Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1391-1400.doi: 10.3864/j.issn.0578-1752.2023.07.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Intermittent Different Temperature on Feeding and Intestinal Development of Growing Laying Hens

LIU ZengMin(), PAN YaLi(), LIN Hai, JIAO HongChao, ZHAO JingPeng, WANG XiaoJuan()   

  1. College of Animal Science and Technology, Shandong Agricultural University/Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, Shandong
  • Received:2021-12-12 Accepted:2022-05-27 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 The objective of this study was to study the effects of ambient temperature on feeding and intestinal development of poultry, and to supplement the absent temperature parameters for laying hens rearing, so as to provide a certain scientific basis for the correct feeding of laying hens.【Method】 A total of 360 Issa brown laying hens aged 11 weeks were selected and divided into 5 treatment groups with 6 replicates per group and 12 hens per replicate. The experimental laying hens were transferred to 5 intelligent environmental control chicken houses for 1 week of pre-trial and 8 weeks of formal experiment, with 3 chickens per cage. The relative humidity in the chicken house was kept at 60%, and the light was kept for 8 h (9:00-17:00) every day during the prelay period. The temperature of the control group was kept unchanged at 22℃, and the four treatment groups were carried out in a manner of daily intermittent, including 24℃, 26℃, 28℃, and 30℃ at 10:00-18:00 every day, respectively, and changed to the base temperature 22℃ for the rest of the time, the heating and cooling time were within 1 h. The experiment lasted for 8 weeks. The experimental laying hens were free to eat and drink, the feed intake was counted weekly, and the samples were collected once every two weeks. Twelve hens in each group were randomly selected and weighed, and then killed by neck cutting. The weight of glandular stomach, the weight and length of duodenum, jejunum and ileum were weighed. Hypothalamus, glandular stomach and duodenum samples were frozen in liquid nitrogen and stored at -80℃. Feed intake was calculated in heat treatment period and non-heat treatment period for 3 days before the end of experiment.【Result】 Compared with T22 group, the feed intake in T30 group was significantly decreased at 13-16 week (P<0.05); the feed intake in T24 group was significantly higher than that in T28 and T30 groups at 17-20 week (P<0.05). During the heat treatment period, the feed intake of T30 group was significantly lower than that in T22 and T24 groups (P<0.05). The feed intake of T30 group was significantly lower than that in T22, T24 and T26 groups during the non-heat treatment period (P<0.05). The feed intake in the heat treatment period was significantly lower than that in the non-heat treatment period (P<0.05), and the highest feed intake was maintained in T24 group and the lowest in T30 group. Compared with T22 group, the glandular gastric index was significantly increased at 16 week (P<0.01). At 18 week, compared with T22 group, the jejunum index in T30 group was significantly lower than that in other groups (P<0.05). At 20 week, compared with T22 group, the glandular stomach index, jejunum index and ileum index in T24 group were significantly increased (P<0.05), and the jejunum index was significantly higher than that in T30 group (P<0.05). Compared with T22 group, the expression of NPY (Neuropeptide Y) in hypothalamus of all treatment groups was significantly increased at 14 week (P<0.05). The expression of AgRP (Agouti-related protein) in hypothalamus of T30 group was significantly decreased (P<0.05), and the expression of CCK (Cholecystokinin) in duodenum of T30 group was significantly increased (P<0.05). At 20 week, compared with T22 group, the expression of CART (amphetamine-regulated transcript) in hypothalamus of T24 group was significantly decreased (P<0.05), and the expression of ghrelin in glandular stomach of T24 group was significantly decreased (P<0.05).【Conclusion】 These results indicated that ambient temperature at 24℃ during the growing period could promote the development of gastrointestinal tract, increase the expression of NPY in hypothalamus, and inhibit the expression of CART and ghrelin in hypothalamus, which was beneficial to the growth and development of laying hens. However, the high temperature treatment at 30℃ damaged the intestinal tract of laying hens, inhibited the expression of hypothalamus feeding promoting factor AgRP, and promoted the expression of duodenal feeding inhibiting factor CCK, thus inhibiting feeding intake and reducing feed intake of laying hens.

