Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1553-1564.doi: 10.3864/j.issn.0578-1752.2021.07.018

• CULTIVATION METHOD • Previous Articles     Next Articles

Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River

ZHU TieZhong1,KE Jian1,YAO Bo1,CHEN TingTing1,HE HaiBing1,YOU CuiCui1,ZHU DeQuan1,WU LiQuan1,2()   

  1. 1Anhui Agriculture University, Hefei 230036
    2Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095
  • Received:2020-02-10 Accepted:2020-05-05 Online:2021-04-01 Published:2021-04-22
  • Contact: LiQuan WU E-mail:001@163.com

Abstract:

【Objective】The aim of this study was to identify the differences of yields among various high-yield varieties of double-cropping rice with machine-transplanted under the early season and the common characteristics of super-high yield varieties in the Northern Margin Area of Yangtze River. 【Method】In this study, nine pre-screening high yield varieties were compared for their yield formation, including dry matter accumulation (DMA), leaf area index (LAI) and the intercepted photosynthetically active radiation (IPAR), in field experiments in the early season of 2018 and 2019 in Lujiang county, Anhui province, China.【Result】The rice grain yields varied across the different high-yield varieties. Through cluster analysis, it could be further divided into three yield types: super-high yield (9.1-9.5 t·hm -2), higher yield (8.1-8.6 t·hm -2) and high yield (7.6-7.8 t·hm -2). Compared with higher yield and high yield varieties, the super-high yield varieties showed more spikelets per panicle, total spikelets and 1000-grain weight. The average daily yield of super-high yield was 82.4 kg·hm -2·d -1, 10.2% and 19.8% higher than that of higher yield and high yield, respectively. DMA was the main reason for the differences in yield among various varieties. The DMA of super-high yield varieties was 18.3%-21.4% higher than that of higher yield and high yield varieties from panicle initiation stage to maturity stage. Super-high yield varieties showed higher IPAR and the photosynthetically active radiation use efficiency (PUE) was related to the higher LAI and sink. IPAR in panicle initiation and heading stage was significantly positively correlated with the spikelets per panicle and 1000-grain weight, respectively. However, the super-high yield varieties showed higher response to the IPAR. The grain weight/leaf of super-high yield varieties was 4.1%-11.3% higher than higher yield and high yield varieties, which was related to the higher PUE from panicle initiation stage to maturity stage. 【Conclusion】 The common characteristics of super-high yield early rice varieties (>9.0 t·hm -2) were higher LAI (panicle initiation stage 5.6-6.0, heading stage 7.1-7.3), higher spikelet numbers per panicle (124-132), higher 1000-grain weight (25.8-27.0 g) and higher average daily yield (80.8-83.7 kg·hm -2·d -1) under machine-transplanted in the Northern Margin Area of Yangtze River.

Key words: northern margin of double-cropping rice, machine-transplanted, early rice, super high yield, light interception

Fig. 1

The meteorological data during the rice growing seasons in 2018 and 2019"

Table 1

Analysis of variance of main agronomic parameters of rice"

变异来源
Source
实际产量
Actual yield
日产量
Daily yield
收获指数
Harvest index
成熟期干物质积累量
Dry matter accumulation at maturity stage
抽穗期叶面积指数
Leaf area index at heading stage
年份 Year (Y) 22.03** 11.8** 1.2ns 0.1ns 0.2ns
品种 Variety (V) 37.73** 106.6** 1.1ns 22.7** 33.2**
年份 × 品种 Y×V 1.02ns 1.4ns 1.0ns 1.2ns 1.3ns

Fig. 2

System cluster analysis of yield"

Table 2

Grain yield and its components of different yield types of rice"

产量类型
Yield type
品种
Variety
实际产量
Actual yield
(t·hm-2)
有效穗数
Panicles
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Grain filling rate (%)
千粒重
1000-grain weight
(g)
超高产
Super high yield
ZLY2013 9.5 369.7 132.9 486.5 73.2 26.9
LLY35 9.3 357.7 129.5 456.5 76.8 26.9
ZF203 9.2 366.0 128.4 463.9 79.5 25.5
ZLY829 9.1 375.0 122.8 453.5 77.5 26.6
平均 Mean 9.3±0.18a 367.1±6.8b 128.4±3.9a 465.1±13.8a 76.8±2.41a 26.4±0.61a
更高产
Higher yield
HYZ1 8.6 359.7 119.3 423.0 79.6 25.1
LLY942 8.3 388.3 110.7 425.6 78.1 25.0
ZJZ17 8.1 373.5 114.1 421.0 76.3 25.8
平均 Mean 8.3±0.23b 375.6±13.8ab 113.7±5.0b 422.0±6.7b 77.7±1.69a 25.3±0.37b
高产
High yield
XZX24 7.8 389.0 104.7 409.7 76.0 25.2
ZZ35 7.6 375.5 106.1 389.1 78.0 25.5
平均 Mean 7.7±0.22c 380.5±8.3a 105.6±1.1c 397.0±11.9c 77.3±0.99a 25.4±0.73b

