Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1263-1270.doi: 10.3864/j.issn.0578-1752.2022.07.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank

YIN GuangKun(),XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-10-14 Accepted:2021-11-25 Online:2022-04-01 Published:2022-04-18
  • Contact: XinXiong LU E-mail:yinguangkun@caas.cn;luxinxiong@caas.cn

Abstract:

The safe conservation of germplasm resources is the core of high-level protection and a prerequisite for sustainable utilization. Low-temperature genebank is the most important way to conserve crop germplasm resources. These aims, extending the conservation longevity, maintaining the genetic integrity and preventing the accidental loss, always were the research difficulties and hotspots in the safe conservation. This review systematically sorted out the research history of germplasm resources in genebanks in the past 100 years, and pointed out: (1) Low moisture content and low storage temperature are key factors for prolonging seed longevity, forming the low temperature and moisture theory, which is the theoretical basis for safe conservation in genebanks; (2) The declining viability of seeds in genebanks has the characteristic of the critical node, which is the lower limit for maintaining genetic integrity, forming the critical node theory, which is the theoretical basis for the safe conservation of germplasm resources; (3) The conserved germplasm should be backed up by the physical space or storage method, forming the back up conservation mechanism, which is the a safeguard measure to prevent the irreversible loss of resources caused by accidents. This review focused on the connotation, significance and practical guidance of the double-low theory, the critical node theory and the duplication conservation mechanism, in order to further promoting the development of the safe conservation of germplasm resources.

Key words: genebank, safe conservation, low temperature and moisture theory, critical node theory, back up conservation mechanism

Fig. 1

The critical node theory of the safe conservation of crop germplasm resources"

