Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 491-502.doi: 10.3864/j.issn.0578-1752.2022.03.006

• PLANT PROTECTION • Previous Articles     Next Articles

Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China

HU ChaoYue1,2(),WANG FengTao2,LANG XiaoWei2,FENG Jing2,LI JunKai1,LIN RuiMing2,*(),YAO XiaoBo3,*()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3 Agricultural Research Institute, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032
  • Received:2021-07-22 Accepted:2021-08-13 Online:2022-02-01 Published:2022-02-11
  • Contact: RuiMing LIN,XiaoBo YAO E-mail:1467138884@qq.com;linruiming@caas.cn;yaobo1031@163.com

Abstract:

【Objective】 Breeding and widely using resistant wheat varieties is the most economical, effective and environmental- friendly strategy to control stripe rust. Due to the frequent occurrence of virulence variation in Puccinia striiformis f. sp. tritici (Pst) populations, the occurrences of new physiological races of Pst usually led to the resistant major varieties of becoming susceptible and stripe rust outbreaks on large scale, which severely threaten the security of staple food supply in China. Therefore, it is of great significance to clarify the types of resistance genes to stripe rust, timely and accurately monitor and evaluate the effectiveness and changes of known stripe rust resistance genes to the main Pst physiological races in China. The results achieved in this study will be the basis for the rational application of stripe rust resistance genes.【Method】 At the seedling stage, 103 wheat lines with stripe rust resistance genes were evaluated by inoculating with highly virulent stripe rust physiological races CYR32, CYR33 and CYR34 and a low virulent physiological race CYR17 respectively in greenhouse. On the other side, their adult-plant resistance was evaluated either in the disease nursery fields set at Pidu District, Sichuan and Qingshui, Gansu by artificially inoculating with the mixture of races of CYR32, CYR33, CYR34 in nursery plots, or in the disease nursery plots at Xiangyang, Hubei by natural infection with the air-born Pst inocula. The resistance levels of wheat lines at the seedling and adult-plant stages were evaluated using a 0-to-4 rating scale for infection responses.【Result】 Among the 86 wheat lines with all-stage resistance genes, only these lines with Yr5, Yr15 and Yr45 were highly resistant to all the races of CYR32, CYR33 and CYR34 both at seedling and adult-plant stages, while the others ‘lost’ their disease resistance to the three Pst races. However, 30 of the all-stage resistant lines, such as CN19 (Yr41), AUS 28183 (Yr47) and CH223 (Yr50), remained stripe rust resistance at the adult-plant stage. Among the 14 lines with adult-plant resistance genes, Yeoman (Yr13), RL 6077 (Yr46), PI 183527 (Yr52), Louise (Qyrlo.Wpg-2BS), RIL 65 (Yr36), PI 178759 (Yr59) and PI 192252 (Yr62) remained moderately to highly resistant to stripe rust. Among the 3 lines with temperature-sensitive minor gene (s), S112 with two minor genes and S113 with three minor genes were moderately resistant to stripe rust at the adult-plant stage, while S111 with one minor gene was moderately susceptible.【Conclusion】 Among the tested lines with a single or multiple all-stage resistance gene (s) to stripe rust, only Yr5, Yr15 and Yr45 were found to be resistant to all of the present predominant races in all development stages, but 34.9% of them also preserved adult-plant resistance. The wheat adult-plant resistance genes and all-stage resistance genes combinations may provide more stable and durable resistance to stripe rust.

Key words: wheat stripe rust, Puccinia striiformis f. sp. tritici (Pst), all-stage resistance, adult-plant resistance, durable resistance, temperature-sensitive minor gene, resistance gene combination

Fig. 1

Disease resistance analysis of wheat lines with stripe rust resistance genes to four physiological races of Pst at the seedling stage"

Fig. 2

Disease resistance analysis of wheat lines with stripe rust resistance genes in three disease epidemic regions at the adult-plant stage"

Table 1

The infection response identification of wheat lines with stripe rust resistance genes at the seedling and adult-plant stages"

