植物营养与肥料学报, 2018, 24(3): 751-757.
AN Z C, HUANG Y F, ZHAO Y N, WANG Y, LIU X N, YE Y L. Relationship between plant nitrogen nutrition and lodging of winter wheat. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 751-757. (in Chinese)
[21]
李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系. 植物生理学报, 2019, 55(3): 329-341.
LI G H, ZHANG G, CUI K H. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiology Journal, 2019, 55 (3): 329-341. (in Chinese)

doi: 10.1111/ppl.1982.55.issue-3
[22]
DAI X L, WANG Y C, DONG X C, QIAN T F, YIN L J, DONG S X, CHU J P, HE M R. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 2017, 5(6): 541-552.

doi: 10.1016/j.cj.2017.05.003
[23]
白雪. 播期对玉米茎秆发育及抗倒伏能力的影响[D]. 保定: 河北农业大学, 2021.
BAI X. Effects of sowing date on stalk development and lodging resistance of maize[D]. Baoding: Hebei Agricultural University, 2021. (in Chinese)
[24]
EASSON D L, WHITE E M, PICKLES S J. The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. The Journal of Agricultural Science, 1993, 121(2): 145-156.

doi: 10.1017/S0021859600077005
[25]
ZHANG G, CUI K H, LI G H, PAN J F, HUANG J L, PENG S B. Stem small vascular bundles have greater accumulation and translocation of non-structural carbohydrates than large vascular bundles in rice. Physiologia Plantarum, 2022, 174(3): e13695.
[26]
EVANS L T, DUNSTONE R L, RAWSON H M, WILLIAMS R F. The phloem of the wheat stem in relation to requirements for assimilate by the ear. Australian Journal of Biological Sciences, 1970, 23(4): 743.

doi: 10.1071/BI9700743
[27]
宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响. 作物学报, 2022, 48(11): 2908-2919.

doi: 10.3724/SP.J.1006.2022.23005
SONG J, REN H, ZHAO B. ZHANG J W, REN B Z, LI L, WANG S X, HUANG J L, LIU P. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.). Acta Agronomica Sinica, 2022, 48(11): 2908-2919. (in Chinese)

doi: 10.3724/SP.J.1006.2022.23005
[28]
王传海, 郑有飞, 何都良, 高桂枝. 紫外线强度增加对小麦节间大维管束条数及穗部性状的影响. 麦类作物学报, 2003, 23(3): 45-48.
WANG C H, ZHENG Y F, HE D L, GAO G Z. Effect of enhancing UV-B radiation on the number of vascular bundle and spike characteristic of wheat. Journal of Triticeae Crops, 2003, 23(3): 45-48. (in Chinese)
[29]
KAACK K, SCHWARZ K U, BRANDER P E. Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Industrial Crops and Products, 2003, 17(2): 131-142.

doi: 10.1016/S0926-6690(02)00093-6
[30]
汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40(10): 1846-56.

doi: 10.3724/SP.J.1006.2014.01846
WANG C, RUAN R W, YUAN X H, HU D, YANG H, LIN T T, HE P L, LI Y, YI Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agronomica Sinica, 2014, 40(10): 1846-1856. (in Chinese)

doi: 10.3724/SP.J.1006.2014.01846
[31]
MUHAMMAD A, HAO H H, XUE Y L, ALAM A, BAI S M, HU W C, SAJID M, HU Z, SAMAD R A, LI Z H, LIU P Y, GONG Z Q, WANG L Q. Survey of wheat straw stem characteristics for enhanced resistance to lodging. Cellulose, 2020, 27(5): 2469-2484.

doi: 10.1007/s10570-020-02972-7
[32]
KONG E Y, LIU D C, GUO X L, YANG W L, SUN J Z, LI X, ZHAN K H, CUI D Q, LIN J X, ZHANG A M. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 2013, 1(1): 43-49.

doi: 10.1016/j.cj.2013.07.012
[33]
王留行, 彭廷, 熊加豹, 王海彬, 刘晔, 张静, 王代长, 滕永忠, 赵全志. 氮肥对超级杂交稻穗颈节间维管束结构的影响. 河南农业科学, 2019, 48(9): 14-22.
WANG L H, PENG T, XIONG J B, WANG H B, LIU Y, ZHANG J, WANG D Z, TENG, Y Z, ZHAO Q Z. Effects of nitrogen fertilizer on vascular bundle structure infirst internode of super hybrid rice. Journal of Henan Agricultural Sciences, 2019, 48(9): 14-22. (in Chinese)
[34]
张国. 不同施氮量下水稻茎鞘非结构性碳水化合物积累转运及与维管束的关系[D]. 武汉: 华中农业大学, 2021.
ZHANG G. Effects of different nitrogen application rates on accumulation and translocation of rice stem non-structural carbohydrates and its relationship with vascular bundles[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[35]
程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量性状的影响及其相互关系. 作物学报, 2021, 47(5): 964-973.

doi: 10.3724/SP.J.1006.2021.02040
CHENG Y S, HU M Y, DU Z M, YAN B C, LI L, WANG Y W, JU X T, SUN L L, XU H. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation. Acta Agronomica Sinica, 2021, 47(5): 964-973. (in Chinese)

doi: 10.3724/SP.J.1006.2021.02040
[36]
任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42(12): 1864-1872.

doi: 10.3724/SP.J.1006.2016.01864
REN B Z, LI L L, DONG S T, LIU P, ZHAO B, YANG J S, WANG D B, ZHANG J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agronomica Sinica, 2016, 42(12): 1864-1872. (in Chinese)

doi: 10.3724/SP.J.1006.2016.01864
[37]
李伟娟, 张喜娟, 李红娇, 徐正进. 不同田间配置方式对超级稻穗颈维管束数的影响. 北方水稻, 2008, 38(3): 58-61.
LI W J, ZHANG X J, LI H J, XU Z J. Effects on neck vascular bundles of super rice in different field collocation patterns. North Rice, 2008, 38(3): 58-61. (in Chinese)
[38]
张晶. 不同氮密处理下粳稻穗颈维管束的变化及其与穗部性状和米质的关系[D]. 沈阳: 沈阳农业大学, 2022.
ZHANG J. Changes of vascular bundles in panicle neck of japonica rice under different nitrogen densities and their relationships with panicle traits and grain quality[D]. Shenyang: Shenyang Agricultural University, 2022. (in Chinese)
[39]
REN H, JIANG Y, ZHAO M, QI H, LI C F. Nitrogen supply regulates vascular bundle structure and matter transport characteristics of spring maize under high plant density. Frontiers in Plant Science, 2021, 11: 602739.

doi: 10.3389/fpls.2020.602739
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[4] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[5] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[6] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[7] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[8] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[9] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[12] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[13] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[14] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[15] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!