Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2724-2737.doi: 10.3864/j.issn.0578-1752.2023.14.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial-Temporal Variation of Relative Yield Gap of Wheat and Maize and Its Response to Nitrogen Fertilizer in China

SHEN Zhe1(), HAN TianFu1, QU XiaoLin2, MA ChangBao2, WANG HuiYing2, LIU KaiLou3, HUANG Jing1,4, DU JiangXue1, ZHANG Lu1,4, LIU LiSheng1,4, LI JiWen1, ZHANG HuiMin1,4()   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
    3 Jiangxi Institute of Red Soil/National Engineering and Technology Research Center for Red Soil Improvement, Jinxian 331717, Jiangxi
    4 Red Soil Experimental Station of Chinese Academy of Agricultural Sciences in Hengyang/National Observation and Research Station of Farmland Ecosystem in Qiyang, Hunan, Qiyang 426182, Hunan
  • Received:2022-07-11 Accepted:2022-11-15 Online:2023-07-16 Published:2023-07-21
  • Contact: ZHANG HuiMin

Abstract:

【Objective】This study aimed to explore the spatial-temporal variation characteristics and influencing factors of relative yield gap of wheat and maize in China during the past 15-20 years and the response of relative yield gap to nitrogen fertilizer under different soil productivity levels, so as to provide a theoretical basis for rational application of nitrogen fertilizer and the realization of high and stable yield of wheat and maize.【Method】Based on the long-term monitoring database, the difference of wheat and maize yield between fertilized area and non-fertilized area was used to represent the relative yield (RY). The highest relative yield (HRY), the average relative yield (ARY) and the relative yield gap (GRY) were obtained by using the statistical of high-yielding households, the effects of fertilization and soil factors on the relative yield gap were determined used the random forest model, and soil productivity level was divided according to the yield of non-fertilized area. The relationship between the relative yield gap of wheat and maize and nitrogen application rate under different soil productivity levels was quantified.【Result】 HRY of wheat in China was 3.83-6.75 t·hm-2, ARY was 2.10-3.42 t·hm-2, and GRY was 1.73-3.33 t·hm-2, GRY accounting for 44.64%-49.06% of HRY. HRY, ARY and GRY of wheat were north China>middle-lower Yangtze Plain>northwest China>southwest China. HRY of maize in China was 6.53-8.20 t·hm-2, ARY was 3.37-4.12 t·hm-2, and GRY was 3.16-4.08 t·hm-2, GRY accounting for 44.78%-50.52% of HRY. HRY, ARY and GRY of maize were northeast China>north China>southwest China>northwest China. Except for north China, HRY and GRY of wheat and maize increased with time. Except in northwest China, the GRY decreased with the increase of nitrogen application rate in low and medium soil productivity, and the decrease amplitude was more significant in low soil productivity level, while the decrease of GRY with nitrogen application rate in high soil productivity was not significant. Regionally, the balance points of nitrogen fertilizer application were found in wheat and maize in North China, wheat in middle-lower Yangtze Plain, and maize in northeast China at low and medium soil productivity. Overall, the nitrogen application rate and soil organic matter were relatively important influencing factors of GRY for wheat and maize at low and medium soil productivity. Potassium application had a significant impact on the GRY in middle-lower Yangtze Plain and north China, while organic matter had a significant impact on the GRY in the northwest and southwest China under high soil productivity. 【Conclusion】N application and soil organic matter were important factors affecting the relative yield gap. The higher soil productivity level, the lower the effect of nitrogen fertilizer on reducing the relative yield gap. N fertilizer should be reduced appropriately in high productivity soil. In order to increase yield and avoid the waste of resource and environmental risks, it was suggested that the application rate of nitrogen fertilizer should not exceed its balance point. The recommended application rates of nitrogen fertilizer were 260.6 and 159.2 kg·hm-2 for wheat and 262.5 and 246.0 kg·hm-2 for maize at low and medium productivity levels in north China, respectively. In the middle-lower Yangtze Plain, 199.5 and 187.5 kg·hm-2 were recommended for nitrogen application at low and medium productivity levels, respectively. In northeast China, the recommended amount of N fertilizer application was 259.5 and 228.0 kg·hm-2, respectively. Under low and medium productivity levels in southwest and northwest China, N fertilizer should be appropriately increased. The potassium fertilizer reasonable application should be paid more attention at high soil productivity in north China and middle-lower Yangtze Plain. The improvement of soil organic matter should be as the main measures to achieve high and stable yields in southeast and southwest China.

