Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1139-1153.doi: 10.3864/j.issn.0578-1752.2023.06.010

• HORTICULTURE • Previous Articles     Next Articles

Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis

WANG YueNing(), DAI HongJun(), HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing   

  1. College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2022-05-09 Accepted:2022-08-08 Online:2023-03-16 Published:2023-03-23


【Objective】 The aims of the study were to analyze the genes involved in the regulation of grape anthocyanin accumulation and fruit quality by 2,4-Epibrassinolide (EBR) under high-temperature stress, and to explore the molecular mechanism of EBR regulation anthocyanin accumulation in grapes under high-temperature stress. 【Method】 Cabernet Sauvignon grapes were treated with high-temperature stress using infrared emitter, and sprayed 0.6 mg∙L-1 of EBR before the veraison. The content of total anthocyanins, total sugar, reducing sugar and sucrose were quantified using the ultraviolet visible spectrophotometer. The mechanism of EBR-mediated accumulation of anthocyanin under high-temperature stress was analyzed by transcriptome sequencing. 【Result】 Starting from veraison, the anthocyanin content increased gradually under various treatments. At maturity, the total anthocyanin content in the high temperature group (HT) was significantly lower than that in the control group (CK), and the anthocyanin content in the high temperature and EBR group (HTE) was higher than that in the HT group, but lower than CK group. Under HT treatment, the accumulation pattern of total sugar, reducing sugar and sucrose was similar to that of anthocyanins and lower than those of CK group at maturity stage. Compared with HT group, the contents of various sugars in HTE group were increased. The differences in transcriptome levels of Cabernet Sauvignon fruits under the three treatments were analyzed. Through GO and KEGG enrichment, 14 differential genes related to sucrose and starch metabolic pathways, among which 10 genes were significantly up-regulated and 4 genes were significantly down-regulated under HT and HTE treatments. The expressions of 11 genes were different in the phenylpropane metabolic pathway. Seven genes involved in anthocyanin synthesis were up-regulated under the HT treatment, and 4 genes involved in lignin synthesis were significantly up-regulated under the HT treatment, indicating that high temperature might promote lignin synthesis and reduce the accumulation of anthocyanins. In the endogenous hormone signaling pathway, the expression of the ABA signaling receptor genes PP2C and SnRK2 was significantly increased under high-temperature stress, and might be involved in regulating the synthesis of grape anthocyanin under high-temperature stress together with EBR. The expression patterns of some differential genes were verified by qRT-PCR, which confirmed the accuracy of transcriptome data. 【Conclusion】 EBR alleviated the inhibitory effect of high temperature stress on grapevine anthocyanin accumulation, probably due to the fact that EBR reduced the expression of lignin-related genes and changed the expression pattern of grape endogenous hormone signal transduction genes.

Key words: Vitis vinifera L. cv Cabernet Sauvignon, 2,4-Epibrassinolide, high-temperature, anthocyanin, RNA-seq

Table 1

Primer sequences of real-time fluorescence quantitative PCR"

Gene name
Forward primer (5′-3′)
Reverse Primer (5′-3′)
Accession number

Fig. 1

Temperature changes during the version"

Table 2

Effect of different treatments on the anthocyanidin and soluble sugar contents of Cabernet Sauvignon grape berry"

Anthocyanins (mg∙L-1)
TotalSugar (mg∙g-1)
Reducing sugar (mg∙g-1)
Sucrose (mg∙g-1)

CK 0.2±0.51a 14.61±1.92a 8.90±0.02a 7.12±0.15a
HT 0.2±0.14a 14.56±2.02a 9.13±0.18a 7.35±0.26a
HTE 0.2±0.28a 14.22±1.80a 9.14±0.74a 7.12±.028a

CK 12.91±0.86c 143.72±5.14a 20.71±1.61a 15.64±0.65b
HT 14.30±0.79ab 124.72±3.52b 29.88±1.14a 16.56±0.48ab
HTE 15.09±0.24a 137.35±6.55a 36.30±3.02a 16.92±0.54a