[1] PLUCKNETT D L, SMITH N J H, WILLIAMS J T, ANISHETTY N M. Gene Banks and the World's Food. New Jersey: Princeton University Press, 1987.
[2] HYLAND H L. History of plant introduction. Environmental Review, 1977, 4(77):26-33.
[3] FAO. Second report on the state of the world's plants genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of The United Nations, Rome, 2010: 47.
[4] 卢新雄, 崔聪淑, 陈晓玲, 陈贞, 陈叔平. 国家种质库部分作物种子生活力监测结果与分析. 植物遗传资源科学, 2001, 2(2):1-5.
LU X X, CUI C S, CHEN X L, CHEN Z, CHEN S P. Survey of seed germinability after 10-12 years storage in the National Genebank of China. Journal of Plant Genetic Resources, 2001, 2(2):1-5. (in Chinese)
[5] 辛霞, 陈晓玲, 张金梅, 卢新雄. 国家库贮藏20年以上种子生活力与田间出苗率监测. 植物遗传资源学报, 2011, 12(6):934-940.
XIN X, CHEN X L, ZHANG J M, LU X X. Germinability and seedling emergence of seeds after 20 years of storage in the National Genebank of China. Journal of Plant Genetic Resources, 2011, 12(6):934-940. (in Chinese)
[6] WALTERS C, WHEELER L M, GROTENHUIS J M. Longevity of seeds stored in a genebank: Species characteristics. Seed Science Research, 2005, 15(1):1-20.
doi: 10.1079/SSR2004195
[7] DULLOO M E, HANSON J, JORGE M A, THORMANN I. Regeneration guidelines: General guiding principles//DULLOO M E, THORMANN I, JORGE M A, HANSON J. Crop Specific Regeneration Guidelines. CGIAR System-wide Genetic Resource Programme (SGRP), Rome, Italy, 2008: 1-6.
[8] HARRINGTON J F. The value of moisture-resistant containers in vegetable seed packaging. California: Californian Agricultural Experiment Station Bulletin, 1963, 792:23.
[9] ROBERTS E H. Predicting the storage life of seeds. Seed Science and Technology, 1973, 1:449-514.
[10] ELLIS R H, HONG T D, ROBERTS E H. Low moisture content limits to relation between seed longevity and moisture. Annals of Botany, 1990, 65:493-504.
doi: 10.1093/oxfordjournals.aob.a087961
[11] VERTUCCI C W, ROOS E E, CRANE J. Theoretical basis of protocols for seed storage: Ⅲ. Optimum moisture contents for pea seeds stored at different temperatures. Annals of Botany, 1994, 74(5):531-540.
doi: 10.1006/anbo.1994.1151
[12] VERTUCCI C W, FARRANT J M. Acquisition and loss of desiccation tolerance//KIGEL J, GALILI G. Seed Development and Germination. New York: Marcel Dekker Press, 1995: 237-271.
[13] FAO. Report on the state of the world's plants genetic resources. International Technical Conference on Plant genetic Resources. Leipzig, Germany. Food and Agriculture Organization of The United Nations, Rome, 1996.
[14] FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of The United Nations, Rome, 2014.
[15] 胡群文, 辛霞, 陈晓玲, 刘旭, 卢新雄. 水稻种子室温贮藏的适宜含水量及其生理基础. 作物学报, 2012, 38(9):1665-1671.
doi: 10.3724/SP.J.1006.2012.01665
HU Q W, XIN X, CHEN X L, LIU X, LU X X. Suitable water content and physiological basis of rice seeds stored at room temperature. Acta Agronomica Sinica, 2012, 38(9):1665-1671. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01665
[16] WILLIAMS R J, LEOPOLD A C. The glassy state in corn embryos. Plant Physiology, 1989, 89(3):977-981.
doi: 10.1104/pp.89.3.977
[17] WILLIAMS R J. Methods for determination of glass transitions in seeds. Annals of Botany, 1994, 74:525-530.
doi: 10.1006/anbo.1994.1150
[18] VERTUCCI C W, LEOPOLD A C. The relationship between water binding and desiccation tolerance in tissues. Plant Physiology, 1987, 85(1):232-238.
doi: 10.1104/pp.85.1.232
[19] LEOPOLD A C. Coping with desiccation//ALSCHER R G, CUMINING J R. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. New York: Wiley-Liss Press, 1991: 37-56.
[20] SUN W Q, LEOPOLD A C. Glassy state and seed storage stability: A viability equation analysis. Annals of Botany, 1994, 74(6):601-604.
doi: 10.1006/anbo.1994.1160
[21] SUN W Q. Glassy state and seed storage stability: The WLF kinetics of seed viability loss at T>Tg and the plasticization effect of water on storage stability. Annals of Botany, 1997, 79(3):291-297.
doi: 10.1006/anbo.1996.0346
