Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3123-3133.doi: 10.3864/j.issn.0578-1752.2022.16.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum

WANG JinSong(),DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031
  • Received:2021-11-14 Accepted:2022-03-30 Online:2022-08-16 Published:2022-08-11
  • Contact: XiaoYan JIAO E-mail:jinsong_wang@126.com;xiaoyan_jiao@126.com

Abstract:

【Objective】This study was conducted to clarify effects of different row spacings and planting densities on the development, yield, grain quality and NPK (nitrogen, phosphorus and potassium) accumulation of grain-feeding sorghum, and to identify the optimal cultivation mode in agro-pastoral ecozone of Shanxi, so as to provide the theoretical basis for the grain-feeding sorghum cultivation. 【Method】A new grain-feeding sorghum variety Liaoxialiang No. 1 was selected for this study. Field experiments were conducted during 2018 and 2019. Three row spacings were set, i.e. 30, 50, and 60 cm, respectively. And there were four planting densities (13.5×104, 16.5×104, 19.5×104 and 22.5×104 plants/hm2) at each row spacing. The plant height and biomass at heading stage, grain yield, NPK accumulation at harvest and grain quality in different row spacings and planting densities were analyzed. 【Result】There were significantly effects of row spacing, planting density and their interaction on the grain-feeding sorghum growth, nutrient accumulation, grain yield and quality. As plant density increased, the plant height, biomass and NPK accumulation at heading stage were increased. However, the biomass produced after heading, biomass and NPK accumulation at harvest, along with yield, increased first and then decreased with the increase of density under row spacing with 50 and 60 cm; Actually, the grain yield of feeding sorghum was positively correlated with biomass and N accumulation at harvest and the biomass produced after heading. The average grain yield, N and P accumulation and biomass after heading in row spacing of 50 cm were higher than those of 60 and 30 cm. Among the 12 treatments, the treatment with row spacing of 50 cm, planting density of 16.5×104 plants/hm2 had improved biomass and N accumulation at harvest, which were increased by 3.6%-12.8% and 3.6%-18.6%, respectively, relative to the average value of the total 12 treatments. The grain yield with row spacing of 50 cm and planting density of 16.5×104 plants/hm2 was the highest among all treatments, and they were 10 814 kg·hm-2 in 2018 and 12 434 kg·hm-2 in 2019, respectively. Starch and protein content of grain decreased with planting density increasing, but the influence of row spacing variation on them were less. Grain tannin content was significantly increased with planting density adding, while the row spacing increase also promoted tannin content. The influence of row spacing and planting density on tannin content was obvious, compared with those on starch and protein. Those treatments with row spacing of 50 cm and density of 16.5×104 plants/hm2 had similar tannin content with the average value of different treatments. 【Conclusion】Both N accumulation and biomass production after heading were important for high grain yield of feeding sorghum. The appropriate plant spacing under different row spacings could improve feeding sorghum grain yield, but affect grain quality, especially the tannin content. Row spacing of 50 cm and density of 16.5×104 plants/hm2 was recommended in agro-pastoral ecozone in Shanxi (with variety of Liaoxialiang No.1) in terms of grain yield and quality of feeding sorghum.

Key words: grain-feeding sorghum, row spacing, planting density, yield, quality, Nutrient accumulation

Fig. 1

Daily precipitation and temperature during sorghum growth stage"

Table 1

Effects of different row spacings and planting densities combinations on sorghum yield"

行距
Row space (cm)
密度
Planting density
(×104 plants/hm2)
产量Yield (kg·hm-2)
2018 2019
30 13.5 9096e 8873e
16.5 8971e 8573e
19.5 9896d 10295cd
22.5 10021cd 10208cd
50 13.5 10181cd 10335bcd
16.5 10814a 12434a
19.5 10628ab 10635bcd
22.5 10179cd 10301cd
60 13.5 9826d 10023d
16.5 10566ab 11056bc
19.5 10350bc 11308b
22.5 9967d 9891d
方差分析Anova analysis
行距Row spacing (R) **
密度Density (D) **
年份Year (Y) ns
R×D **
R×Y **
D×Y ns
R×D×Y **

Fig. 2

Effects of different combinations of row spacing and planting density on sorghum plant height at heading Different lowercase letters in the same year indicate significant differences among treatments at P<0.05;** means significant difference at the 0.01 a probability levels"

Table 2

Effects of different combinations of row spacing and planting density on sorghum biomass at heading, biomass after heading and biomass at harvest"