CK 35.24±2.11ab 199.21±4.55a 127.68±2.36a 23.85±5.48a
HT 32.61±2.59c 174.96±0.52b 118.02±2.18b 19.92±2.61c
HTE 36.04±2.98a 199.30±6.63a 124.29±9.47ab 22.34±0.69ab

CK 49.10±3.07a 225.87±4.19a 128.04±11.85a 26.67±6.93bc
HT 39.33±2.75c 216.42±4.57b 108.17±15.81c 27.07±6.21b
HTE 41.19±2.64b 222.41±5.16a 121.40±10.70b 29.43±5.35a

Table 3

Transcriptome sequencing data information"

Raw reads (M)
Raw bases (G)
Clean reads (M)
Clean bases (G)
Valid bases (%)
CK1 50.55 7.58 49.83 7.26 95.71 91.50 47.66
CK2 47.78 7.17 47.06 6.86 95.75 92.75 47.52
CK3 47.30 7.10 46.61 6.79 95.68 91.75 47.55
HT1 48.07 7.21 47.37 6.88 95.37 89.64 47.94
HT2 49.42 7.41 48.66 7.08 95.49 92.00 47.56
HT3 49.86 7.48 49.12 7.16 95.69 91.16 47.17
HTE1 48.84 7.33 48.09 7.01 95.71 92.44 47.45
HTE2 51.05 7.66 50.31 7.31 95.52 91.53 47.74
HTE3 50.46 7.57 49.75 7.25 95.78 92.67 47.37

Fig. 2

Differentially expressed genes at different treatments A: Numbers of up-regulate and down-regulate genes in each sample; B: Venn diagram of differentially expressed genes"

Fig. 3

GO analysis of differential genes"

Fig. 4

KEGG enrichment scatter plot of differential gene A, B: Left is up-regulated gene enrichment pathway, right is down-regulated gene enrichment pathway"

Fig. 5

Heat map of starch and sucrose metabolism-related genes"

Fig. 6

Phenylalanine metabolic pathway Red represents up-regulated genes; Green indicates genes involved in metabolism; Dotted lines indicates multistep reactions; Solid line indicates one-step reaction. The heat map showed the FPKM value of different genes in different treatments, and the higher the value, the redder the color; From left to right, the samples are CK, HT, HTE. The same as below"

Fig. 7

Auxin, ABA, BR and SA metabolic pathway"

Table 4

Differential transcription factors and classification"

Transcription factor number
Transcription factor family
HT vs HTE 6 1 5 MYB

Fig. 8

qRT-PCR analysis of differentially expressed genes"

Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, M. M. P. Climate Change 2013:The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. 2014.
吴久赟, 廉苇佳, 曾晓燕, 刘志刚, 毛亮, 刘勇翔, 姜建福. 不同品种葡萄对高温的生理响应及耐热性评价. 西北植物学报, 2019, 39(6): 1075-1084.
WU J Y, LIAN W J, ZENG X Y, LIU Z G, MAO L, LIU Y X, JIANG J F. Physiological response to high temperature and heat tolerance evaluation of different grape cultivars. Acta Botanica Boreali- Occidentalia Sinica, 2019, 39(6): 1075-1084. (in Chinese)
CORTELL J M, HALBLEIB M, GALLAGHER A V, RIGHETTI T L, KENNEDY J A. Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Journal of Agricultural and Food Chemistry, 2007, 55(16): 6585-6595.

doi: 10.1021/jf070196n
WANG H, CAO G H, PRIOR R L. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 1997, 45(2): 304-309.

doi: 10.1021/jf960421t
ZHANG J L, NIU J P, DUAN Y, ZHANG M X, LIU J Y, LI P M, MA F W. Photoprotection mechanism in the ‘Fuji’ apple peel at different levels of photooxidative sunburn. Physiologia Plantarum, 2015, 154(1): 54-65.