[22] BUITINK J, LEPRINCE O, HEMMINGA M A, HOEKSTRA F A. Molecular mobility in the cytoplasm: An approach to describe and predict lifespan of dry germplasm. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5):2385-2390.
[23] BUITINK J, IJ V D D, HOEKSTRA F A, ALBERDA M, HEMMINGA M A. High critical temperature above T(g) may contribute to the stability of biological systems. Biophysical Journal, 2000, 79(2):1119-1128.
doi: 10.1016/S0006-3495(00)76365-X
[24] BUITINK J, CLAESSENS M M, HEMMINGA M A, HOEKSTRA F A. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiology, 1998, 118(2):531-541.
doi: 10.1104/pp.118.2.531
[25] BUITINK J, HEMMINGA M A, HOEKSTRA F A. Characterization of molecular mobility in seed tissues: An electron paramagnetic resonance spin probe study. Biophysical Journal, 1999, 76(6):3315-3322.
doi: 10.1016/S0006-3495(99)77484-9
[26] BALLESTEROS D, WALTERS C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. The Plant Journal, 2011, 68:607-619.
doi: 10.1111/j.1365-313X.2011.04711.x
[27] WALTERS C. Temperature dependency of molecular mobility in preserved seeds. Biophysical Journal, 2004, 86(2):1253-1258.
doi: 10.1016/S0006-3495(04)74199-5
[28] BUITINK J, LEPRINCE O. Intracellular glasses and seed survival in the dry state. Comptes Rendus Biologies, 2008, 331(10):788-795.
doi: 10.1016/j.crvi.2008.08.002
[29] ELLIS R H. The viability equation, seed viability nomographs, and practical advice on seed storage. Seed Science and Technology, 1988, 16(1):29-50.
[30] BELL L N, HAGEMAN M J, MURAOKA L M. Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. Journal of Pharmaceutical Sciences, 1995, 84(6):707-712.
doi: 10.1002/jps.2600840608
[31] BRUNI F, LEOPOLO A C. Pools of water in anhydrobiotic organisms. Biophysical Journal, 1992, 63(3):663-672.
doi: 10.1016/S0006-3495(92)81638-7
[32] 胡群文, 卢新雄, 辛萍萍, 陈晓玲, 张志娥, 辛霞, 刘旭. 水稻在不同气候区室温贮藏的适宜含水量及存活特性. 中国水稻科学, 2009, 23(6):621-627.
HU Q W, LU X X, XIN P P, CHEN X L, ZHANG Z E, XIN X, LIU X. The optimal moisture content and survival characteristics of rice seeds stored at six climatic zones under room temperature. Chinese Journal of Rice Science, 2009, 23(6):621-627. (in Chinese)
[33] SINGH R B, WILLIAMS J T. Maintenance and multiplication of plant genetic resources//HOLDEN J H W, WILLIAMS J T. Crop Genetic Resources: Conservation and Evaluation. London: George Allen and Unwin Press, 1984.
[34] 卢新雄, 辛霞, 刘旭. 作物种质资源安全保存原理与技术. 北京: 科学出版社, 2019.
LU X X, XIN X, LIU X. The Principle and Technology of the Safe Conservation of Crop Germplasm Resources. Beijing: Science Press, 2019. (in Chinese)
[35] 卢新雄, 辛霞, 尹广鹍, 张金梅, 陈晓玲, 王述民, 方沩, 何娟娟. 中国作物种质资源安全保存理论与实践. 植物遗传资源学报, 2019, 20(1):1-10.
LU X X, XIN X, YIN G K, ZHANG J M, CHEN X L, WANG S M, FANG W, HE J J. Theory and practice of the safe conservation of crop germplasm resources in China. Journal of Plant Genetic Resources, 2019, 20(1):1-10. (in Chinese)
[36] 卢新雄, 崔聪淑, 陈晓玲, 张晗, 李秀全, 李高原, 陈丽华. 小麦种质贮藏过程中生活力丧失特性及田间出苗率表现. 植物遗传资源学报, 2003, 4(3):220-224.
LU X X, CUI C S, CHEN X L, ZHANG H, LI X Q, LI G Y, CHEN L H. Characteristics of wheat seed viability loss during storage and emergence rate of seedlings. Journal of Plant Genetic Resources, 2003, 4(3):220-224. (in Chinese)
[37] 卢新雄, 陈晓玲. 水稻种子贮藏过程中生活力丧失特性及预警指标的研究. 中国农业科学, 2002, 35(8):975-979.
LU X X, CHEN X L. Characteristics and warning indices of rice seeds viability loss during storage at 45℃ constant temperature. Scientia Agricultura Sinica, 2002, 35(8):975-979. (in Chinese)
[38] 辛霞, 陈晓玲, 张金梅, 卢新雄. 小麦种子在不同保存条件下的生活力丧失特性研究. 植物遗传资源学报, 2013, 14(4):588-593.
XIN X, CHEN X L, ZHANG J M, LU X X. Viability loss of wheat seeds under different storage conditions. Journal of Plant Genetic Resources, 2013, 14(4):588-593. (in Chinese)
[39] YIN G K, WHELAN J, WU S H, ZHOU J, CHEN B Y, CHEN X, ZHANG J M, HE J J, XIN X, LU X X. Comprehensive mitochondrial metabolic shift during the critical node of seed ageing in rice. PLoS ONE, 2016, 11(4):e0148013
doi: 10.1371/journal.pone.0148013
[40] YIN G K, XIN X, FU S Z, AN M N, WU S H, CHEN X L, ZHANG J M, HE J J, WHELAN J, LU X X. Proteomic and carbonylation profile analysis at the critical node of seed ageing in Oryza sativa. Scientific Reports, 2017, 7:40611.