Key words: laying hens, feed intake, temperature, prelay period, intestine, hypothalamus

Table 1

Gene-specific primer of related genes"

名称 Gene name 编号 Genbank number 引物位置 Primers position 引物序列 Primers sequences (5′→3′)
NPY M87294 Forward primer GAGGCACTACATCAACCTCATCAC
Reverse primer TGTTTTCTGTGCTTTCCCTCAA
AgRP NM_001031457 Forward primer GGAACCGCAGGCATTGTC
Reverse primer GTAGCAGAAGGCGTTGAAGAA
POMC NM_001031098 Forward primer CGCTACGGCGGCTTCA
Reverse primer CGCCGCTCACAGGCACTTG
CART BI394769 Forward primer TGCCGCACTACGAGAAGAAGTTC
Reverse primer CGCCGCTCACAGGCACTTG
Ghrelin AB075215 Forward primer CCTTGGGACAGAAACTGCTC
Reverse primer CACCAATTTCAAAAGGAACG
CCK NM_001001741 Forward primer CAGCAGAGCCTGACAGAACC
Reverse primer AGAGAACCTCCCAGTGGAACC
GAPDH NM_204305.1 Forward primer ATCACAGCCACACAGAAGACG
Reverse primer TGACTTTCCCCACAGCCTTA
β-actin L08165 Forward primer TGCGTGACATCAAGGAGAAG
Reverse primer TGCCAGGGTACATTGTGGTA

Fig. 1

Effect of intermittent temperature treatment on feed intake of growing hens (n = 6) Means with different letters differ significantly, P<0.05. The same as below"

Fig. 2

Effects of temperature on food intake of growing hens in heat treatment period and non-heat treatment period (n = 6)"

Fig. 3

Effect of intermittent temperature treatment on digestive organ development of growing hens(n = 12)"

Table 2

Effect of intermittent temperature treatment on intestinal length development of growing hens (cm)"

周龄
Week age
温度 Temperature F
F value
P
P value
T22 T24 T26 T28 T30
14 week
十二指肠 Duodenum 18.18±1.90 16.46±2.52 16.54±2.49 16.60±2.47 14.59±2.35 F(4,54)=0.28 0.8885
空肠 Jejunum 34.01±6.46 32.18±5.38 30.67±5.42 30.53±5.23 26.54±4.78 F(4,55)=0.25 0.9066
回肠 Ileum 29.74±6.14 30.33±6.76 27.71±5.95 27.75±5.31 26.71±5.26 F(4,55)=0.07 0.9917
16 week
十二指肠 Duodenum 21.42±0.64 20.56±1.07 21.79±1.01 21.09±0.70 19.13±0.70 F(4,54)=1.52 0.2087
空肠 Jejunum 47.71±1.20 47.83±1.87 45.83±1.70 49.25±2.21 44.08±1.71 F(4,55)=1.29 0.2861
回肠 Ileum 41.21±1.79 39.75±2.10 42.67±2.12 40.77±2.03 40.79±1.68 F(4,54)=0.30 0.8776
18 week
十二指肠 Duodenum 17.79±0.59 17.09±0.88 16.71±0.53 17.71±0.49 16.41±0.44 F(4,53)=1.02 0.4041
空肠 Jejunum 37.63±1.52 39.55±1.52 38.58±1.42 39.04±1.60 36.96±2.08 F(4,54)=0.40 0.8061
回肠 Ileum 20.81±1.00 23.45±1.01 22.67±0.88 21.92±1.01 22.13±2.05 F(4,53)=0.55 0.6989
20 week
十二指肠 Duodenum 19.03±0.47 19.40±0.76 18.44±0.87 19.00±0.92 19.31±1.07 F(4,54)=0.20 0.9392
空肠 Jejunum 45.45±3.21 48.10±2.92 43.00±2.50 48.08±1.58 45.38±2.36 F(4,52)=0.73 0.5775
回肠 Ileum 36.97±2.33 37.44±2.58 36.30±2.09 37.97±0.91 36.46±2.56 F(4,54)=0.10 0.9813