Table 3

The days of main growth duration and daily grain yield of rice"

产量类型
Yield type
品种
Variety
移栽—穗分化期
TP-PI (d)
穗分化期—抽穗期
PI-HD (d)
抽穗—成熟期
HD-MA (d)
移栽—成熟期
TP-MA (d)
日产量
Daily yield (kg·hm-2·d-1)
超高产
Super high yield
ZLY2013 32 26 25 83 83.7
LLY35 32 27 23 82 82.8
ZF203 33 27 22 81 82.2
ZLY829 33 27 23 83 80.8
平均 Mean 33±0.5a 27±2.6a 23±2.5a 82±0.9a 82.4±1.3a
更高产
Higher yield
HYZ1 33 25 23 81 76.9
LLY942 32 27 23 82 74.3
ZJZ17 31 26 23 83 73.0
平均 Mean 32±0.9a 26±1.3a 23±2.1a 82±0.9a 74.7±1.9b
高产
High yield
XZX24 32 27 22 81 69.9
ZZ35 32 28 23 83 67.7
平均 Mean 32±0.3a 27±2.0a 23±2.2a 82±1.1a 68.8±2.1c

Table 4

Dry matter production characteristics of different yield types of rice"

产量类型
Yield type
品种
Variety
干物质积累量Dry matter accumulation (t·hm-2) 群体生长速率 Crop growth rate (g·m-2·d-1) 收获指数
Harvest index
(%)
移栽—
穗分化期
TP-PI
穗分化—
抽穗期
PI-HD
抽穗—
成熟期
HD-MA
移栽—
成熟期
TP-MA
移栽—
穗分化期
TP-PI
穗分化—
抽穗期
PI-HD
抽穗—
成熟期
HD-MA
移栽—
成熟期
TP-MA
超高产
Super high yield
ZLY2013 3.1 6.6 7.0 16.7 9.5 25.3 27.9 20.1 47.4
LLY35 2.7 5.7 7.9 16.30 8.5 21.1 34.3 20.2 45.8
ZF203 3.5 5.5 7.9 16.8 10.9 20.2 35.8 20.8 46.9
ZLY829 2.4 6.5 7.4 16.4 7.4 24.1 32.2 20.0 47.6
平均 Mean 3.0±0.42b 6.1±0.53a 7.5±0.43a 16.6±0.28a 9.1±1.4b 22.7±2.2a 32.6±3.2a 20.2±0.4a 46.9±1.7a
更高产
Higher yield
HYZ1 3.5 6.2 5.0 14.7 10.5 24.8 21.8 18.1 47.2
LLY942 3.7 6.2 5.5 15.4 11.8 22.9 24.1 19.0 46.3
ZJZ17 3.4 6.4 5.3 15.1 10.9 24.5 23.0 18.8 47.2
平均 Mean 3.5±0.20a 6.2±0.37a 5.3±0.32c 14.9±0.43b 11.1±0.7a 24.1±1.1a 22.9±1.2c 18.6±0.5b 46.9±2.1a
高产
High yield
XZX24 3.1 5.3 5.8 14.2 9.7 19.5 26.5 17.5 45.6
ZZ35 3.6 5.3 5.9 14.8 11.2 18.8 25.7 18.0 47.5
平均 Mean 3.4±0.27a 5.3±0.14b 5.9±0.32b 14.5±0.54c 10.4±0.9a 19.1±0.6b 26.1±1.3b 17.7±0.5c 46.5±1.8a

Fig. 3

The relationship between IPAR and LAI at panicle initiation stage and heading stage ** means significant difference at 0.01 level"

Fig. 4

The PUE from panicle initiation stage to heading stage and heading stage to maturity stage Different lowercase letters indicate significant difference (P<0.05)"

Fig. 5

The relationship between spikelets per panicle and IPAR at panicle initiation stage, and the relationship between 1000-grain weight and IPAR at heading stage (2018-2019) ** means significant difference at 0.01 level, * means significant difference at 0.05 level. The same as below"