小麦品系
Wheat line
Yr
抗性类型a
Resistance type
成株期侵染型和严重度b
Infection type, severity at the adult-plant stage
苗期侵染型
Infection type at the seedling stage
甘肃清水
Qingshui,
Gansu
四川郫都区
Pidu District, Sichuan
湖北襄阳Xiangyang, Hubei CYR17 CYR32 CYR33 CYR34
AvSYr1 NIL Yr1 ASR 4, 60 3, 90 3+, 80 4 4 4 4
T29*6/Yr2 NIL Yr2 ASR 4, 90 3-, 50 4, 100 4 4 4 4
Minister Yr3c ASR 2, 5 2-, 60 0;, 60 0; 3+ 4 4
T29*6/Yr4b NIL Yr4b ASR 3-, 50 2, 90 2, 100 2 4 4 4
AvSYr5 NIL Yr5 ASR 0, 0 0, 0 0;, 0 0; 0; 0; 0;
AvSYr6 NIL Yr6 ASR 4, 90 4, 100 4, 100 3+ 4 4 4
AvSYr7 NIL Yr7 ASR 4, 80 3-, 100 3+, 80 4 3+ 3+ 4
AvSYr8 NIL Yr8 ASR 4, 60 3, 70 3, 10 4 2- 3 4
AvSYr9 NIL Yr9 ASR 4, 90 4, 100 3+, 80 0; 3+ 4 4
AvSYr10 NIL Yr10 ASR 3, 20 3-, 40 1, 1 0; 0; 4 4
AvSYr11 NIL Yr11 APR 3+, 40 3-, 80 3, 40 3+ 4 4 4
AvSYr12 NIL Yr12 APR 3+, 50 3, 100 2+, 40 3+ 4 4 4
Yeoman Yr13 APR, SRR 2, 5 2-, 30 0;, 10 4 3+ 3+ 4
Kador Yr14 APR 3, 30 3-, 50 2-, 5 0; 3+ 4 4
AvSYr15 NIL Yr15 ASR 0, 0 0, 0 0, 0 0; 0; 0 0;
AvSYr17 NIL Yr17 ASR 3+, 60 3-, 60 3, 10 1 3+ 4 4
Jupiteco R Yr18 APR 3, 20 2, 50 1, 1 3 4 3+ 4
Lemhi Yr21 ASR 4, 90 4, 100 4, 100 3+ 4 4 4
AvSYr24 NIL Yr24 ASR 4, 70 3, 100 3+, 40 0; 4 4 4
TP1295 Yr25 ASR 3, 40 2+, 80 3, 80 4 3+ 3+ 3+
AVSYr26 NIL Yr26 ASR 4, 70 3, 100 3, 10 0; 0; 2 4
AvSYr27 NIL Yr27 ASR 4, 70 3, 80 3-, 10 4 3+ 3+ 4
AvSYr28 NIL Yr28 ASR 4, 70 4, 100 3+, 80 3 4 3 4
AvSYr29 NIL Yr29 APR 4, 60 3-, 50 3+, 60 1 4 4 4
AvSYr32 NIL Yr32 ASR 4, 60 4, 100 2-, 5 0; 0; 4 4
RIL 65 Yr36 APR 2, 40 2+, 60 1, 1 4 3+ 3 4
AlpExp43 Yr39 APR 3, 40 3-, 80 3, 40 4 4 4 4
Vasu Yr40 ASR 3, 30 1+, 5 3, 10 0; 4 3 4
CN19 Yr41 ASR 2-, 5 1+, 5 1, 1 0; 3+ 3+ 4
Avs/ID0377s NIL Yr43 ASR 3, 30 2-, 40 4, 10 3+ 3+ 3+ 4
Avs/Zak NIL Yr44 ASR 3, 60 1+, 60 3-, 5 4 3+ 4 4
PI 181434 Yr45 ASR 2, 5 1, 30 1, 1 0; 1 2 0;
RL6077 Yr46 APR 2, 20 1+, 20 1, 1 3+ 3 3 4
AUS28183 Yr47 ASR 2+, 5 1, 5 2+, 60 0; 3 2 3
AvSYr48 NIL Yr48 APR 3, 80 3-, 100 4, 100 4 3+ 3+ 4
CH223 Yr50 ASR 2, 5 1, 10 0, 1 0; 3 0; 3+
甘肃清水
Qingshui,
Gansu
四川郫都区
Pidu District, Sichuan
湖北襄阳Xiangyang, Hubei CYR17 CYR32 CYR33 CYR34