Fig. 4

Effects of temperature on the mRNA levels of relative appetited gene in growing hens (n=8)"

[1]
余健剑, 束刚, 江青艳. 氨基酸调控畜禽采食的研究进展. 动物营养学报, 2011, 23(6): 908-913. doi:10.3969/j.issn.1006-267X.2011.06.003.

doi: 10.3969/j.issn.1006-267X.2011.06.003
YU J J, SHU G, JIANG Q Y. Recent advances in regulating feed intake by amino acids. Acta Zoonutrimenta Sinica, 2011, 23(6): 908-913. doi:10.3969/j.issn.1006-267X.2011.06.003. (in Chinese)

doi: 10.3969/j.issn.1006-267X.2011.06.003
[2]
RICHARDS M P, PROSZKOWIEC-WEGLARZ M. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poultry Science, 2007, 86(7): 1478-1490. doi:10.1093/ps/86.7.1478.

doi: 10.1093/ps/86.7.1478 pmid: 17575199
[3]
WILLIAMS K W, ELMQUIST J K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nature Neuroscience, 2012, 15(10): 1350-1355. doi:10.1038/nn.3217.

doi: 10.1038/nn.3217 pmid: 23007190
[4]
HUSSAIN S S, BLOOM S R. The regulation of food intake by the gut-brain axis: implications for obesity. International Journal of Obesity, 2013, 37(5): 625-633. doi:10.1038/ijo.2012.93.

doi: 10.1038/ijo.2012.93 pmid: 22710925
[5]
HARRIS G C, ASTON-JONES G. Arousal and reward: a dichotomy in orexin function. Trends in Neurosciences, 2006, 29(10): 571-577. doi:10.1016/j.tins.2006.08.002.

doi: 10.1016/j.tins.2006.08.002 pmid: 16904760
[6]
MORTON G J, CUMMINGS D E, BASKIN D G, BARSH G S, SCHWARTZ M W. Central nervous system control of food intake and body weight. Nature, 2006, 443(7109): 289-295. doi:10.1038/nature05026.

doi: 10.1038/nature05026
[7]
BOSWELL T, DUNN I C. Regulation of agouti-related protein and pro-opiomelanocortin gene expression in the avian arcuate nucleus. Frontiers in Endocrinology, 2017, 8: 75. doi:10.3389/fendo.2017.00075.

doi: 10.3389/fendo.2017.00075 pmid: 28450851
[8]
TUNG Y C L, PIPER S J, YEUNG D, O’RAHILLY S, COLL A P. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mice. Endocrinology, 2006, 147(12): 5940-5947. doi:10.1210/en.2006-0866.

doi: 10.1210/en.2006-0866 pmid: 16959830
[9]
TACHIBANA T, SUGAHARA K, OHGUSHI A, ANDO R, KAWAKAMI S I, YOSHIMATSU T, FURUSE M. Intracerebroventricular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neuroscience Letters, 2001, 305(2): 131-134. doi:10.1016/S0304-3940(01)01827-4.

doi: 10.1016/S0304-3940(01)01827-4 pmid: 11376901
[10]
SANEYASU T, HONDA K, KAMISOYAMA H, IKURA A, NAKAYAMA Y, HASEGAWA S. Neuropeptide Y effect on food intake in broiler and layer chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 159(4): 422-426. doi:10.1016/j.cbpa.2011.04.008.

doi: 10.1016/j.cbpa.2011.04.008
[11]
HONDA K, SANEYASU T, HASEGAWA S, KAMISOYAMA H. A comparative study of the central effects of melanocortin peptides on food intake in broiler and layer chicks. Peptides, 2012, 37(1): 13-17. doi:10.1016/j.peptides.2012.06.015.