Key words: wheat, maize, relative yield, relative yield gap

Fig. 1

Interannual variation of wheat relative yield and relative yield gap in different regions The data of wheat yield in northwest China in 2013 and southwest China in 2015 are lacking"

Fig. 2

Interannual variation of maize relative yield and relative yield gap in different regions The data of maize yield in north China are lacking in 2006"

Fig. 3

Relationship between relative yield gap of wheat and nitrogen application rate under different soil productivity levels T1 and T2 represent the balance point of nitrogen application in low and medium soil productivity, respectively. The same as Fig. 4"

Fig. 4

Relationship between relative yield gap of maize and nitrogen application rate under different soil productivity levels"

Fig. 5

Relative variable importance of different factors for the wheat relative yield gap under different soil productivity levels Nitrogen application rate (NF), phosphate application rate (PF), potassium application rate (KF), soil organic matter (SOM), available phosphate (AP), available potassium (AK), total nitrogen (TN). * Indicate P<0.05 and ** indicate P<0.01. The same as Fig.6"

Fig. 6

Relative variable importance of different factors for the maize relative yield gap under different soil productivity levels"

[1]
中华人民共和国国家统计局. 中国统计年鉴-2021. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook-2021. Beijing: China Statistics Press, 2021. (in Chinese)
[2]
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

doi: 10.1038/nature13609
[3]
ORTIZ-BOBEA A, AULT T R, CARRILLO C M, CHAMBERS R G, LOBELL D B. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 2021, 11(4): 306-312.

doi: 10.1038/s41558-021-01000-1
[4]
刘保花, 陈新平, 崔振岭, 孟庆锋, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015, 23(5): 525-534.
LIU B H, CHEN X P, CUI Z L, MENG Q F, ZHAO M. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-Agriculture, 2015, 23(5): 525-534. (in Chinese)
[5]
王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳. 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养与肥料学报, 2010, 16(3): 559-566.
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X, TAN J F. Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(3): 559-566. (in Chinese)
[6]
张玲玲. 黄土高原冬小麦产量差及其水氮利用效率分析[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2019.
ZHANG L L. Analysis on yield difference and water and nitrogen use efficiency of winter wheat in loess plateau[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2019. (in Chinese)
[7]
F L, HOU M M, ZHANG H T, KHAN A, AYAZ M, QIANGJIU C R, HU C L, YANG X Y, SUN B H, ZHANG S L. Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in the Guanzhong Plain, Northwest China. Journal of Integrative Agriculture, 2019, 18(1): 169-178.

doi: 10.1016/S2095-3119(18)61948-3
[8]
LIU Z, YU N N, CAMBERATO J J, GAO J, LIU P, ZHAO B, ZHANG J W. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain: an economic and environmental assessment over 8 years. Scientific Reports, 2019, 9(1): 19335.

doi: 10.1038/s41598-019-55913-1 pmid: 31852971
[9]
曾希柏, 陈同斌, 胡清秀, 林忠辉. 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002, 57(5): 539-546.
ZENG X B, CHEN T B, HU Q X, LIN Z H. Grain productivity and its potential as related to fertilizer consumption among different counties of China. Acta Geographica Sinica, 2002, 57(5): 539-546. (in Chinese)

doi: 10.11821/xb200205005
[10]
何萍, 徐新朋, 仇少君, 赵士诚. 我国北方玉米施肥产量效应和经济效益分析. 植物营养与肥料学报, 2014, 20(6): 1387-1394.
HE P, XU X P, QIU S J, ZHAO S C. Yield response and economic analysis of fertilizer application in maize grown in North China. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1387-1394. (in Chinese)
[11]
徐春丽, 谢军, 王珂, 李丹萍, 陈轩敬, 张跃强, 陈新平, 石孝均. 中国西南地区玉米产量对基础地力和施肥的响应. 中国农业科学, 2018, 51(1): 129-138. doi: 10.3864/j.issn.0578-1752.2018.01.012.