AUS91456 Yr51 ASR 2+, 10 1+, 30 4, 30 3 3 3 4
PI 183527 Yr52 APR 1, 1 2, 80 0;, 60 4 3 3+ 3+
PI 480148 Yr53 ASR 2+, 20 2-, 50 0;, 40 1 3+ 4 3
AUS91463 Yr57 ASR 4, 100 3-, 50 4, 60 0; 3+ 4 4
PI 178759 Yr59 APR 2, 30 1, 30 0;, 80 4 3+ 3 4
PI 192252 Yr62 APR 1/3- (1), 10 1+/0 (1), 10 3/2 (2), 10 4 3+ 4 4
AUS27955 Yr63 ASR 4, 80 4, 90 4, 100 4 4 4 4
PI 331260 Yr64 ASR 3-, 30 3, 50 2, 5 4 3 4 4
Tyee Yr76 ASR 3, 65 3, 70 4, 40 0; 4 4 4
Avocet R YrA ASR 4, 80 4, 100 4, 100 3 4 4 4
Alba YrAlb ASR 3-, 10 2+, 60 1, 1 0; 4 4 4
T29*6/YrC591 NIL YrC591 ASR 4, 60 3+, 100 3+, 60 4 3+ 4 4
Avs/Exp NIL YrExp2 ASR 4, 50 1+, 60 2, 5 4 3 4 4
Gaby YrGab ASR 2, 10 1, 20 2-, 10 0; 4 4 4
T29*6/YrJu4 NIL YrJu4 ASR 4, 60 3-, 100 4, 60 0; 4 4 4
T29*6/YrKy2 NIL YrKy2 ASR 4, 90 4, 100 4, 100 0; 4 4 4
Resulka YrRes ASR 3+, 50 3-, 60 2, 40 3 4 4 4
T29*6/YrSD NIL YrSD ASR 4, 80 3+, 100 4, 100 0; 4 4 4
AvSYrSP NIL YrSp ASR 3, 90 3-, 100 3+, 100 0; 4 4 4
Suwon 11 YrSu ASR 4, 90 4, 100 3+, 80 1 4 4 4
AvSYrTres1NIL YrTr1 ASR 1, 1 1+, 20 0;, 10 3 3+ 3 3
T29*6/YrV23 NIL YrV23 ASR 4, 70 3+, 100 4, 100 3 4 4 4
T29*6/YrVir1 NIL YrVir1 ASR 4, 90 3, 100 4, 100 0; 4 4 4
Louise QYrlo.wpg-2BS APR 2+, 90 1+, 100 2-, 100 4 4 4 4
Heines Peko Yr2, Yr6 ASR 2+, 20 2+, 50 3+, 80 3 4 4 4
Heines VII Yr2, YrHVII ASR 3+, 30 3-, 60 2+, 40 2 4 4 4
Nord Desprez Yr3, YrND ASR 2, 20 2, 20 1, 20 3 4 4 4
Pavon 76 Yr6, Yr7 ASR 3-, 30 2-, 50 2, 10 4 3 4 3+
Fielder Yr6, Yr20 ASR 4, 70 3-, 100 3+, 100 3+ 4 4 4
Reichersberg 42 Yr7, Yr25 ASR 1, 10 1, 50 1, 1 2 3 3+ 3
Compair Yr8, Yr19 ASR 2+, 5 1+, 10 2, 10 3+ 4 4 4
Clement Yr9, YrCle ASR 3, 40 3-, 50 3+, 40 0; 4 4 4
PI 178383 Yr10, 3个微效基因
Three minor genes
ASR 3, 20 3, 60 1, 10 2- 0; 4 4
Hyak Yr17, YrTye ASR 3, 30 3-, 70 2, 40 1 4 3 4
Parula Yr18, Yr30 ASR 2, 5 2, 10 1, 10 4 4 4 4
Carstens Ⅴ Yr32, YrCV1, YrCV2,
YrCV3
ASR 2, 20 2, 50 0;, 10 0; 4 4 4
甘肃清水
Qingshui,
Gansu
四川郫都区
Pidu District, Sichuan
湖北襄阳Xiangyang, Hubei CYR17 CYR32 CYR33 CYR34
Strubes Dickkopf Yr25, YrSD ASR 3-, 20 0;, 20 0;, 1 0; 4 4 4