doi: 10.1016/j.peptides.2012.06.015 pmid: 22760063
[12]
BERTILE F, OUDART H, CRISCUOLO F, MAHO Y L, RACLOT T. Hypothalamic gene expression in long-term fasted rats: Relationship with body fat. Biochemical and Biophysical Research Communications, 2003, 303(4): 1106-1113. doi:10.1016/S0006-291X(03)00481-9.

doi: 10.1016/S0006-291X(03)00481-9 pmid: 12684050
[13]
FANG X L, ZHU X T, CHEN S F, ZHANG Z Q, ZENG Q J, DENG L, PENG J L, YU J J, WANG L N, WANG S B, GAO P, JIANG Q Y, SHU G. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: Functions of glucose and lipid metabolism in the feed intake of chickens. Poultry Science, 2014, 93(11): 2841-2854. doi:10.3382/ps.2014-04047.

doi: 10.3382/ps.2014-04047
[14]
孙永波, 王亚, 萨仁娜, 张宏福. 家禽采食量调控机制及主要调控因子研究进展. 动物营养学报, 2018, 30(1): 22-29. doi:10.3969/j.issn.1006-267x.2018.01.004.

doi: 10.3969/j.issn.1006-267x.2018.01.004
SUN Y B, WANG Y, SA R N, ZHANG H F. Research progress on regulation mechanism and main regulatory factors of feed intake in poultry. Chinese Journal of Animal Nutrition, 2018, 30(1): 22-29. doi:10.3969/j.issn.1006-267x.2018.01.004. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2018.01.004
[15]
RAMIAH S K, ATTA AWAD E, HEMLY N I M, EBRAHIMI M, JOSHUA O, JAMSHED M, SAMINATHAN M, SOLEIMANI A F, IDRUS Z. Effects of zinc oxide nanoparticles on regulatory appetite and heat stress protein genes in broiler chickens subjected to heat stress. Journal of Animal Science, 2020, 98(10): skaa300. doi:10.1093/jas/skaa300.

doi: 10.1093/jas/skaa300
[16]
HONDA K, SANEYASU T, KAMISOYAMA H. Gut hormones and regulation of food intake in birds. The Journal of Poultry Science, 2017, 54(2): 103-110. doi:10.2141/jpsa.0160100.

doi: 10.2141/jpsa.0160100
[17]
WOODS S C. The control of food intake: behavioral versus molecular perspectives. Cell Metabolism, 2009, 9(6): 489-498. doi:10.1016/j.cmet.2009.04.007.

doi: 10.1016/j.cmet.2009.04.007 pmid: 19490904
[18]
KEWAN A, SANEYASU T, KAMISOYAMA H, HONDA K. Effects of fasting and re-feeding on the expression of CCK, PYY, hypothalamic neuropeptides, and IGF-related genes in layer and broiler chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2021, 257: 110940. doi:10.1016/j.cbpa.2021.110940.

doi: 10.1016/j.cbpa.2021.110940
[19]
RICHARDS M P, ROSEBROUGH R W, COON C N, MCMURTRY J P. Feed intake regulation for the female broiler breeder: In theory and in practice. Journal of Applied Poultry Research, 2010, 19(2): 182-193. doi:10.3382/japr.2010-00167.

doi: 10.3382/japr.2010-00167
[20]
FERKET P R, GERNAT A G. Factors that affect feed intake of meat birds: A review. International Journal of Poultry Science, 2006, 5(10): 905-911. doi:10.3923/ijps.2006.905.911.

doi: 10.3923/ijps.2006.905.911
[21]
王继强, 龙强, 李爱琴, 张宝彤. 鸡的热应激及抗热应激添加剂的应用研究. 饲料工业, 2008, 29(15): 20-22. doi:10.3969/j.issn.1001-991X.2008.15.007.