doi: 10.1111/ppl.2015.154.issue-1
钟海霞. 葡萄果实糖分积累机制及关键基因挖掘[D]. 乌鲁木齐: 新疆农业大学, 2021.
ZHONG H X. Sugar accumulation mechanism and key gene mining in grape fruit[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese)
CARBONELL-BEJERANO P, SANTA MARÍA E, TORRES-PÉREZ R, ROYO C, LIJAVETZKY D, BRAVO G, AGUIRREOLEA J, SÁNCHEZ-DÍAZ M, ANTOLÍN M C, MARTÍNEZ-ZAPATER J M. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat hamburg. Plant and Cell Physiology, 2013, 54(7): 1200-1216.

doi: 10.1093/pcp/pct071
黄敬寒, 温可睿, 潘秋红, 段长青, 王军. 环境条件和栽培技术对葡萄花色苷生物合成的影响(上): 环境条件对葡萄花色苷生物合成的影响. 中外葡萄与葡萄酒, 2011(9): 71-76.
HUANG J H, WEN K R, PAN Q H, DUAN C Q, WANG J. Effects of environmental conditions and cultivation techniques on anthocyanin biosynthesis in grape (Ⅰ)-Effects of environmental conditions on anthocyanin biosynthesis in grape. Sino-Overseas Grapevine and Wine, 2011(9): 71-76. (in Chinese)
BAJGUZ A, HAYAT S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry: PPB, 2009, 47(1): 1-8.
JIN S H, LI X Q, WANG G G, ZHU X T. Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants, 2015, 7: plv009.
DING H D, ZHU X H, ZHU Z W, YANG S J, ZHA D S, WU X X. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 2012, 56(4): 767-770.

doi: 10.1007/s10535-012-0108-0
AGHDAM M S, MOHAMMADKHANI N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food and Bioprocess Technology, 2014, 7(3): 909-914.

doi: 10.1007/s11947-013-1165-x
杨艺琳, 张正敏, 李美琳, 赵立艳, 金鹏, 郑永华. 2, 4-表油菜素内酯对葡萄果实采后灰霉病的抑制作用机理. 食品科学, 2019, 40(15): 231-238.
YANG Y L, ZHANG Z M, LI M L, ZHAO L Y, JIN P, ZHENG Y H. Modes of action of 2, 4-epibrassionolide against postharvest gray mold decay of grapes. Food Science, 2019, 40(15): 231-238. (in Chinese)

doi: 10.1111/jfds.1975.40.issue-2
KAGALE S, DIVI U K, KROCHKO J E, KELLER W A, KRISHNA P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2007, 225(2): 353-364.

doi: 10.1007/s00425-006-0361-6
NIE W F, WANG M M, XIA X J, ZHOU Y H, SHI K, CHEN Z X, YU J Q. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 2013, 36(4): 789-803.
ZHOU J, WANG J, LI X, XIA X J, ZHOU Y H, SHI K, CHEN Z X, YU J Q. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65(15): 4371-4383.

doi: 10.1093/jxb/eru217
YIN Y L, QIN K Z, SONG X W, ZHANG Q H, ZHOU Y H, XIA X J, YU J Q. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 2018, 59(11): 2239-2254.
YUAN L B, PENG Z H, ZHI T T, ZHO Z, LIU Y, ZHU Q, XIONG X Y, REN C M. Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biologia Plantarum, 2015, 59(1): 99-105.