Spaldings Prolific Yr25, YrSpP ASR 2+, 10 2+, 80 2-, 1 4 4 3+ 4
Opata 85 Yr27, Yr30 ASR 2+, 5 2+, 50 1, 1 2- 3 1 3+
Inia 66 Yr30, YrA ASR 3, 40 4, 90 3, 60 2 4 4 4
Alpowa Yr39, YrAlp ASR 3, 50 3-, 60 1, 10 3 4 4 4
Express YrExp1, YrExp2 ASR 2+, 30 1+, 60 1, 1 3 3+ 3 4
Kangyin 655 YrKy1, YrKy2 ASR 2+, 30 3, 80 2+, 40 0; 4 4 4
Produra YrPr1, YrPr2 ASR 3-, 30 1+, 20 4, 40 4 3 3 4
Tres YrTr1, YrTr2 ASR 3+, 50 1+, 20 3+, 10 3 3 2 4
Virgilio YrVir1, YrVir2 ASR, SRR 1, 5 1+, 30 0;, 10 0; 4 4 4
Heines Kolben Yr2, Yr6, YrHk ASR 2, 5 1+, 30 0;, 10 0; 3+ 3+ 4
Sonalika Yr2, YrSon, YrA ASR 4, 80 3, 100 3+, 80 3+ 4 4 4
Mega Yr3a, Yr4a, Yr12 ASR 4, 30 4, 80 4, 10 0; 3+ 3+ 4
Cappelle-Desprez Yr3a, Yr4a, Yr16 ASR 3-, 60 1+, 80 0;, 5 4 4 4 4
Atou Yr3a, Yr4b, Yr16 ASR, SRR 3-, 5 2+, 10 0;, 5 0; 3+ 4 4
Druchamp Yr3a, YrD, YrDru ASR 3-, 20 1, 40 1, 1 1 4 4 4
Stephens Yr3a, YrS, YrSte ASR 3-, 40 2-, 60 0;, 10 4 4 4 4
Hybrid 46 Yr3b, Yr4b, YrH46 ASR 2, 5 2-, 20 0;, 10 0; 4 3 4
Lee Yr7, Yr22, Yr23 ASR 2+, 20 1+, 5 1, 60 4 3+ 4 4
Flanders Yr1, Yr3a, Yr4b, Yr16 ASR, SRR 3-, 20 2, 20 0;, 10 0; 3+ 4 4
Maris Huntsman Yr2, Yr3a, Yr4a, Yr13 ASR, SRR 3, 20 1+, 20 2-, 10 0; 3 4 4
Vilmorin 23 Yr3, Yr3a, Yr4a, YrV23 ASR, SRR 3+, 50 3-, 40 2+, 40 2 4 4 4
Hobbit Yr3, Yr4, Yr14, YrHVII ASR 3, 20 2+, 60 1, 10 0; 4 4 4
Waggoner Yr3a, Yr4a, Yr6, Yr12 ASR, SRR 2+, 50 2-, 40 1, 10 0; 4 4 4
Kinsman Yr3a, Yr4a, Yr6, Yr13 ASR 3-, 20 2-, 50 1, 1 0; 4 4 4
Maris Widgeon Yr3a, Yr4a, Yr8, Yr16 ASR, SRR 3-, 10 1, 30 3, 1 1 4 4 4
Bouquet Yr3a, Yr4a, Yr14, Yr16 ASR, SRR 3, 70 3-, 70 3-, 60 0; 4 4 4
Jubilejina II YrJu1, YrJu2, YrJu3, YrJu4 ASR 3, 50 3-, 100 3+, 80 3 4 4 4
S111 1个微效基因
One minor gene
APR 3, 40 3, 60 3, 10 4 4 4 4
S112 2个微效基因
Two minor genes
APR 2+, 10 1, 60 2, 5 4 4 4 4
S113 3个微效基因
Three minor genes
APR 2+, 10 3-, 60 2-, 5 4 3+ 4 4
Avocet S ? 感病对照
Susceptible control
4, 100 4, 100 4, 100 3 4 4 4
Taichung 29 ? 感病对照
Susceptible control
4, 100 4, 100 4, 100 4 4 4 4
铭贤169
Mingxian 169
? 感病对照
Susceptible control
4, 100 4, 100 4, 100 4 4 4 4

