Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 599-618.doi: 10.3864/j.issn.0578-1752.2023.04.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L.

FAN JunQiang1,2(), WU JunYan1,2, LIU LiJun2, MA Li2, YANG Gang1,2, PU YuanYuan1,2, LI XueCai1,2, SUN WanCang1,2()   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070
    2State Key Laboratory of Crop Science in Arid Habitats, Lanzhou 730070
  • Received:2022-09-23 Accepted:2022-11-21 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】 The characteristics of the stomatal movement of winter Brassica napus with different cold resistance in northern China in a low-temperature environment were analyzed, and the relationship between cold resistance and stomatal movement was clarified, which provided a basis for analyzing the cold resistance mechanism of winter Brassica napus and cultivating strong cold resistance varieties. 【Method】 The physiological indexes of 14 winter Brassica napus varieties under semi-lethal temperature and low temperature were determined to judge the difference in cold resistance. At the same time, 12 stomatal indexes of the lower epidermis of the leaves of the plants treated at 24℃ for 12 h, 0℃ for 1 h, and 0℃ for 12 h were determined. Stomatal evaluation indexes significantly related to cold resistance evaluation indexes were screened by correlation analysis. 【Result】 (1) According to the results of semi-lethal temperature determination, the cold resistance of the tested varieties was identified as gau-1 (-8.06)>gau-24 (-7.83)>gau-30 (-7.58)>gau-39 (-7.44)>ts309 (-7.28)>ts312 (-7.08)>nts158 (-6.81)>npz269 (-6.62)>Tianyou 14 (-5.98)>16-2444 (-5.4)>17-2251 (-5.13)>Tianyou 2266 (-4.8)>Tianyou 2238 (-4.6)>Tianyou 2288 ( -4.38 ). According to the comprehensive evaluation value of physiological indexes, the results of cold resistance were gau-1 (0.990)>gau-24 (0.876)>gau-30 (0.693)>gau-39 (0.644)>ts309 (0.534)>ts312 ( 0.463)>nts158 (0.439)>npz269 (0.388)>Tianyou 14 (0.352)>16-2444 (0.307)>17-2251 (0.282)>Tianyou 2266 (0.236)>Tianyou 2238 (0.126)>Tianyou 2288 ( 0.000). The cold resistance measured by semi-lethal temperature was consistent with the comprehensive evaluation results of physiological indexes. (2) 12 stomatal movement-related indicators changed significantly after low-temperature treatment. The correlation analysis showed that there was no significant correlation between the 12 stomatal indexes and the semi-lethal temperature at room temperature and 0℃ after 1 h treatment. After 12 h treatment at 0℃, the stomatal pore length, area of stomatal pore, circumference of stomatal pore, stomatal apparatus length, area of stomatal apparatus, Circumference of stomatal apparatus, and stomatal closure rate were significantly correlated with cold resistance. The semi-lethal temperature was significantly correlated with the comprehensive evaluation value (Z) of stomata, and the correlation coefficient was-0.572. 【Conclusion】 Low-temperature treatment can significantly affect the stomatal movement of winter Brassica napus, and the characteristics of stomatal closure tend to be more obvious with the extension of low-temperature treatment time. At the same time, the relative changes of stomata of different temperature-sensitive varieties were different, and the varieties with strong cold resistance had stronger ability to keep stomata open after low-temperature treatment.

Key words: Brassica napus L., cold resistance evaluation, stomatal movement, semi-lethal temperature, physiological and biochemical characteristics

Fig. 1

Stomatal index"

Table 1

Relative electric conductivity and Logistic equation of leaves under different low temperatures treatments"