行距
Row space
(cm)
密度
Planting density
(×104 plants/hm2)
抽穗期生物量
Biomass at heading (kg·hm-2)
抽穗后生物量
Biomass after heading (kg·hm-2)
收获期生物量
Biomass at harvest (kg·hm-2)
2018 2019 2018 2019 2018 2019
30 13.5 9550b 8121e 7829f 7255d 17379d 15376d
16.5 10150b 8526de 7696f 7519cd 17846d 16045d
19.5 10107b 8530de 8819de 9001bc 18926c 17531cd
22.5 10055b 9518c 9493c 8736bcd 19548bc 18254bc
50 13.5 10386b 8526de 8522e 8675bcd 18908c 17201cd
16.5 11415a 8556d 8614e 11398a 20029b 19954a
19.5 10184b 8782d 11101a 9023bc 21285a 17805c
22.5 10055b 9931c 10208b 8391bcd 20263b 18322bc
60 13.5 10087b 8933d 8943de 8528bcd 19030c 17461cd
16.5 12076a 10320ab 7532f 8406bcd 19608bc 18726abc
19.5 10254b 9776c 9277cd 9802b 19531bc 19578ab
22.5 9894b 10765a 9673c 5342e 19567bc 16107d
方差分析Anova analysis
行距Row spacing (R) ** ** **
密度Density (D) ** ** **
年份Year (Y) ** ** **
R×D ** ** **
R×Y ** ns ns
D×Y ** ** *
R×D×Y ** ** **

Table 3

Anova analysis of the effects of row spacing, plant density and year on nutrient accumulation at heading and harvest stages"

参数
Parameter
抽穗期养分累积量
Nutrient accumulation at heading stage (kg·hm-2)
收获期养分累积量
Nutrient accumulation at harvest (kg·hm-2)
N P K N P K
行距Row spacing (R) ** ** ** ** ** *
密度Density (D) ** ** ** ** ns **
年份Year (Y) ** ** ** ns ** **
R×D ** ** ** ** ** ns
R×Y ** ** ** ** * *
D×Y ** ** ** ns ns **
R×D×Y ** ** ** ** ns ns

Fig. 3

Effects of different combinations of row spacing and planting density on NPK accumulation at heading and harvest a, c and e represent heading stage, and b, d and f represent harvest stage"

Table 4

Person correlation between sorghum seed yield and accumulation of biomass and nutrient at both heading and harvest"

参数
Parameter
抽穗期生物量Biomass at heading stage 收获期生物量
Biomass at harvest
抽穗后生物量 Biomass after heading 抽穗期养分累积量
Nutrient accumulation at heading stage
收获期养分累积量
Nutrient accumulation at harvest
抽穗后养分积累量
Nutrient accumulation after heading
N P K N P K N P K
相关系数
Correlation coefficient
0.309 0.751** 0.633** 0.189 0.425* 0.167 0.902** 0.358 0.056 0.296 0.117 -0.033

Table 5

Effects of different combinations of row spacing and planting density on sorghum seed content of starch, protein and tannin"