Table 2

Correlation analysis of resistant phenotypes data of wheat lines with resistance genes to Pst at three stripe rust identification locations during two years"

鉴定地点
Location
清水
Qingshui (2019)
清水
Qingshui (2020)
郫都区
Pidu District (2019)
郫都区
Pidu District (2020)
襄阳
Xiangyang (2019)
襄阳
Xiangyang (2020)
清水Qingshui (2019) 1
清水Qingshui (2020) 0.668 1
郫都区Pidu District (2019) 0.726 0.577 1
郫都区Pidu District (2020) 0.705 0.570 0.655 1
襄阳Xiangyang (2019) 0.612 0.575 0.501 0.444 1
襄阳Xiangyang (2020) 0.610 0.594 0.691 0.529 0.645 1
[1] ALI S, GLADIEUX P, LECONTE M, GAUTIER A, JUSTESEN A F, HOVMØLLER M S, ENJALBERT J, DE VALLAVIEILLE-POPE C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathogens, 2014, 10(1):e1003903.
doi: 10.1371/journal.ppat.1003903
[2] CHEN W Q, WELLINGS C, CHEN X M, KANG Z S, LIU T G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2014, 15(5):433-446.
doi: 10.1111/mpp.2014.15.issue-5
[3] LINE R F. Stripe rust of wheat and barley in North America: A retrospective historical review. Annual Review of Phytopathology, 2002, 40:75-118.
doi: 10.1146/phyto.2002.40.issue-1
[4] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46(20):4254-4262.
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20):4254-4262. (in Chinese)
[5] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018, 45(1):1-6.
MA Z H. Researches and control of wheat stripe rust in China. Journal of Plant Protction, 2018, 45(1):1-6. (in Chinese)
[6] 蔺瑞明, 郄彦敏, 冯晶, 徐世昌. 中国小麦农家品种抗条锈病的鉴定与评价. 沈阳农业大学学报, 2010, 41(5):535-539.
LIN R M, QIE Y M, FENG J, XU S C. Identification of the yellow rust resistance gene carrying wheat landraces in China. Journal of Shenyang Agricultural University, 2010, 41(5):535-539. (in Chinese)
[7] 胡小平, 王保通, 康振生. 中国小麦条锈菌毒性变异研究进展. 麦类作物学报, 2014, 34(5):709-716.
HU X P, WANG B T, KANG Z S. Research progress on virulence variation of Puccinia striiformis f. sp. tritici in China. Journal of Triticeae Crops, 2014, 34(5):709-716. (in Chinese)
[8] 李振岐. 我国小麦品种抗条锈性丧失原因及其解决途径. 中国农业科学, 1980, 13(3):72-77.
LI Z Q. The variation of wheat variety resistance to stripe rust in China and the way of its solution. Scientia Agricultura Sinica, 1980, 13(3):72-77. (in Chinese)
[9] LINE R F, CHEN X M. Successes in breeding for and managing durable resistance to wheat rusts. Plant Disease, 1995, 79(12):1254-1255.
[10] CHEN X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 2005, 27(3):314-337.
doi: 10.1080/07060660509507230
[11] 崔永亮. 中国小麦生产品种抗条锈病基因分析[D]. 雅安: 四川农业大学, 2008.
CUI Y L. Gene analysis for stripe rust resistance in Chinese commercial wheat cultivars[D]. Yaan: Sichuan Agricultural University, 2008. (in Chinese)
[12] LI J B, DUNDAS I, DONG C M, LI G R, TRETHOWAN R, YANG Z J, HOXHA S, ZHANG P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 2020, 133(4):1095-1107.
doi: 10.1007/s00122-020-03534-y
[13] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5):1-12.
HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5):1-12. (in Chinese)