品种(系)
Variety
(<BOLD>L</BOLD>ine)
相对电导率<BOLD>R</BOLD>elative electric conductivity (%) 回归方程
Regression equation
拟合度
R2
半致死
温度
LT50 (℃)
抗寒性排序
Cold tolerance ranking
0℃ -4℃ -8℃ -12℃ -16℃
gau-1 19.54±1.40a 21.73±3.28c 35.80±3.16d 78.77±3.25b 87.04±4.10a y=100/(1+6.420e0.2308x) 0.91 -8.06 1
天油14
Tianyou14
19.68±2.10a 24.83±4.25c 65.61±3.77bc 87.74±2.74ab 94.22±9.92a y=100/(1+5.562e0.2868x) 0.97 -5.98 9
16-2444 19.56±4.73a 27.17±3.42c 76.78±6.42ab 89.56±6.17ab 94.37±4.46a y=100/(1+4.795e0.2901x) 0.95 -5.40 10
17-2251 19.72±2.14a 43.38±2.88ab 77.39±3.98ab 82.88±1.73ab 86.77±1.19a y=100/(1+2.941e0.2103x) 0.91 -5.13 11
gau-24 18.81±1.60a 21.15±1.44c 32.76±3.04d 79.64±1.33b 91.32±1.66a y=100/(1+7.528e0.2578x) 0.90 -7.83 2
gau-30 16.43±4.39a 19.75±7.57c 33.05±4.02d 83.82±1.92ab 93.77±3.27a y=100/(1+9.210e0.2931x) 0.91 -7.58 3
gau-39 18.76±4.31a 22.51±6.16c 51.43±1.02cd 82.11±3.92ab 85.41±6.48a y=100/(1+5.561e0.2306x) 0.94 -7.44 4
nts158 17.26±2.07a 23.45±2.66c 42.37±22.85d 89.68±5.92ab 93.42±1.15a y=100/(1+7.431e0.2946x) 0.92 -6.81 7
npz269 18.37±2.87a 25.12±0.49c 71.56±4.30ab 81.14±1.61ab 85.44±4.28a y=100/(1+4.488e0.2268x) 0.91 -6.62 8
ts309 16.74±3.89a 20.38±4.72c 41.81±4.63d 87.12±5.40ab 91.02±0.91a y=100/(1+7.668e0.2799x) 0.92 -7.28 5
ts312 18.62±0.90a 20.80±6.61c 37.48±4.30d 85.21±1.86ab 95.03±0.94a y=100/(1+8.265e0.2985x) 0.91 -7.08 6
天油2238
Tianyou2238
18.94±1.05a 35.98±12.41bc 85.45±3.45a 91.34±3.55a 92.85±4.56a y=100/(1+3.531e0.2742x) 0.90 -4.60 13
天油2266
Tianyou2266
15.29±1.52a 46.47±5.56ab 82.34±1.09ab 89.39±4.22ab 90.76±4.28a y=100/(1+3.431e0.2567x) 0.90 -4.80 12
天油2288
Tianyou2288
15.14±3.50a 55.42±6.04a 83.39±1.72ab 88.79±5.01ab 91.27±3.65a y=100/(1+2.986e0.2498x) 0.88 -4.38 14

Fig. 2

Physiological Responses of winter Brassica napus under low temperature Different letters indicate significant differences at P<0.05. The same as below"

Table 2

Coefficients of cold tolerance evaluated of main physiological traits"

品种(系)
Variety (<BOLD>L</BOLD>ine)
耐寒系数(K)Anti-cold coefficient
SOD POD CAT Pro MDA LRWC
gau-1 1.405±0.076a 2.694±0.458a 1.691±0.348a 2.569±0.494a 1.684±0.013cd 0.819±0.067ab
天油14 Tianyou14 1.150±0.190a 1.830±0.227ab 1.318±0.227a 1.703±0.217abc 2.214±0.349abcd 0.806±0.024ab
16-2444 1.134±0.014a 1.846±0.269ab 1.334±0.359a 1.628±0.061bc 2.357±0.264abcd 0.772±0.054ab
17-2251 1.125±0.054a 1.826±0.344ab 1.278±0.202a 1.678±0.486abc 2.413±0.314abcd 0.767±0.055ab
gau-24 1.323±0.140a 2.526±0.529ab 1.621±0.258a 2.416±0.562ab 1.625±0.108d 0.805±0.023ab
gau-30 1.233±0.057a 2.287±0.408ab 1.566±0.267a 2.268±0.138abc 1.978±0.391bcd 0.840±0.068ab
gau-39 1.226±0.188a 2.102±0.597ab 1.529±0.092a 2.118±0.368abc 1.797±0.170cd 0.815±0.032ab
nts158 1.155±0.047a 1.977±0.217ab 1.324±0.190a 1.772±0.095abc 1.976±0.472bcd 0.813±0.050ab
npz269 1.115±0.113a 1.902±0.135ab 1.316±0.207a 1.721±0.036abc 2.047±0.031bcd 0.885±0.015a
ts309 1.197±0.126a 2.006±0.163ab 1.360±0.027a 1.975±0.385abc 1.842±0.164cd 0.825±0.062ab
ts312 1.183±0.115a 2.097±0.640ab 1.329±0.096a 1.766±0.089abc 2.035±0.338bcd 0.801±0.045ab
天油2238 Tianyou2238 1.098±0.138a 1.669±0.190ab 1.200±0.083a 1.482±0.076bc 2.657±0.339ab 0.781±0.038ab
天油2266 Tianyou2266 1.108±0.099a 1.715±0.096ab 1.241±0.083a 1.678±0.486abc 2.461±0.105abc 0.730±0.038b
天油2288 Tianyou2288 1.087±0.084a 1.611±0.110b 1.100±0.095a 1.369±0.104c 2.973±0.345a 0.710±0.044b