doi: 10.1007/s10535-014-0472-z
冯晓雪. 油菜素内酯对红地球葡萄生理生化特性和品质的影响[D]. 兰州: 甘肃农业大学, 2014.
FENG X X. Effects of brassinolide on physiological and biochemical characteristics and quality of Red Globe grape[D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese)
王爱玲, 白世践, 赵荣华, 蔡军社. 油菜素内酯对火焰无核葡萄着色的影响. 天津农业科学, 2019, 25(1): 34-35, 42.
WANG A L, BAI S J, ZHAO R H, CAI J S. Effects of brassinolide on colour of flame seedless grape. Tianjin Agricultural Sciences, 2019, 25(1): 34-35, 42. (in Chinese)
张睿佳, 李瑛, 虞秀明, 娄玉穗, 许文平, 张才喜, 赵丽萍, 王世平. 高温胁迫与外源油菜素内酯对‘巨峰’葡萄叶片光合生理和果实品质的影响. 果树学报, 2015, 32(4): 590-596.
ZHANG R J, LI Y, YU X M, LOU Y S, XU W P, ZHANG C X, ZHAO L P, WANG S P. Effects of heat stress and exogenous brassinolide on photosynthesis of leaves and berry quality of ‘Kyoho’ grapevine. Journal of Fruit Science, 2015, 32(4): 590-596. (in Chinese)
栾丽英, 张振文, 惠竹梅, 房玉林, 霍珊珊. 脱落酸处理对赤霞珠和烟73葡萄果皮花色苷组分的影响. 食品科学, 2014, 35(18): 110-114.
LUAN L Y, ZHANG Z W, XI Z M, FANG Y L, HUO S S. Effect of abscisic acid on anthocyanin composition of grape skins from Yan 73 and cabernet sauvignon. Food Science, 2014, 35(18): 110-114. (in Chinese)
李璐, 徐玉娟, 吴继军, 余元善, 邹波, 彭健. 华中地区不同品种树莓果实成熟过程中特征活性物质的变化. 现代食品科技, 2021, 37(10): 145-152.
LI L, XU Y J, WU J J, YU Y S, ZOU B, PENG J. Ripening-induced changes in characteristic active compounds of different raspberry (Rubus idaeus) cultivars sourced from central China. Modern Food Science & Technology, 2021, 37(10): 145-152. (in Chinese)
李利梅, 王秀芹, 杨培培, 黄卫东, 战吉宬. 赤霞珠葡萄果实糖积累与糖代谢相关酶的关系. 中外葡萄与葡萄酒, 2011(7): 24-27.
LI L M, WANG X Q, YANG P P, HUANG W D, ZHAN J C. Relationship between sugar accumulation and sugar metabolism related enzymes during Cabernet Sauvignon berries development. Sino-Overseas Grapevine & Wine, 2011(7): 24-27. (in Chinese)
COHEN S D, TARARA J M, KENNEDY J A. Assessing the impact of temperature on grape phenolic metabolism. Analytica Chimica Acta, 2008, 621(1): 57-67.

doi: 10.1016/j.aca.2007.11.029 pmid: 18573371
马立娜. 油菜素内酯和脱落酸调控葡萄果实成熟与花色苷合成的研究[D]. 杨凌: 西北农林科技大学, 2012.
MA L N. Study on brassinolide and abscisic acid regulating grape fruit ripening and anthocyanin synthesis[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
GAMBETTA G A, MATTHEWS M A, SHAGHASI T H, MCELRONE A J, CASTELLARIN S D. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232(1): 219-234.

doi: 10.1007/s00425-010-1165-2 pmid: 20407788
ZHANG K, WU Z D, TANG D B, LUO K, LU H X, LIU Y Y, DONG J, WANG X, LV C W, WANG J C, LU K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Frontiers in Plant Science, 2017, 8: 914.

doi: 10.3389/fpls.2017.00914 pmid: 28690616
WINTER H, HUBER S C. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Plant Sciences, 2000, 19(1): 31-67.