Table 5

Grain-leaf area ratio of different types of rice at heading stage"

产量类型
Yield type
品种
Variety
颖花/叶
Spikelets/leaf (cm-2)
实粒/叶
Filled grains/leaf (cm-2)
总粒重/叶
Grain weight/leaf (mg·cm-2)
超高产
Super high yield
ZLY2013 0.69 0.51 18.52
LLY35 0.66 0.51 17.80
ZF203 0.71 0.54 17.81
ZLY829 0.68 0.50 18.10
平均 Mean 0.69±0.02a 0.52±0.02a 18.06±0.40a
更高产
Higher yield
HYZ1 0.68 0.54 17.16
LLY942 0.69 0.54 17.35
ZJZ17 0.68 0.52 17.53
平均 Mean 0.68±0.02a 0.53±0.02a 17.35±0.58b
高产
High yield
XZX24 0.67 0.48 16.85
ZZ35 0.61 0.48 15.58
平均 Mean 0.64±0.04b 0.48±0.02b 16.22±0.86c

Fig. 6

The relationship between grain weight/leaf and PUE from panicle initiation stage to maturity stage"

[1] LI P F, LU J W, HOU W F, PAN Y H, WANG Y, KHAN M R, REN T, CONG R H, LI X K. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environmental Science and Pollution Research, 2017,24(12):11722-11733.
[2] PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by site-specific N management. A review Agronomy for Sustainable Development, 2010,30(3):649-656.
[3] 岳伟, 陈金华, 阮新民, 陈曦, 陈砚涛, 王珍. 安徽省沿江地区双季稻光热资源利用效率变化特征及对气象产量的影响. 中国生态农业学报, 2019,27(6):929-940.
YUE W, CHEN J H, RUAN X M, CHEN X, CHEN Y T, WANG Z. Variation in characteristics of light and heat resource utilization efficiency of double-season rice and its impact on meteorological yield along the Yangtze River in Anhui province. Chinese Journal of Eco-Agriculture, 2019,27(6):929-940. (in Chinese)
[4] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国. 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014,40(7):1320-1329.
AI Z Y, GUO X Y, LIU W X, MA G H, QING X G. Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agronomica Sinica, 2014,40(7):1320-1329. (in Chinese)
[5] ZHOU Y J, LI X X, CAO J, LI Y, HUANG J L, PENG S B. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crops Research, 2018,228:68-75.
[6] HUANG M, YANG C L, JI Q M, JIANG L G, TAN J L, LI Y Q. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research, 2013,149:187-192.
[7] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014,47(7):1273-1289.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agriculture Sinica, 2014,47(7):1273-1289. (in Chinese)
[8] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015,48(17):3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K. Innovation and practice of high-yield rice cultivation technology in China. Scientia Agriculture Sinica, 2015,48(17):3404-3414. (in Chinese)
[9] 陈惠哲, 徐一成, 张玉屏, 向镜, 张义凯, 朱德峰. 超级早稻钵型毯状秧苗机插效果及产量形成. 中国农业科学, 2019,52(23):4240-4250.
CHEN H Z, XU Y C, ZHANG Y P, XIANG J, ZHANG Y K, ZHU D F. Effect of pot-mat seeding on the quality of machined transplanting and yield formation of super early rice. Scientia Agriculture Sinica, 2019,52(23):4240-4250. (in Chinese)
[10] 李刚华, 刘正辉, 唐设, 丁承强, 王绍华, 凌启鸿, 丁艳锋. 南方水稻机插现状与发展分析. 中国稻米, 2015,21(5):7-12.
LI G H, LIU Z H, TANG S, DING C Q, WANG S H, LING Q H, DING Y F. Present situation and development analysis of machine transplanting rice in southern China. China Rice, 2015,21(5):7-12. (in Chinese)
[11] 吕伟生, 曾永军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 方加海. 双季机插稻不同产量水平群体的产量构成特征研究. 核农学报, 2019,33(10):2048-2057.
LÜ W S, ZENG Y J, SHI Q H, PAN X H, HUANG S, SHANG Q Y, TAN X M, FANG J H. Characteristics of yield components from middle-yield to super-high-yield of machine-transplanted double rice. Journal of Nuclear Agricultural Sciences, 2019,33(10):2048-2057. (in Chinese)