行距
Row space
(cm)
密度
Planting density (×104 plants/hm2
淀粉含量
Starch content (%)
蛋白质含量
Protein content (g·kg-1)
单宁含量
Tannin content (g·kg-1)
2018 2019 2018 2019 2018 2019
30 13.5 76.73ab 74.21b 80.63b 77.08d 0.234k 0.255g
16.5 75.89cd 74.11b 77.17e 76.46d 0.426h 0.490e
19.5 74.74ef 73.57cd 76.25fg 75.42e 0.572d 0.738bc
22.5 73.92g 72.94e 75.77g 76.46d 0.709b 0.693bc
50 13.5 76.42abc 74.07bc 77.50de 83.09a 0.353j 0.457e
16.5 75.64cd 73.25de 77.92d 83.13a 0.448g 0.654cd
19.5 75.96bcd 73.28de 78.44c 81.63b 0.550e 0.987a
22.5 75.23de 72.83e 76.04g 79.55c 0.754a 0.774b
60 13.5 77.06a 74.29b 81.75a 80.34c 0.123l 0.130f
16.5 76.87a 74.30b 77.92d 75.38e 0.378i 0.578d
19.5 75.23de 73.92bc 78.71c 73.72f 0.471f 0.670c
22.5 74.18fg 75.10a 76.63f 73.25f 0.679c 0.914a
方差分析Anova analysis
行距Row spacing (R) ** ** **
密度Density (D) ** ** **
年份Year (Y) ** ns **
R×D ** ** **
R×Y ** ** **
D×Y ** ** **
R×D×Y ** ** **
[11] 王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52(22): 4166-4176.
WANG J S, DONG E W, WU A L, BAI W B, WANG Y, JIAO X Y. Responses of fertilization on sorghum grain yield, quality and nutrient utilization to soil fertility. Scientia Agricultura Sinica, 2019, 52(22): 4166-4176. (in Chinese)
[12] 史丽娟, 曹昌林, 董良利, 宋旭东, 白文斌. 不同灌水量对高粱籽粒产量及品质的影响. 山西农业科学, 2012, 40(6): 620-623.
SHI L J, CAO C L, DONG L L, SONG X D, BAI W B. Impacts of different irrigation rates to yield and grain quality in sorghum. Journal of Shanxi Agricultural Sciences, 2012, 40(6): 620-623. (in Chinese)
[13] FARRÁ I, FACI J M. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management, 2007, 83(1-2): 135-143.
doi: 10.1016/j.agwat.2005.11.001
[14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[15] 中华人民共和国农牧渔业部. 谷物籽粒粗淀粉测定方法: GB 5006-1985 1985.
Ministry of Agriculture, Animal Husband and Fisheries of the People’s Republic of China. Determination of crude starch in cereals seeds: GB 5006-1985, 1985. (in Chinese)
[16] 中华人民共和国国家质量监督检验检疫总局. 高粱单宁含量的测定: GB/T 15686-2008. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Sorghum-determination of tannin content: GB/T 15686-2008. Beijing: Standards Press of China, 2009. (in Chinese)
[17] 张彦, 王劲松, 董二伟, 武爱莲, 王媛, 焦晓燕. 中晚熟区主要高粱品种耐瘠性综合评价. 中国农业科学, 2021, 54(23):4954-4968.
[1] HASSAN A, SULTAN M. Low tannin sorghum promising in poultry feed. World Poultry, 2013, 29(3): 30-31.
[2] 冯家中, 付立波. 发展优质饲料高粱大有前途. 吉林农业, 2009(8): 24-25.
FENG J Z, FU L B. Developing high quality feed sorghum has a bright future. Jilin Agriculture, 2009(8): 24-25. (in Chinese)
[3] 于福安, 段有厚, 吴庆凯, 王艳秋, 卜祥. 辽宁省饲料高粱的发展及推广应用. 杂粮作物, 2008, 28(1): 55-56.
YU F A, DUAN Y H, WU Q K, WANG Y Q, BO X. Development and application of feed sorghum in Liaoning province. Rain Fed Crops, 2008, 28(1): 55-56. (in Chinese)
[4] 张福耀, 吴树彪, 柳青山. 影响高粱饲用价值主要内在因素及其对策. 动物营养学报, 2016, 28(1): 1-8.
ZHANG F Y, WU S B, LIU Q S. Main internal factors of influencing sorghum feeding value and its countermeasures. Chinese Journal of Animal Nutrition, 2016, 28(1):1-8. (in Chinese)
[5] 王鑫, 李志强, 谷卫彬, 石雷, 唐宇丹, 高辉远, 赵世杰, 姜闯道. 盐胁迫下高粱新生叶片结构和光合特性的系统调控. 作物学报, 2010, 36(11): 1941-1949.
doi: 10.3724/SP.J.1006.2010.01941
WANG X, LI Z Q, GU W B, SHI L, TANG Y D, GAO H Y, ZHAO S J, JIANG C D. Systemic regulation of anatomic structure and photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress. Acta Agronomica Sinica, 2010, 36(11): 1941-1949. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01941
[6] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42(7): 2342-2348.
SHAN L, XU B C. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions. Scientia Agricultura Sinica, 2009, 42(7): 2342-2348. (in Chinese)
[7] 于永静, 郭兴强, 谢光辉, 杨树军, 牛灵安, 吕润海. 不同行株距种植对甜高粱生物量和茎秆汁液锤度的影响. 中国农业大学学报, 2009, 14(5): 35-39.
YU Y J, GUO X Q, XIE G H, YANG S J, NIU L A, LÜ R H. Effect of plant and row spacing on biomass and brix of stem juice of sweet sorghum. Journal of China Agricultural University, 2009, 14(5): 35-39. (in Chinese)
[8] 朱凯, 张飞, 柯福来, 王艳秋, 邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响. 作物杂志, 2018(1): 83-87.
ZHU K, ZHANG F, KE F L, WANG Y Q, ZOU J Q. Effects of planting density on yield and physiological characteristics of sorghum hybrids suitable for mechenization. Crops, 2018(1): 83-87. (in Chinese)