doi: 10.3864/j.issn.0578-1752.2018.01.012
XU C L, XIE J, WANG K, LI D P, CHEN X J, ZHANG Y Q, CHEN X P, SHI X J. The response of maize yield to inherent soil productivity and fertilizer in the southwest China. Scientia Agricultura Sinica, 2018, 51(1): 129-138. doi: 10.3864/j.issn.0578-1752.2018.01.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.01.012
[12]
LIU X Y, HE P, JIN J Y, ZHOU W, SULEWSKI G, PHILLIPS S. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China. Agronomy Journal, 2011, 103(5): 1452-1463.

doi: 10.2134/agronj2010.0476
[13]
曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894. doi: 10.3864/j.issn.0578-1752.2012.14.011.

doi: 10.3864/j.issn.0578-1752.2012.14.011
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. doi: 10.3864/j.issn.0578-1752.2012.14.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.14.011
[14]
YANG X L, LU Y L, DING Y, YIN X F, RAZA S, TONG Y A. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Research, 2017, 206: 1-10.

doi: 10.1016/j.fcr.2017.02.016
[15]
杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014, 47(14): 2731-2741. doi: 10.3864/j.issn.0578-1752.2014.14.004.

doi: 10.3864/j.issn.0578-1752.2014.14.004
YANG X G, LIU Z J. Advances in research on crop yield gaps. Scientia Agricultura Sinica, 2014, 47(14): 2731-2741. doi: 10.3864/j.issn.0578-1752.2014.14.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.14.004
[16]
韩天富, 李亚贞, 曲潇林, 马常宝, 王慧颖, 黄晶, 柳开楼, 都江雪, 张璐, 刘立生, 张会民. 中国农田小麦和玉米产量时空演变及驱动因素. 农业工程学报, 2022, 38(1): 100-108.
HAN T F, LI Y Z, QU X L, MA C B, WANG H Y, HUANG J, LIU K L, DU J X, ZHANG L, LIU L S, ZHANG H M. Spatio-temporal evolutions and driving factors of wheat and maize yields in China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 100-108. (in Chinese)
[17]
都江雪, 韩天富, 曲潇林, 马常宝, 柳开楼, 黄晶, 申哲, 张璐, 刘立生, 谢建华, 张会民. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素. 植物营养与肥料学报, 2022, 28(2): 191-204.
DU J X, HAN T F, QU X L, MA C B, LIU K L, HUANG J, SHEN Z, ZHANG L, LIU L S, XIE J H, ZHANG H M. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191-204. (in Chinese)
[18]
TITTONELL P, VANLAUWE B, CORBEELS M, GILLER K E. Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 2008, 313(1): 19-37.