[14] FENG J, ZHANG Z Y, LIN R M, XU S C. Postulation of seedling resistance genes in 20 wheat cultivars to yellow rust (Puccinia striiformis f. sp. tritici). Agricultural Sciences in China, 2009, 8(12):1429-1439.
doi: 10.1016/S1671-2927(08)60356-9
[15] 王凤乐, 吴立人, 谢水仙, 万安民. 我国小麦重要抗源材料抗条锈基因推导及其成株抗病性分析. 植物病理学报, 1994, 24(2):175-180.
WANG F L, WU L R, XIE S X, WAN A M. Postulation of genes and adult resistance to stripe rust of Chinese important wheat resistance resources. Acta Phytopathologica Sinica, 1994, 24(2):175-180. (in Chinese)
[16] 曾庆东, 沈川, 袁凤平, 王琪琳, 吴建辉, 薛文波, 詹刚明, 姚石, 陈伟, 黄丽丽, 韩德俊, 康振生. 小麦抗条锈病已知基因对中国当前流行小种的有效性分析. 植物病理学报, 2015, 45(6):641-650.
ZENG Q D, SHEN C, YUAN F P, WANG Q L, WU J H, XUE W B, ZHAN G M, YAO S, CHEN W, HUANG L L, HAN D J, KANG Z S. The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2015, 45(6):641-650. (in Chinese)
[17] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017, 47(5):681-687.
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017, 47(5):681-687. (in Chinese)
[18] 黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权. 我国197份小麦核心种质资源对小麦条锈菌新小种CYR34的抗性评价. 植物保护, 2019, 45(1):148-154.
HUANG L, LIU T G, LIU B, GAO L, LUO P G, CHEN W Q. Resistance evalution of 197 Chinese wheat core germplasms to a new stripe rust race, CYR34. Plant Protection, 2019, 45(1):148-154. (in Chinese)
[19] LINE R F, QAYOUM A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin No. 1788, 1992: 1-54.
[20] 刘孝坤. 小麦抗源对条锈病的抗性遗传研究初报. 植物保护学报, 1988, 15(1):33-39.
LIU X K. A preliminary study on the inheritance of resistance to stripe rust in wheat. Journal of Plant Protection, 1988, 15(1):33-39. (in Chinese)
[21] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002: 362.
LI Z Q, ZENG S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 362. (in Chinese)
[22] 商鸿生, 任文礼, 王素梅. 小麦条锈病严重度分级标准图的探讨. 植物保护, 1990, 16(1):31.
SHANG H S, REN W L, WANG S M. The discussion of a grading standard of wheat stripe rust severity. Plant Protection, 1990, 16(1):31. (in Chinese)
[23] 杨作民, 唐伯让, 沈克全, 夏先春. 小麦抗病育种的战略问题——小麦对锈病、白粉病第二线抗源的建立和应用. 作物学报, 1994, 20(4):385-394.
YANG Z M, TANG B R, SHEN K Q, XIA X C. A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and powdery mildew in China. Acta Agronomica Sinica, 1994, 20(4):385-394. (in Chinese)
[24] 赵环环, SINGH R P, HUERTA-ESPINO J, 杨作民, 孙其信. 小麦品种成株期抗条锈性表达生育期的研究. 中国农业科学, 2005, 38(2):297-301.
ZHAO H H, SINGH R P, HUERTA-ESPINO J, YANG Z M, SUN Q X. Study of the adult-plant resistance at different growth stages to stripe rust in wheat. Scientia Agricultura Sinica, 2005, 38(2):297-301. (in Chinese)
[25] BARIANA H, FORREST K, QURESHI N, MIAH H, HAYDEN M, BANSAL U. Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Molecular Breeding, 2016, 36:98.
doi: 10.1007/s11032-016-0528-1
[26] ZHANG P P, YAN X C, GEBREWAHID T, ZHOU Y, YANG E N, XIA X C, HE Z H, LI Z F, LIU D Q. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theoretical and Applied Genetics, 2021, 134(4):1233-1251.
doi: 10.1007/s00122-021-03769-3
[27] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48(17):3439-3453.
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17):3439-3453. (in Chinese)