[12] XU L, ZHAN X W, YU T T, NIE L X, HUANG J L, CUI K H, WANG F, LI Y, PENG S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Research, 2018,227:49-55.
[13] 曾勇军, 石庆华, 潘晓华, 韩涛. 长江中下游双季稻高产株型特征初步研究. 作物学报, 2009,35(3):546-551.
ZENG Y J, SHI Q H, PAN X H, HAN T. Preliminary study on the plant type characteristic of double cropping rice in middle and lower reaches of Changjiang River. Acta Agronomica Sinica, 2009,35(3):546-551. (in Chinese)
[14] 吕伟生, 肖国滨, 叶川, 李亚贞, 陈明, 肖小军, 赖诗盛, 郑伟, 吴艳, 黄天宝. 油-稻-稻三熟制下双季稻高产品种特征研究. 中国农业科学, 2018,51(1):37-48.
LÜ W S, XIAO G B, YE C, LI Y Z, CHEN M, XIAO X J, LAI S S, ZHENG W, WU Y, HUANG T B. Characteristics of high-yield double rice varieties in rice-rice-rapeseed cropping system. Scientia Agriculture Sinica, 2018,51(1):37-48. (in Chinese)
[15] WU W, NIE L X, LIAO Y C, SHAH F, CUI K H, WANG Q, LIAN Y, HUANG J L. Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. European Journal of Agronomy, 2013,45(2):75-86.
[16] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012,28(2):39-44.
ZHANG H C, ZHAO P H, SUN J Y, WU G C, XU J, DUANMU Y X, DAI Q G, HUO Z Y, XU K, WEI H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Transaction of the Chinese Society of Agricultural Engineering, 2012,28(2):39-44. (in Chinese)
[17] 李刚华, 李德安, 宁加朝, 黄庆宇, 顾伟, 杨从党, 王绍华, 凌启鸿, 丁艳锋. 秧苗密度和施氮量对超高产杂交籼稻秧苗素质的影响. 中国水稻科学, 2008,22(6):610-616.
LI G H, LI D A, NING J C, HUANG Q Y, GU W, YANG C D, WANG S H, LING Q H, DING Y F. Effects of nitrogen level and seeding density on seeding quality of indica type super high yielding hybrid rice. Chinese Journal of Rice Science, 2008,22(6):610-616. (in Chinese)
[18] LI G H, XUE L H, GU W, YANG C D, WANG S H, LING Q H, QIN X, DING Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Research, 2009,112(2/3):214-221.
[19] WANG D P, LAZA M R C, CASSMAN K G, HUANG J L, NIE L X, LING X X, CENTENO G S, CUI K H, WANG F, LI Y, PENG S B. Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crops Research, 2016,198:303-311.
[20] HOU W F, KHAN M R, ZHANG J L, LU J W, REN T, CONG R H, LI X K. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agriculture, Ecosystems and Environment, 2019,269:183-192.
[21] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特征的研究. 中国农业科学, 2006,39(7):1336-1345.
YANG J C, DU Y, WU C F, LIU L J, WANG Z Q, ZHU Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Scientia Agricultura Sinica, 2006,39(7):1336-1345. (in Chinese)
[22] QIAO J, YANG L Z, YAN T M, XUE F, ZHAO D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. European Journal of Agronomy, 2013,49(8):93-103.
[23] 邹应斌, 黄见良, 李合松, 张杨珠, 肖应辉, 黄升平, 宋春芳, 程正良, 易建平. 双季稻超高产栽培技术研究. 中国水稻科学, 1998,12(增刊):4-8.
ZHOU Y B, HUANG J L, LI H S, ZHANG Y Z, XIAO Y H, HUANG S P, SONG C F, CHENG Z L, YI J P. Comparison of different super-high-yielding cultivation methods in double-cropping rice. Chinese Journal of Rice Science, 1998,12(Suppl.):4-8. (in Chinese)
[24] LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009,34(1):179-204.
[25] 吴小文, 徐济春, 张晓红, 周兵, 吕和平. 庐江县早籼稻品种比较试验. 现代农业科技, 2013,24:27-29.
WU X W, XU J C, ZHANG X H, ZHOU B, LÜ H P. The comparison test of early indica variety in Lujiang county. Modern Agricultural Science and Technology, 2013,24:27-29. (in Chinese)
[26] SUI B, FENG X M, TIAN G L, HU X Y, SHEN Q R, GUO S W. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 2013,150:99-107.
[27] ZHANG Z J, CHU G, LIU L J, WANG Z Q, WANG X M, ZHANG H, YANG J C, ZHANG J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013,150:9-18.