Table 3

Subordinator functional components and the integrated evaluation index for winter Brassica napus"

品种(系)
Variety (<BOLD>L</BOLD>ine)
隶属函数值Subordinative function a 综合评价值(D
Comprehensive
evaluation value
抗寒性排序
Cold tolerance
ranking
μ(1) μ(2) μ(3) μ(4) μ(5) μ(6)
gau-1 1.000 1.000 1.000 1.000 0.956 1.000 0.990 1
天油14 Tianyou14 0.199 0.203 0.368 0.279 0.563 0.519 0.352 9
16-2444 0.149 0.217 0.397 0.216 0.457 0.405 0.307 10
17-2251 0.119 0.199 0.301 0.258 0.415 0.355 0.282 11
gau-24 0.742 0.845 0.881 0.873 1.000 0.745 0.876 2
gau-30 0.460 0.625 0.789 0.749 0.738 0.658 0.693 3
gau-39 0.437 0.453 0.726 0.625 0.872 0.620 0.644 4
nts158 0.214 0.338 0.378 0.336 0.740 0.546 0.439 7
npz269 0.091 0.269 0.365 0.293 0.687 0.545 0.388 8
ts309 0.346 0.365 0.439 0.505 0.839 0.599 0.534 5
ts312 0.304 0.449 0.387 0.331 0.696 0.586 0.463 6
天油2238 Tianyou2238 0.037 0.054 0.168 0.094 0.235 0.110 0.126 13
天油2266 Tianyou2266 0.067 0.096 0.239 0.258 0.380 0.323 0.236 12
天油2288 Tianyou2288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14
权重系数 Weighted value 0.099 0.201 0.157 0.242 0.230 0.071

Table 4

Correlation analysis of semi-lethal temperature and physiologic index"

指标
Index
综合评价值(D
Comprehensive evaluation value
SOD POD CAT Pro MDA LRWC
半致死温度 LT50 -0.932** -0.831** -0.889** -0.876** -0.881** 0.959** -0.931**

Table 5

The number of samples measured by each index"

品种(系)
Variety (<BOLD>L</BOLD>ine)
样本数量Sample size
24℃ 0℃ 1 h 0℃ 12 h
测量气孔数量
Measure the quantity
观测视野数量
Number of visual field
测量气孔数量
Measure the quantity
观测视野数量
Number of visual field
测量气孔数量
Measure the quantity
观测视野数量
Number of visual field
gau-1 108 9 46 9 138 9
天油14 Tianyou14 114 9 100 9 112 9
16-2444 177 9 67 9 67 9
17-2251 118 9 156 9 138 9
gau-24 196 9 141 9 152 9
gau-30 133 9 145 9 96 9
gau-39 103 9 88 9 140 9
nts158 142 9 141 9 133 9
npz269 130 9 135 9 82 9
ts309 124 9 99 9 146 9
ts312 153 9 135 9 163 9
天油2238 Tianyou2238 130 9 159 9 187 9
天油2266 Tianyou2266 159 9 98 9 106 9
天油2288 Tianyou2288 66 9 111 9 83 9