[28] LI H, BARIANA H, SINGH D, ZHANG L, DILLON S, WHAN A, BANSAL U, AYLIFFE M. A durum wheat adult plant stripe rust resistance QTL and its relationship with the bread wheat Yr80 locus. Theoretical and Applied Genetics, 2020, 133(11):3049-3066.
doi: 10.1007/s00122-020-03654-5
[29] 魏国荣, 韩德俊, 赵杰, 王晓杰, 王琪琳, 黄丽丽, 康振生. 小麦成株期抗条锈病种质筛选与评价. 麦类作物学报, 2011, 31(2):376-381.
WEI G R, HAN D J, ZHAO J, WANG X J, WANG Q L, HUANG L L, KANG Z S. Identification and evaluation of adult plant resistance to stripe rust in wheat germplasms. Journal of Triticeae Crops, 2011, 31(2):376-381. (in Chinese)
[30] SINGH R P, RAJARAM S. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica, 1993, 72(1):1-7.
doi: 10.1007/BF00023766
[31] PONCE-MOLINA L J, HUERTA-ESPINO J, SINGH R P, BASNET B R, ALVARADO G, RANDHAWA M S, LAN C X, AGUILAR- RINCÓN V H, LOBATO-ORTIZ R, GARCÍA-ZAVALA J J. Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero’. Plant Disease, 2018, 102(2):421-427.
doi: 10.1094/PDIS-11-16-1545-RE
[32] 高艳, 唐建卫, 邹少奎, 胡润雨, 张根源, 孙玉霞, 王磊, 殷贵鸿. 小麦周麦22及其衍生品种的遗传多样性分析. 植物遗传资源学报, 2021, 22(1):38-49.
GAO Y, TANG J W, ZOU S K, HU R Y, ZHANG G Y, SUN Y X, WANG L, YING G H. Genetic diversity assessment on derivatives from wheat cultivar Zhoumai 22. Journal of Plant Genetic Resources, 2021, 22(1):38-49. (in Chinese)
[33] WANG Y, XIE J Z, ZHANG H Z, GUO B M, NING S Z, CHEN Y X, LU P, WU Q H, LI M M, ZHANG D Y, et al. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130(10):2191-2201.
doi: 10.1007/s00122-017-2950-0
[34] 王保通, 袁文换, 李高宝, 金欣藻, 王芳. 小麦品种慢条锈性因素的相关分析和聚类划分. 植物保护学报, 2000, 27(1):53-58.
WANG B T, YUAN W H, LI G B, JIN X Z, WANG F. Correlation analysis of slow-rusting factors to stripe rust in wheat cultivars and the clustering. Journal of Plant Protection, 2000, 27(1):53-58. (in Chinese)
[35] CHEN X M. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 2013, 4(3):608-627.
doi: 10.4236/ajps.2013.43080
[36] FENG J Y, WANG M N, SEE D R, CHAO S, ZHENG Y L, CHEN X M. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology, 2018, 108(6):737-747.
doi: 10.1094/PHYTO-11-17-0375-R
[37] LI Z F, ZHENG T C, HE Z H, LI G Q, XU S C, LI X P, YANG G Y, SINGH R P, XIA X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112(6):1098-1103.
doi: 10.1007/s00122-006-0211-8
[38] GEBREWAHID T W, ZHANG P P, ZHOU Y, YAN X C, XIA X C, HE Z H, LIU D Q, LI Z F. QTL mapping of adult plant resistance to stripe rust and leaf rust in a Fuyu 3/Zhengzhou 5389 wheat population. The Crop Journal, 2020, 8(4):655-665.
doi: 10.1016/j.cj.2019.09.013
[39] 商鸿生. 现代植物免疫学. 北京: 中国农业出版社, 2013: 49.
SHANG H S. Modern Plant Immunology. Beijing: China Agriculture Press, 2013: 49. (in Chinese)
[40] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚杨, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定. 作物学报, 2021, 47(10):2053-2063.
doi: 10.3724/SP.J.1006.2021.01073
ZHAO X Y, YAO F J, LONG L, WANG Y Q, KANG H Y, JIANG Y F, LI W, DENG M, LI H, CHEN G Y. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones. Acta Agronomica Sinica, 2021, 47(10):2053-2063. (in Chinese)