[28] 朱大伟, 王力, 郭保卫, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 氮肥运筹对钵苗机插水稻干物质积累和产量及各器官氮素积累的影响. 江苏农业科学, 2015,43(3):46-49.
ZHU D W, WANG L, GUO B W, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of nitrogen fertilizer management on dry matter accumulation and yield, and nitrogen accumulation in various organs of rice planted in pots. Jiangsu Agricultural Science, 2015,43(3):46-49. (in Chinese)
[29] 何连华, 陈多, 张驰, 田青兰, 吴振元, 李秋萍, 钟晓媛, 邓飞, 胡剑锋, 凌俊英, 任万军. 机插栽培籼杂交稻的日产量及与株型的关系. 中国农业科学, 2019,52(6):981-996.
HE L H, CHEN D, ZHANG C, TIAN Q L, WU Z Y, LI Q P, ZHONG X Y, DENG F, HU J F, LING J Y, REN W J. The daily yield of medium hybrid rice in machine transplanting and its relationship with plant type. Scientia Agriculture Sinica, 2019,52(6):981-996. (in Chinese)
[30] 张进山, 张晓红, 周兵, 吴小文, 吴晨阳, 潘志军, 尹玲. 庐江县早籼稻适宜机插新品种(系)筛选试验. 安徽农业科学, 2018,46(3):28-30, 33.
ZHANG J S, ZHANG X H, ZHOU B, WU X W, WU C Y, PAN Z J, YIN L. Screening test of new varieties(lines) suitable machine inserted early indica rice in Lujiang County. Journal of Anhui Agricultural Sciences, 2018,46(3):28-30, 33. (in Chinese)
[31] MANN C C. Future food: Crop Scientists seek a new revolution. Science, 1999,283:310-314.
[32] XIONG J, DING C Q, WEI G B, DING Y F, WANG S H. Characteristic of dry-matter accumulation and nitrogen-uptake of super-high-yielding early rice in China. Agronomy Journal, 2013,105(4):1142-1150.
[33] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001,15(4):265-270.
YANG H J, LI Y Z, YANG R C, JIANG Z W, ZHENG J S. Dry matter production characteristics of super high yielding rice. Chinese Journal of Rice Science, 2001,15(4):265-270. (in Chinese)
[34] 唐海明, 肖小平, 逄焕成, 聂泽民, 李玉义, 汤文光, 于天一, 汪柯, 李强, 杨光立. 双季稻区不同栽培方式对水稻光合生理特性、粒叶比及产量的影响. 中国农业大学学报, 2015,20(4):48-56.
TANG H M, XIAO X P, PANG H C, NIE Z M, LI Y Y, TANG W G, YU T Y, WANG K, LI Q, YANG G L. Effects of different cultivation methods on rice photosynthetic characteristics, grain leaf area ratio and yield in double rice cropping system. Journal of China Agricultural University, 2015,20(4):48-56. (in Chinese)
[35] 童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田. 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008,19(3):505-511.
TONG P, YANG S M, MA J, WU H Z, FU T L, LI M, WANG M T. Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Chinese Journal Applied Ecology, 2008,19(3):505-511. (in Chinese)
[36] HUANG M, JIANG L G, XIA B, ZOU Y B, JIANG P, AO H J. Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science, 2013,5(8):600-608.
[37] LAZA M R C, PENG S B, AKITA S, SAKA H. Effect of panicle size on grain yield of IRRI-released indica rice cultivars in the wet season. Plant Production Science, 2004,7(3):271-276.
[38] HORIE T, OHNISHI M, ANGUS J F, LEWIN L G, TSUKAGUCHI T, MATANO T. Physiological characteristics of high-yielding rice inferred from cross-location experiments. Field Crops Research, 1997,52(1/2):55-67.
[39] 吴文革, 张四海, 赵决建, 吴桂成, 李泽福, 夏加发. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2007,13(5):757-764.
WU W G, ZHANG S H, ZHAO J J, WU G C, LI Z F, XIA J F. Nitrogen uptake, utilization and rice yield in the north rimland pf double-cropping rice region as affected by different nitrogen management strategies. Plant Nutrition and Fertilizer Science, 2007,13(5):757-764. (in Chinese)
[1] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[2] CHEN HuiZhe,XU YiCheng,ZHANG YuPing,XIANG Jing,ZHANG YiKai,ZHU DeFeng. Effect of Pot-Mat Seedling on the Quality of Machined Transplanting and Yield Formation of Super Early Rice [J]. Scientia Agricultura Sinica, 2019, 52(23): 4240-4250.