doi: 10.1007/s11104-008-9676-3
[19]
侯萌瑶, 张丽, 王知文, 杨殿林, 王丽丽, 修伟明, 赵建宁. 中国主要农作物化肥用量估算. 农业资源与环境学报, 2017, 34(4): 360-367.
HOU M Y, ZHANG L, WANG Z W, YANG D L, WANG L L, XIU W M, ZHAO J N. Estimation of fertilizer usage from main crops in China. Journal of Agricultural Resources and Environment, 2017, 34(4): 360-367. (in Chinese)
[20]
全国农业技术推广服务中心. 土壤分析技术规范. 2版. 北京: 中国农业出版社, 2006.
National Agricultural Technology Extension and Service Center. Technical Specification for Soil Analysis. 2nd ed. Beijing: China Agriculture Press, 2006. (in Chinese)
[21]
李勤英, 姚凤梅, 张佳华, 曾瑞芸, 石思琪. 不同农艺措施对缩小冬小麦产量差和提高氮肥利用率的评价. 中国农业气象, 2018, 39(6): 370-379.
LI Q Y, YAO F M, ZHANG J H, ZENG R Y, SHI S Q. Evaluation of different agronomic measures on narrowing the yield gap and improving nitrogen use efficiency of winter wheat. Chinese Journal of Agrometeorology, 2018, 39(6): 370-379. (in Chinese)
[22]
侯鹏, 陈新平, 崔振岭, 王伟, 王立娜, 唐锦福, 张福锁. 基于Hybrid-Maize模型的黑龙江春玉米灌溉增产潜力评估. 农业工程学报, 2013, 29(9): 103-112, 295.
HOU P, CHEN X P, CUI Z L, WANG W, WANG L N, TANG J F, ZHANG F S. Evaluation of yield increasing potential by irrigation of spring maize in Heilongjiang Province based on Hybrid-Maize model. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 103-112, 295. (in Chinese)
[23]
高静, 马常宝, 徐明岗, 徐志强, 张淑香, 孙楠. 我国东北黑土区耕地施肥和玉米产量的变化特征. 中国土壤与肥料, 2009(6): 28-31, 56.
GAO J, MA C B, XU M G, XU Z Q, ZHANG S X, SUN N. Change characteristic of fertilization and maize yield on black soil in the Northeast China. Soils and Fertilizers Sciences in China, 2009(6): 28-31, 56. (in Chinese)
[24]
刘建刚, 王宏, 石全红, 陶婷婷, 陈阜, 褚庆全. 基于田块尺度的小麦产量差及生产限制因素解析. 中国农业大学学报, 2012, 17(2): 42-47.
LIU J G, WANG H, SHI Q H, TAO T T, CHEN F, CHU Q Q. Analysis of yield gap and limiting factors for wheat on the farmland. Journal of China Agricultural University, 2012, 17(2): 42-47. (in Chinese)
[25]
黄少辉, 杨云马, 刘克桐, 孙彦铭, 贾良良. 河北夏玉米产量潜力、产量差与氮肥效率差分析. 玉米科学, 2016, 24(5): 123-127, 135.
HUANG S H, YANG Y M, LIU K T, SUN Y M, JIA L L. Yield potential, yield gap and nitrogen use efficiency gap of summer maize in Hebei Province. Journal of Maize Sciences, 2016, 24(5): 123-127, 135. (in Chinese)
[26]
LIU Z J, YANG X G, HUBBARD K G, LIN X M. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 2012, 18(11): 3441-3454.

doi: 10.1111/gcb.2012.18.issue-11
[27]
于静, 熊兴耀, 高玉林, 王贵江, 王万兴, 吕和平, 朱杰华, 石瑛, 杨艳丽, 汤浩, 董道峰, 樊明寿. 中国马铃薯不同产区氮肥利用率的比较分析. 中国蔬菜, 2019(7): 43-50.
YU J, XIONG X Y, GAO Y L, WANG G J, WANG W X, H P, ZHU J H, SHI Y, YANG Y L, TANG H, DONG D F, FAN M S. Comparative analysis of nitrogen use efficiency in different potato production areas of China. China Vegetables, 2019(7): 43-50. (in Chinese)
[28]
武良. 基于总量控制的中国农业氮肥需求及温室气体减排潜力研究[D]. 北京: 中国农业大学, 2014.
WU L. Study on agricultural nitrogen demand and greenhouse gas emission reduction potential in China based on total amount control[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[29]
MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143: 91-97.