doi: 10.3724/SP.J.1006.2021.01073
[41] TKEIN K, CAT A, AKAN K, CATAL M, AKAR T. A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Disease, 2021, doi: 10.1094/PDIS-03-21-0629-PDN.
doi: 10.1094/PDIS-03-21-0629-PDN
[42] WELLINGS C R. Puccinia striiformis in Australia: A review of the incursion, evolution, and adaptation of stripe rust in the period 1979-2006. Australian Journal of Agricultural Research, 2007, 58(6):567-575.
doi: 10.1071/AR07130
[43] NAGARAJAN S, NAYAR S, BAHADUR P. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta var. album in India. Plant Disease, 1986, 70(2):173.
[44] ZHANG G S, ZHAO Y Y, KANG Z S, ZHAO J. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Disease, 2020, 104(1):284.
[1] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[2] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[3] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[4] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[5] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[6] HAN Liu-sha, WANG Jia-zhen, SHI Ling-zhi, ZHU Lin, LI Xing, LIU Da-qun. QTL Mapping for Adult-Plant Resistance to Leaf Rust in Chinese Wheat Cultivar Lantian9 [J]. Scientia Agricultura Sinica, 2015, 48(12): 2346-2353.
[7] JIANG Zheng-1, 2 , WANG Qi-Lin-1, 3 , WU Jian-Hui-1, 3 , XUE Wen-Bo-1, 2 , ZENG Qing-Dong-1, 3 , HUANG Li-Li-1, 3 , KANG Zhen-Sheng-1, 3 , HAN De-Jun-1, 2 . Distribution of Powdery Mildew Resistance Gene Pm21 in Chinese Winter Wheat Cultivars and Breeding Lines Based on Gene-Specific Marker [J]. Scientia Agricultura Sinica, 2014, 47(11): 2078-2087.
[8] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[9] HAN Guo-Fei, WANG Hai-Guang, MA Zhan-Hong. Effects of Elevated CO2 and Enhanced UV-B on Epidemic Components of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2011, 44(20): 4326-4332.
[10] HE Zhong-hu,LAN Cai-xia1,CHEN Xin-min,ZOU Yu-chun,ZHUANG Qiao-sheng,XIA Xian-chun. Progress and Perspective in Research of Adult-Plant Resistance to Stripe Rust and Powdery Mildew in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215 .
[11] ZHU Hua-zhong,WANG Zhong-wei,WU Ling,Ravi P. SINGH,J. HUERTA-ESPINO,HE Zhong-hu, HU Jia,CHEN Fang,XIA Xian-chun
. QTL Mapping for Adult-Plant Resistance to Stripe Rust in Wheat Cultivar Chuanmai 107
[J]. Scientia Agricultura Sinica, 2010, 43(4): 706-712 .
[12] . QTL Mapping for Adult-Plant Resistance to Leaf Rust in CIMMYT Wheat Cultivar Saar [J]. Scientia Agricultura Sinica, 2009, 42(2): 388-397 .
[13] . SSR Molecular Tapping of Stripe Rust Resistance Gene YrVir1 in Chinese Wheat Differential Host Virgilio [J]. Scientia Agricultura Sinica, 2008, 41(4): 1023-1029 .
[14] ShuMei Tong,,,. Inheritance of Durable Resistance of Wheat Cultivars Holdfast and Flinor to Puccinia Striiformis [J]. Scientia Agricultura Sinica, 2006, 39(11): 2243-2243 .
[15] ,,. Study of the Adult-plant Resistance at Different Growth Stages to Stripe Rust in Wheat [J]. Scientia Agricultura Sinica, 2005, 38(02): 297-301 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!