Fig. 3

Stomatal movement of winter Brassica napus at low temperature"

Fig. 4

Stomatal of winter Brassica napus at low temperature Red box marking for closing pores in field of vision"

Table 6

Coefficients of cold tolerance evaluated of treatment at 0℃ for 1 h"

品种(系)
Variety (<BOLD>L</BOLD>ine)
耐寒系数(K)Anti-cold coefficiency
气孔
孔隙长
Stomatal pore length
气孔
孔隙宽
Stomatal pore width
气孔孔隙面积
Area of stomatal pore
气孔孔隙周长
Circumference of stomatal pore
气孔器长
Stomatal apparatus length
气孔器宽
Stomatal apparatus width
气孔器
面积
Area of stomatal apparatus
气孔器
周长
Circumference of stomatal apparatus
保卫
细胞宽
Guard cell width
视野内
气孔数
Number of pores in visual field
气孔开度
Stomatal aperture
气孔
关闭率
Stomatal closure rate
gau-1 0.942 0.783 0.754 0.914 0.991 0.950 0.973 0.986 1.037 0.830 0.738 1.254
天油14
Tianyou14
1.016 0.982 0.994 1.007 1.011 1.009 1.025 1.013 1.017 1.060 0.998 0.993
16-2444 1.026 0.848 1.069 1.003 1.036 1.086 1.028 1.067 1.220 0.888 0.869 1.856
17-2251 0.919 0.742 0.732 0.909 0.934 0.901 0.854 0.925 0.959 1.228 0.682 1.434
gau-24 1.167 1.025 1.126 1.108 1.137 1.047 1.104 1.078 0.917 0.750 1.197 1.196
gau-30 0.870 0.891 0.779 0.874 0.935 0.963 0.903 0.942 0.980 1.368 0.775 0.887
gau-39 0.865 0.827 0.750 0.866 0.895 0.922 0.838 0.906 0.960 1.251 0.715 1.040
nts158 1.168 1.506 1.723 1.160 1.173 1.176 1.422 1.155 1.509 1.008 1.758 1.112
npz269 1.004 0.754 0.821 0.988 0.964 0.960 0.924 0.961 1.013 0.941 0.757 1.513
ts309 0.893 0.970 0.870 0.906 0.912 0.936 0.866 0.926 0.938 1.114 0.866 1.208
ts312 1.071 1.085 1.172 1.081 1.044 1.025 1.045 1.028 1.000 1.068 1.163 1.660
天油2238
Tianyou2238
0.984 0.995 0.985 0.987 0.984 1.005 0.976 0.987 1.013 1.158 0.979 0.900
天油2266
Tianyou2266
0.852 0.856 0.731 0.861 0.923 0.946 0.889 0.939 0.974 1.071 0.729 2.319
天油2288
Tianyou2288
0.814 0.716 0.651 0.823 0.842 0.785 0.674 0.830 0.803 1.294 0.583 2.171

Table 7

Correlation between cold resistance index and stomatal evaluation index"

指标Index 综合评价值(D)Comprehensive evaluation value 半致死温度 LT50
气孔孔隙长Stomatal pore length 0.253 -0.304
气孔孔隙宽Stomatal pore width 0.098 -0.240
气孔孔隙面积Area of stomatal pore 0.070 -0.196
气孔孔隙周长Circumference of stomatal pore 0.174 -0.265
气孔器长Stomatal apparatus length 0.332 -0.339
气孔器宽Stomatal apparatus width 0.228 -0.274
气孔器面积Area of stomatal apparatus 0.264 -0.316
气孔器周长Circumference of stomatal apparatus 0.283 -0.295
保卫细胞宽Guard cell width 0.039 -0.106
视野内气孔数Number of pores in visual field -0.426 0.320
气孔开度Stomatal aperture 0.145 -0.265
气孔关闭率Stomatal closure rate -0.481 0.533*

Table 8

Coefficients of cold tolerance evaluated of treatment at 0℃ for 12 h"