doi: 10.3969/j.issn.1001-991X.2008.15.007
WANG J Q, LONG Q, LI A Q, ZHANG B T. Research on heat stress and application of anti-heat stress additives of broiler. Feed Industry, 2008, 29(15): 20-22. doi:10.3969/j.issn.1001-991X.2008.15.007. (in Chinese)

doi: 10.3969/j.issn.1001-991X.2008.15.007
[22]
SONG Z H, CHENG K, ZHENG X C, AHMAD H, ZHANG L L, WANG T. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poultry Science, 2018, 97(2): 430-437. doi:10.3382/ps/pex312.

doi: 10.3382/ps/pex312
[23]
常双双, 李萌, 厉秀梅, 石玉祥, 张敏红, 冯京海. 日循环变化偏热环境对肉鸡血清脑肠肽和盲肠菌群多样性的影响. 中国农业科学, 2018, 51(22): 4364-4372. doi:10.3864/j.issn.0578-1752.2018.22.014.

doi: 10.3864/j.issn.0578-1752.2018.22.014
CHANG S S, LI M, LI X M, SHI Y X, ZHANG M H, FENG J H. Effects of the daily cycle variation of the moderate ambient temperatures on the serum brain gut peptide and the diversity of caecal microflora in broilers. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372. doi:10.3864/j.issn.0578-1752.2018.22.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.22.014
[24]
HE S P, YU Q F, HE Y J, HU R Z, XIA S T, HE J H. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow- feather broilers. Poultry Science, 2019, 98(12): 6378-6387. doi:10.3382/ps/pez471.

doi: 10.3382/ps/pez471
[25]
SONG Z G, LIU L, SHEIKHAHMADI A, JIAO H C, LIN H. Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens. Journal of Biomedicine and Biotechnology, 2012, 2012: 484869. doi:10.1155/2012/484869.

doi: 10.1155/2012/484869
[26]
ROMANOVSKY A A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2007, 292(1): R37-R46. doi:10.1152/ajpregu.00668.2006.

doi: 10.1152/ajpregu.00668.2006
[27]
ITO K, BAHRY M A, HUI Y, FURUSE M, CHOWDHURY V S. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 187: 13-19. doi:10.1016/j.cbpa.2015.04.010.

doi: 10.1016/j.cbpa.2015.04.010
[28]
李燕, 吴斌, 许啸. 急性热应激对樱桃谷肉鸭小肠形态的影响//生态环境与畜牧业可持续发展学术研讨会暨中国畜牧兽医学会学术年会和全国畜牧兽医青年科技工作者学术研讨会会议. 2012:2.
LI Y, WU B, XU X. Effect of acute heat stress on the small intestine morphology//Symposium on Ecological Environment and Sustainable Development of Animal Husbandry, Annual Academic Meeting of China Animal Husbandry and Veterinary Society and National Symposium on Young Scientific and Technological Workers of Animal Husbandry and Veterinary Medicine. 2012: 2. (in Chinese)
[29]
胡艳欣, 肖冲, 佘锐萍, 张发明, 郭延军, 罗冬梅, 刘凤华. 热应激对猪肠道结构及功能的影响. 科学技术与工程, 2009, 9(3): 581-586. doi:10.3969/j.issn.1671-1815.2009.03.012.

doi: 10.3969/j.issn.1671-1815.2009.03.012
HU Y X, XIAO C, SHE R P, ZHANG F M, GUO Y J, LUO D M, LIU F H. Effect of heat stress on structure and function of pigs intestines. Science Technology and Engineering, 2009, 9(3): 581-586. doi:10.3969/j.issn.1671-1815.2009.03.012. (in Chinese)

doi: 10.3969/j.issn.1671-1815.2009.03.012
[30]
COSEN-BINKER L I, BINKER M G, NEGRI G, TISCORNIA O. Influence of stress in acute pancreatitis and correlation with stress-induced gastric ulcer. Pancreatology, 2004, 4(5): 470-484. doi: 10.1159/000079956.

doi: 10.1159/000079956
[31]
QUINTEIRO-FILHO W M, RIBEIRO A, FERRAZ-DE-PAULA V, PINHEIRO M L, SAKAI M, L R M, FERREIRA A J P, PALERMO-NETO J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 2010, 89(9): 1905-1914. doi:10.3382/ps.2010-00812.