doi: 10.1016/j.fcr.2012.09.023
[30]
孙彦铭, 黄少辉, 刘克桐, 杨云马, 杨振立, 贾良良. 河北省冬小麦施肥效果与肥料利用率现状. 江苏农业科学, 2019, 47(6): 60-65.
SUN Y M, HUANG S H, LIU K T, YANG Y M, YANG Z L, JIA L L. Fertilization effect and fertilizer utilization rate of winter wheat in Hebei Province. Jiangsu Agricultural Sciences, 2019, 47(6): 60-65. (in Chinese)
[31]
CAO H Z, LI Y N, CHEN G F, CHEN D D, QU H R, MA W Q. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. Journal of Integrative Agriculture, 2019, 18(8): 1701-1713.

doi: 10.1016/S2095-3119(19)62574-8
[32]
柳开楼, 都江雪, 马常宝, 曲潇琳, 韩天富, 刘淑军, 黄晶, 李亚贞, 申哲, 张璐, 李冬初, 张会民. 中国主要旱作粮食耕地土壤钾素的时空演变特征. 土壤学报. https://kns.cnki.net/kcms/detail/32.1119.P.20220303.1348.002.html.
LIU K L, DU J X, MA C B, QU X L, HAN T F, LIU S J, HUANG J, LI Y Z, SHEN Z, ZHANG L, LI D C, ZHANG H M. Spatio-temporal evolution characteristics of soil potassium in main dryfarming grain arable land of China. Acta Pedologica Sinica. https://kns.cnki.net/kcms/detail/32.1119.P.20220303.1348.002.html. (in Chinese)
[33]
TAN D S, JIN J Y, JIANG L H, HUANG S W, LIU Z H. Potassium assessment of grain producing soils in North China. Agriculture, Ecosystems & Environment, 2012, 148: 65-71.

doi: 10.1016/j.agee.2011.11.016
[34]
汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征. 农业环境科学学报, 2009, 28(5): 1070-1078.
TANG Y H, HUANG Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China. Journal of Agro-Environment Science, 2009, 28(5): 1070-1078. (in Chinese)
[35]
黄少辉, 杨云马, 刘克桐, 孙彦铭, 杨军芳, 贾良良. 河北省小麦产量潜力、产量差与效率差分析. 作物杂志, 2018(2): 118-122.
HUANG S H, YANG Y M, LIU K T, SUN Y M, YANG J F, JIA L L. Yield potential, yield gap and nitrogen use efficiency gap of winter wheat in Hebei Province. Crops, 2018(2): 118-122. (in Chinese)
[36]
QIAO L, SILVA J V, FAN M S, MEHMOOD I, FAN J L, LI R, VAN ITTERSUM M K. Assessing the contribution of nitrogen fertilizer and soil quality to yield gaps: a study for irrigated and rainfed maize in China. Field Crops Research, 2021, 273: 108304.

doi: 10.1016/j.fcr.2021.108304
[37]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[38]
蔡泽江, 孙楠, 王伯仁, 徐明岗, 黄晶, 张会民. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 71-78.
CAI Z J, SUN N, WANG B R, XU M G, HUANG J, ZHANG H M. Effects of long-term fertilization on pH of red soil, crop yields and uptakes of nitrogen, phosphorous and potassium. Plant Nutrition and Fertilizer Science, 2011, 17(1): 71-78. (in Chinese)
[39]
曾廷廷, 蔡泽江, 王小利, 梁文君, 周世伟, 徐明岗. 酸性土壤施用石灰提高作物产量的整合分析. 中国农业科学, 2017, 50(13): 2519-2527. doi: 10.3864/j.issn.0578-1752.2017.13.011.

doi: 10.3864/j.issn.0578-1752.2017.13.011
ZENG T T, CAI Z J, WANG X L, LIANG W J, ZHOU S W, XU M G. Integrated analysis of liming for increasing crop yield in acidic soils. Scientia Agricultura Sinica, 2017, 50(13): 2519-2527. doi: 10.3864/j.issn.0578-1752.2017.13.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.13.011
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[3] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[4] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[5] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[6] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[7] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[8] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[9] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[12] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[13] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[14] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[15] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!