[9] 董二伟, 王劲松, 焦晓燕, 武爱莲, 南江宽, 郭珺, 王立革. 栽培模式对晋杂34 产量及氮素吸收利用的调控效应. 华北农学报, 2019, 34(1): 196-203.
DONG E W, WANG J S, JIAO X Y, WU A L, NAN J K, GUO J, WANG L G. Effects of cultivation patterns on yield and nitrogen uptake and utilization of Jinza 34. Acta Agriculturae Boreali- Sinica, 2019, 34(1): 196-203. (in Chinese)
[10] 王劲松, 董二伟, 焦晓燕, 武爱莲, 白文斌, 王立革, 郭珺, 韩雄, 柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响. 作物杂志, 2019(5): 166-172.
WANG J S, DONG E W, JIAO X Y, WU A L, BAI W B, WANG L G, GUO J, HAN X, LIU Q S. Effectis of different planting patterns on yield and nutrient absorption of sorghum Jinnuo 3. Crops, 2019(5): 166-172. (in Chinese)
[17] ZHANG Y, WANG J S, DONG E W, WU A L, WANG Y, JIAO X Y. Comprehensive evaluation of low-fertility tolerance of different sorghum cultivars in middle-late-maturing area. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968. (in Chinese)
[18] 艾雪莹. 种植密度和配置方式对高粱生长发育及微环境的影响[D]. 沈阳: 沈阳农业大学, 2019.
AI X Y. Effects of planting density and configuration mode on growth, development of sorghum and micro environmental factors[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese)
[19] PORTER K B, JENSEN M E, SLETTEN W H. The effect of row spacing, fertilizer and planting rate on the yield and water use of irrigated grain sorghum. Agronomy Journal, 1960, 52(8): 431-434.
[20] PAUL M J, FOYER C H. Sink regulation of photosynthesis. Journal of Experimental Botany, 2001, 52(360): 1383-1400.
doi: 10.1093/jexbot/52.360.1383
[21] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51(22): 4264-4276.
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S. Effects of planting pattern and density on population structure and yield of sorghum. Scientia Agricultura Sinica, 2018, 51(22): 4264-4276. (in Chinese)
[22] MAY A, SOUZA V F D, GRAVINA G D A, FERNANDES P G. Plant population and row spacing on biomass sorghum yield performance. Ciência Rural, 2016, 46(3): 434-439.
doi: 10.1590/0103-8478cr20141133
[23] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45(12): 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)
doi: 10.3724/SP.J.1006.2019.93011
[24] NIELSEN D C, VIGIL M F, HENRY W B. Skip row planting configuration shifts grain sorghum water use under dry conditions. Field Crops Research, 2018, 223: 66-74.
doi: 10.1016/j.fcr.2018.04.003
[25] AULT T R. On the essentials of drought in a changing climate. Science, 2020, 368: 256-260.
doi: 10.1126/science.aaz5492
[26] POLLO R, SITOMPUL S M, GURITNO B, TYASMORO Y S. Crop growth parameters of grain sorghum varieties (sorghum bicolor (L.) moench) at different crop spacing. Russian Journal of Agricultural and Socio-Economic Sciences, 2018, 74(2): 224-233.
doi: 10.18551/rjoas.2018-02.25
[27] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47(12): 2459-2470.
doi: 10.3724/SP.J.1006.2021.04252
DONG E W, WANG J S, WU A L, WANG Y, WANG L G, HAN X, GUO J, JIAO X Y. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle. Acta Agronomica Sinica, 2021, 47(12): 2459-2470. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04252
[28] MANJUNATH S B, ANGADI V V, THIMMEGOWDA P. Fodder yield and quality of multi cut sorghum (CoFS-29) as influenced by row spacing and nitrogen levels. Research Journal of Agricultural Sciences, 2014, 4(2): 280-282.
[29] 张国兵, 汪灿, 周棱波, 徐燕, 高旭, 姜讷, 张立异, 邵明波. 不同株行距配置对酒用糯高粱红粱丰1号农艺性状、产量及品质的影响. 江苏农业科学, 2019, 47(1): 76-79.
ZHANG G B, WANG C, ZHOU L B, XU Y, GAO X, JIANG N, ZHANG L Y, SHAO M B. Effects of different plant spacing on agronomic characters, yield and quality of Glutinous sorghum Hongliangfeng 1. Jiangsu Agricultural Sciences, 2019, 47(1): 76-79. (in Chinese)
[30] 卫永太, 张镔, 张桂香. 中国高粱品质性状的区域性差异. 天津农业科学, 2016, 22( 11): 138-140.
WEI Y T, ZHANG B, ZHANG G X. Regional differences analysis on quality traits of Chinese sorghum. Tianjin Agricultural Sciences, 2016, 22(11): 138-140. (in Chinese)
[31] ПЕРУАНСКИЙ Ю В, 朱云香. 高粱饲用价值与单宁含量的关系. 国外农学-杂粮作物, 1991(2): 27.
ПЕРУАНСКИЙ Ю В, ZHU Y X. Relationship between seed forage value and tannin content of sorghum. Rain Fed Crops, 1991(2): 27. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!