doi: 10.3382/ps.2010-00812
[32]
SAHIN K, ONDERCI M, SAHIN N, GURSU M F, KHACHIK F, KUCUK O. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat- stressed Japanese quail. Journal of Thermal Biology, 2006, 31(4): 307-312. doi:10.1016/j.jtherbio.2005.12.006.

doi: 10.1016/j.jtherbio.2005.12.006
[33]
BARRETT N W, ROWLAND K, SCHMIDT C J, LAMONT S J, ROTHSCHILD M F, ASHWELL C M, PERSIA M E. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poultry Science, 2019, 98(12): 6684-6692. doi:10.3382/ps/pez541.

doi: 10.3382/ps/pez541 pmid: 31573614
[34]
WANG X J, LIU Z M, ZHAO J P, JIAO H C, LIN H. Dusk feeding in laying hens is shifted by light program via involvement of clock genes. Journal of Animal Physiology and Animal Nutriton (Berl). 2021, doi: 10.1111/jpn.13528.Online ahead of print. doi: 10.1111/jpn.13528.

doi: 10.1111/jpn.13528
[35]
ZHAO P P, ZHANG K X, GUO G Y, SUN X, CHAI H L, ZHANG W, XING M W. Heat shock protein alteration in the gastrointestinal tract tissues of chickens exposed to arsenic trioxide. Biological Trace Element Research, 2016, 170(1): 224-236. doi:10.1007/s12011-015-0462-9.

doi: 10.1007/s12011-015-0462-9 pmid: 26257160
[36]
HE J N, MA L X, QIU J L, LU X T, HOU C C, LIU B, YU D Y. Effects of compound organic acid calcium on growth performance, hepatic antioxidation and intestinal barrier of male broilers under heat stress. Asian-Australasian Journal of Animal Sciences, 2020, 33(7): 1156-1166. doi:10.5713/ajas.19.0274.

doi: 10.5713/ajas.19.0274 pmid: 31480143
[37]
LIU C P, CHAUDHRY M T, ZHAO D, LIN T, TIAN Y B, FU J. Heat shock protein 70 protects the quail cecum against oxidant stress, inflammatory injury, and microbiota imbalance induced by cold stress. Poultry Science, 2019, 98(11): 5432-5445. doi:10.3382/ps/pez327.

doi: 10.3382/ps/pez327 pmid: 31247643
[38]
VARASTEH S, BRABER S, AKBARI P, GARSSEN J, FINK- GREMMELS J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE, 2015, 10(9): e0138975. doi:10.1371/journal.pone.0138975.

doi: 10.1371/journal.pone.0138975
[39]
MASHALY M M, HENDRICKS G L 3rd, KALAMA M A, GEHAD A E, ABBAS A O, PATTERSON P H. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poultry Science, 2004, 83(6): 889-894. doi:10.1093/ps/83.6.889.

doi: 10.1093/ps/83.6.889 pmid: 15206614
[40]
HE X F, LU Z, MA B B, ZHANG L, LI J L, JIANG Y, ZHOU G H, GAO F. Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers. Journal of Thermal Biology, 2019, 81: 110-117. doi:10.1016/j.jtherbio.2019.02.025.

doi: S0306-4565(18)30486-8 pmid: 30975407
[41]
LEI L, HEPENG L, XIANLEI L, HONGCHAO J, HAI L, SHEIKHAHMADI A, YUFENG W, ZHIGANG S. Effects of acute heat stress on gene expression of brain-gut neuropeptides in broiler chickens (Gallus gallus domesticus). Journal of Animal Science, 2013, 91(11): 5194-5201. doi:10.2527/jas.2013-6538.

doi: 10.2527/jas.2013-6538 pmid: 23989874
[1] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[2] WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing. Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2023, 56(6): 1139-1153.
[3] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[4] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[7] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[8] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[9] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[10] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[11] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[12] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[13] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[14] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[15] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!