[3] KONG QingBo, ZHANG MingQing, LI Juan, XU WenJiang, ZHANG ZanDe, YAO JianZu. Heteroskedasticity Diagnosis and Feasible Generalized Least Squares Regression Modeling of Ternary Fertilizer Efficiency Model [J]. Scientia Agricultura Sinica, 2018, 51(4): 728-737.
[4] LIU Wei, LI YiJun, Lü HouQuan. Responses of Heading to Flowering to Maturity of Early Rice to Climate Change and Different Transplant Periods [J]. Scientia Agricultura Sinica, 2018, 51(1): 49-59.
[5] CAO YiBing, HUANG ShouBing, WANG YuanYuan, XIA YuQing, MENG QingFeng, TAO HongBin, WANG Pu. Dynamic Simulation of Relationship Between Light Interception and Growth of Maize Population and Its Application [J]. Scientia Agricultura Sinica, 2017, 50(11): 1973-1981.
[6] WANG Chun-yi, YAO Peng-juan, ZHANG Ji-quan, REN Yi-fang. Risk Assessment of Cold and Hot Damages for Double-Cropping Early Rice (DCER) in Lower-Middle Reaches of the Yangtze River Basin [J]. Scientia Agricultura Sinica, 2016, 49(13): 2469-2483.
[7] ZHANG Jia-lei, GUO Feng, YANG Dian-qing, MENG Jing-jing, YANG Sha, WANG Xing-yu, TAO Shou-xiang, LI Xin-guo, WAN Shu-bo. Effects of Single-Seed Precision Sowing on Population Structure and Yield of Peanuts with Super-High Yield Cultivation [J]. Scientia Agricultura Sinica, 2015, 48(18): 3757-3766.
[8] CUI Liang, SU Ben-ying, YANG Feng, YANG Wen-yu. Relationship Between Light Interception and Light Utilization of Soybean Canopy in Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2015, 48(1): 43-54.
[9] YANG Wei-wei, CHEN Xi-long, LIU Hang-kong, ZHANG Man-rang, ZHANG Dong, HAN Ming-yu. Three-Dimensional Simulation of Canopy Structure and Light Interception for Tall Spindle Shape of Spur ‘Fuji’ Apple with Dwarf Interstock [J]. Scientia Agricultura Sinica, 2014, 47(23): 4680-4694.
[10] ZHANG Hong-Cheng, GUO Bao-Wei, CHEN Hou-Cun, ZHOU Xing-Tao, ZHANG Jun, ZHU Cong-Cong, CHEN Jing-Du, LI Gui-Yun, WU Zhong-Hua, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, WEI Hai-Yan, GAO Hui, YANG Xiong. Eco-physiological Characteristics and Super High Yield Formation Mechanism of Ordered Transplanting and Optimized Broadcasting Rice [J]. Scientia Agricultura Sinica, 2013, 46(3): 463-475.
[11] GONG Jin-Long, HU Ya-Jie, LONG Hou-Yuan, CHANG Yong, LI Jie, ZHANG Hong-Cheng, MA Rong-Rong, WANG Xiao-Yan, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, WEI Hai-Yan, DENG Zhang-Ze, MING Qing-Long. Study on Collaborating Characteristics of Grain Yield Components and Panicle Traits of Large Panicle Hybrid Japonica Rice [J]. Scientia Agricultura Sinica, 2012, 45(11): 2147-2158.
[12] XU De-hai,WANG Xiao-yan,MA Rong-rong,YU Sheng-miao,ZHU Lian-feng,OUYANG You-nan,JIN Qian-yu
.

Analysis on Physiological Properties of the Heavy Panicle Type of Indica-Japonica Inter-subspecific Hybrid Rice Yongyou 6

[J]. Scientia Agricultura Sinica, 2010, 43(23): 4796-4804 .
[13] LI Yan-da,TANG Liang,ZHANG Yu-ping,ZHU Xiang-cheng,CAO Wei-xing,ZHU Yan
. Relationship of PAR Interception of Canopy to Leaf Area and Yield in Rice
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3296-3305 .
[14] ,,,,,. Effects of Different Training Systems on the Light Interception Ability and Fruiting of Young Nectarine Trees in Greenhouse [J]. Scientia Agricultura Sinica, 2006, 39(06): 1294- .
[15] ,. New Plant Type Breeding for Super-high Yielding Northern Japonica Rice [J]. Scientia Agricultura Sinica, 2004, 37(10): 1407-1413 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!