品种(系)
Variety (<BOLD>L</BOLD>ine)
耐寒系数(K)Anti-cold coefficiency
气孔
孔隙长Stomatal pore length
气孔
孔隙宽Stomatal pore width
气孔孔隙面积
Area of stomatal pore
气孔孔隙周长Circumference of stomatal pore 气孔器长Stomatal apparatus length 气孔器宽Stomatal apparatus width 气孔器
面积
Area of stomatal apparatus
气孔器
周长Circumference of stomatal apparatus
保卫
细胞宽
Guard cell width
视野内
气孔数Number of pores in visual field
气孔
开度Stomatal aperture
气孔
关闭率Stomatal closure rate
gau-1 1.004 0.683 0.753 0.971 1.015 0.903 0.932 0.981 1.001 1.099 0.686 0.991
天油14
Tianyou14
0.926 0.824 0.810 0.930 0.922 0.941 0.879 0.937 0.998 1.160 0.763 1.094
16-2444 1.123 0.955 1.005 1.095 1.123 1.106 1.207 1.100 1.264 0.606 1.072 1.297
17-2251 0.887 0.843 0.774 0.887 0.896 0.915 0.828 0.904 0.910 1.136 0.748 1.201
gau-24 1.091 1.052 1.207 1.091 1.199 1.208 1.419 1.189 1.101 1.120 1.148 1.742
gau-30 1.053 1.050 1.130 1.063 1.096 1.048 1.152 1.080 1.008 0.812 1.106 0.427
gau-39 1.024 0.852 0.951 1.021 1.027 0.971 0.998 1.005 1.037 1.245 0.873 0.954
nts158 1.030 1.244 1.349 1.035 1.041 1.049 1.147 1.030 1.279 1.640 1.282 1.132
npz269 1.031 0.893 0.937 1.024 1.020 1.047 1.052 1.023 1.106 0.806 0.921 0.809
ts309 0.955 1.070 1.013 0.964 0.992 0.990 0.978 0.986 0.984 1.149 1.021 0.813
ts312 1.036 0.833 0.915 1.025 1.009 0.963 0.948 0.982 1.006 1.099 0.863 1.200
天油2238
Tianyou2238
0.905 0.859 0.807 0.906 0.975 0.994 0.958 0.979 1.045 1.482 0.778 2.937
天油2266
Tianyou2266
0.910 0.796 0.745 0.892 0.930 0.922 0.862 0.927 0.964 1.154 0.724 3.128
天油2288
Tianyou2288
0.851 0.736 0.674 0.850 0.872 0.808 0.715 0.853 0.82 1.352 0.626 1.991

Table 9

Indicators related to principal component analysis for 12 h at 0℃"

指标
Index
因子载荷Factor loading 权重系数Weighted value
成分1
Factor1
成分2
Factor2
成分3
Factor3
成分1
Factor1
成分2
Factor2
成分3
Factor3
气孔孔隙长Stomatal pore length 0.916 -0.311 0.024 0.314 -0.248 0.024
气孔孔隙宽Stomatal pore width 0.763 0.525 -0.264 0.261 0.418 -0.262
气孔孔隙面积Area of stomatal pore 0.901 0.363 -0.210 0.308 0.289 -0.208
气孔孔隙周长Circumference of stomatal pore 0.952 -0.229 -0.045 0.326 -0.182 -0.045
气孔器长Stomatal apparatus length 0.941 -0.152 0.207 0.322 -0.121 0.205
气孔器宽Stomatal apparatus width 0.936 0.029 0.246 0.320 0.023 0.244
气孔器面积Area of stomatal apparatus 0.965 0.017 0.203 0.330 0.014 0.201
气孔器周长Circumference of stomatal apparatus 0.952 -0.107 0.223 0.326 -0.085 0.221
保卫细胞宽Guard cell width 0.810 0.172 0.099 0.277 0.137 0.098
视野内气孔数Number of pores in visual field -0.337 0.857 -0.003 -0.115 0.683 -0.003
气孔开度Stomatal aperture 0.924 0.298 -0.183 0.316 0.237 -0.181
气孔关闭率Stomatal closure rate -0.411 0.363 0.815 -0.141 0.289 0.808
特征值Eigenvalue 8.530 1.575 1.018
贡献率Contribution rate (%) 71.080 13.128 8.482
累积贡献率Cumulative contribution rate (%) 71.080 84.208 92.690