doi: 10.1038/srep40611
[41] 张晗, 卢新雄, 张志娥, 陈晓玲, 任守杰, 辛萍萍. 种子老化对玉米种质资源遗传完整性变化的影响. 植物遗传资源学报, 2005, 6(1):271-275.
ZHANG H, LU X X G, ZHANG Z E, CHEN X L, REN S J, XIN P P. Effect of seed aging on changes of genetic integrity in maize germplasm. Journal of Plant Genetic Resources, 2005, 6(1):271-275. (in Chinese)
[42] 王栋, 卢新雄, 张志娥, 陈晓玲, 辛霞, 辛萍萍, 耿立格. SSR标记分析种子老化及繁殖世代对大豆种质遗传完整性的影响. 植物遗传资源学报, 2010, 11(2):192-199.
WANG D, LU X X, ZHANG Z E, CHEN X L, XIN X, XIN P P, GENG L G. Effect of seed aging and regeneration on genetic integrity in soybean by SSR markers. Journal of Plant Genetic Resources, 2010, 11(2):192-199. (in Chinese)
[43] 王栋, 张志娥, 陈晓玲, 辛霞, 辛萍萍, 卢新雄. AFLP标记分析生活力影响大豆中黄18种质遗传完整性. 作物学报, 2010, 36(4):555-564.
doi: 10.3724/SP.J.1006.2010.00555
WANG D, ZHANG Z E, CHEN X L, XIN X, XIN P P, LU X X. Analysis of viability affecting on genetic integrity in soybean germplasm Zhonghuang 18 by AFLP markers. Acta Agronomica Sinica, 2010, 36(4):555-564. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00555
[44] 刘敏, 辛霞, 张志娥, 陈晓玲, 张金梅, 卢新雄. 繁殖群体量及隔离对蚕豆种质遗传完整性的影响. 植物遗传资源学报, 2012, 13(2):175-181.
LIU M, XIN X, ZHANG Z E, CHEN X L, ZHANG J M, LU X X. Effect of sample sizes and isolation methods on genetic integrity of faba bean (Vicia faba L.) germplasm. Journal of Plant Genetic Resources, 2012, 13(2):175-181. (in Chinese)
[45] XIN X, LIN X H, ZHOU Y C, CHEN X L, LIU X, LU X X. Proteome analysis of maize seeds: The effect of artificial ageing. Physiologia Plantarum, 2011, 2:126-138.
[46] YIN G K, XIN X, SONG C, CHEN X L, ZHANG J M, WU S H, LI R F, LIU X, LU X X. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Plant Physiology and Biochemistry, 2014, 80:1-9.
doi: 10.1016/j.plaphy.2014.03.006
[47] CHEN X L, YIN G K, ANDREAS B, XIN X, HE J J, MANUELA N, LIU X, LU X X. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. Plant Physiology and Biochemistry, 2018, 130:455-463.
doi: 10.1016/j.plaphy.2018.07.022
[48] CHEN X L, BÖRNER A, XIN X, NAGEL M, HE J J, LI J, LI N, LU X X, YIN G K. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Frontiers in Plant Science, 2021, 12:707184.
doi: 10.3389/fpls.2021.707184
[49] FU S Z, YIN G K, XIN X, WU S H, WEI X H, LU X X. The levels of crotonaldehyde and 4-hydroxy-(E)-2-nonenal and carbonyl-scavenging enzyme gene expression at the critical node during rice seed aging. Rice Science, 2018, 25(3):152-160.
doi: 10.1016/j.rsci.2018.04.003
[50] XIN X, TIAN Q, YIN G K, CHEN X L, ZHANG J M, NG S, LU X X. Reduced mitochondrial and ascorbate glutathione activity after artificial ageing in soybean seed. Journal of Plant Physiology, 2014, 171(2):140-147.
doi: 10.1016/j.jplph.2013.09.016
[51] KÜHN K, YIN G K, DUNCAN O, LAW S R, KUBISZEWSKI- JAKUBIAK S, KAUR P, MEYER E, WANG Y, DES FRANCS SMALL C C, GIRAUD E, NARSAI R, WHELAN J. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiology, 2015, 167(1):228-250.
doi: 10.1104/pp.114.249946
[52] CHEN B Y, YIN G K, WHELAN J, ZHANG ZS, XIN X, CHEN X L, ZHANG J M, HE J J, LU X X. Composition of mitochondrial complex I during the critical node of seed aging in Oryza sativa. Journal of Plant Physiology, 2019, 236:7-14.
doi: 10.1016/j.jplph.2019.02.008
[1] CHEN Bi-yun; ZENG Chang-li;LU Xin-xiong; FU Zhong; CHEN Xiao-ling; WANG Hong-feng; ZHANG Tian-yao; WU Xiao-ming. Monitoring of Rape Seed Germination and Seedling Emergence After Long-Term Storage in the National Crop Genebank of China [J]. Scientia Agricultura Sinica, 2011, 44(7): 1315-1322.
[2] ZHANG Xue-yu, ZHOU Xin-min, CHEN Kuan-wei, ZOU Jian-min, HAN Wei. Review and Prospects of Research of Foundation and Utilization of Chinese Indigenous Chicken Resources GeneBank [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3320-3324.
[3] XiaoLing Chen. Monitoring of Sorghum(Sorghum Vulgare)Seed Viability After Long-term Storage in the National Crop Genebank of China [J]. Scientia Agricultura Sinica, 2006, 39(11): 2374-2374 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!