doi: 10.1080/07352680091139178
林雪茜, 彭淼, 吴少平, 易干军, 董涛, 钟晓红, 高慧君. ‘中蕉9号’与‘巴西蕉’果实后熟过程中可溶性糖积累差异的原因分析. 果树学报, 2019, 36(11): 1524-1539.
LIN X Q, PENG M, WU S P, YI G J, DONG T, ZHONG X H, GAO H J. A comparative analysis of the differences in starch degradation and soluble sugar accumulation between ‘Zhongjiao No.9’ and ‘Baxijiao’ during fruit ripening. Journal of Fruit Science, 2019, 36(11): 1524-1539. (in Chinese)
靳文斌, 李克文, 胥九兵, 张友亮, 肖兆玲, 张倩, 刘开昌, 龚魁杰. 海藻糖的特性、功能及应用. 精细与专用化学品, 2015, 23(1): 30-33.
JIN W B, LI K W, XU J B, ZHANG Y L, XIAO Z L, ZHANG Q, LIU K C, GONG K J. The character and function of trehalose and its application. Fine and Specialty Chemicals, 2015, 23(1): 30-33. (in Chinese)
SPARVOLI F, MARTIN C, SCIENZA A, GAVAZZI G, TONELLI C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Molecular Biology, 1994, 24(5): 743-755.

doi: 10.1007/BF00029856
LUAN L Y, ZHANG Z W, XI Z M, HUO S S, MA L N. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal of Enology and Viticulture, 2013, 34(2): 196-203.
XI Z M, ZHANG Z W, HUO S S, LUAN L Y, GAO X, MA L N, FANG Y L. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry, 2013, 141(3): 3056-3065.

doi: 10.1016/j.foodchem.2013.05.137
陈素丽, 彭瑜, 周华, 于波, 董彦君, 滕胜. 植物海藻糖代谢及海藻糖-6-磷酸信号研究进展. 植物生理学报, 2014, 50(3): 233-242.
CHEN S L, PENG Y, ZHOU H, YU B, DONG Y J, TENG S. Research advances in trehalose metabolism and trehalose-6-phosphate signaling in plants. Plant Physiology Journal, 2014, 50(3): 233-242. (in Chinese)

doi: 10.1111/ppl.1980.50.issue-3
陈乃钰, 张国香, 张力爽, 安逸民, 杜家欢, 王丹, 郭长虹. ABF转录因子在植物响应非生物胁迫中的作用. 植物遗传资源学报, 2021, 22(4): 930-938.
CHEN N Y, ZHANG G X, ZHANG L S, AN Y M, DU J H, WANG D, GUO C H. The role of ABF transcription factors in response to abiotic stress in plant. Journal of Plant Genetic Resources, 2021, 22(4): 930-938. (in Chinese)
HU Y X, BAO F, LI J Y. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2000, 24(5): 693-701.

doi: 10.1046/j.1365-313x.2000.00915.x
林树钦. 脱落酸和表油菜素内酯对月季切花叶片气孔开放和水孔蛋白基因表达的影响[D]. 广州: 仲恺农业工程学院, 2019.
LIN S Q. Effects of abscisic acid and epibrassinolide on stomatal opening and aquaporin gene expression in cut rose leaves[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2019. (in Chinese)
CRUPI P, ALBA V, MASI G, CAPUTO A R, TARRICONE L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Research International, 2019, 126: 108667.

doi: 10.1016/j.foodres.2019.108667
BABALIK Z, DEMIRCI T, AŞCI Ö A, BAYDAR N G. Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. Alphonse Lavallée). Journal of Plant Growth Regulation, 2020, 39(1): 147-156.

doi: 10.1007/s00344-019-09970-5
[1] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[6] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[7] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[8] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[9] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[10] TANG SiYu,LIU QiuMei,MENG XiaoHui,MA Lei,LIU DongYang,HUANG QiWei,SHEN QiRong. Identification of Functional Substances from Rice Straw Obtained by Pyrolysis and Enzymolysis and Its Effect [J]. Scientia Agricultura Sinica, 2021, 54(15): 3250-3263.
[11] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[12] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[13] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] XU Ming,LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui. Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata [J]. Scientia Agricultura Sinica, 2020, 53(24): 5091-5103.
Full text



No Suggested Reading articles found!