Table 10

0℃ for 12 h standardized data and comprehensive evaluation"

品种(系)
Variety <BOLD>(L</BOLD>ine)
隶属函数值Subordinative function a 综合评价值(Z
Comprehensive
evaluation value
抗寒性排序
Cold tolerance
ranking
μ(1) μ(2) μ(3) μ(4) μ(5) μ(6) μ(7) μ(8) μ(9) μ(10) μ(11) μ(12)
gau-1 0.564 0.000 0.116 0.493 0.436 0.239 0.308 0.381 0.395 0.524 0.091 0.791 0.686 10
天油14
tianyou14
0.276 0.251 0.201 0.328 0.154 0.333 0.233 0.251 0.388 0.465 0.209 0.753 0.607 11
16-2444 1.000 0.485 0.490 1.000 0.768 0.747 0.699 0.735 0.967 1.000 0.681 0.678 1.730 3
17-2251 0.133 0.285 0.148 0.151 0.074 0.267 0.162 0.151 0.197 0.487 0.186 0.713 0.413 13
gau-24 0.884 0.657 0.790 0.987 1.000 1.000 1.000 1.000 0.613 0.503 0.796 0.513 2.015 1
gau-30 0.741 0.654 0.675 0.871 0.685 0.602 0.622 0.678 0.409 0.801 0.731 1.000 1.534 4
gau-39 0.636 0.302 0.410 0.699 0.473 0.408 0.402 0.452 0.473 0.383 0.376 0.805 1.055 7
nts158 0.658 1.000 1.000 0.757 0.517 0.603 0.615 0.527 1.000 0.000 1.000 0.739 1.761 2
npz269 0.660 0.375 0.390 0.710 0.452 0.599 0.478 0.507 0.623 0.807 0.449 0.859 1.203 5
ts309 0.381 0.689 0.502 0.465 0.366 0.456 0.374 0.396 0.358 0.475 0.603 0.857 1.061 6
ts312 0.678 0.268 0.357 0.717 0.418 0.388 0.331 0.384 0.406 0.523 0.361 0.714 0.977 8
天油2238
tianyou2238
0.199 0.314 0.196 0.228 0.314 0.465 0.346 0.374 0.49 0.153 0.231 0.071 0.734 9
天油2266
tianyou2266
0.215 0.201 0.105 0.170 0.178 0.286 0.209 0.222 0.314 0.470 0.149 0.000 0.473 12
天油2288
tianyou2288
0.000 0.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.279 0.000 0.421 0.025 14

Table 11

Correlation between cold resistance index and stomatal evaluation index at 0℃ for 12 h"

指标
Index
相关系数 correlation coefficient
综合评价值(D)Comprehensive evaluation value 半致死温度 LT50
气孔孔隙长Stomatal pore length 0.608* -0.651*
气孔孔隙宽Stomatal pore width 0.190 -0.338
气孔孔隙面积Area of stomatal pore 0.428 -0.558*
气孔孔隙周长Circumference of stomatal pore 0.600* -0.675**
气孔器长Stomatal apparatus length 0.641* -0.623*
气孔器宽Stomatal apparatus width 0.419 -0.431
气孔器面积Area of stomatal apparatus 0.547* -0.541*
气孔器周长Circumference of stomatal apparatus 0.600* -0.584*
保卫细胞宽Guard cell width 0.211 -0.264
视野内气孔数Number of pores in visual field -0.217 0.180
气孔开度Stomatal aperture 0.358 -0.484
气孔关闭率Stomatal closure rate -0.518 0.680**
综合评价值(Z)Comprehensive evaluation value 0.507 -0.569*
[1]
BERRY J A, BEERLING D J, FRANKS P J. Stomata: Key players in the earth system, past and present. Current Opinion in Plant Biology, 2010, 13(3): 232-239.

doi: 10.1016/j.pbi.2010.04.013
[2]
HSU P K, DUBEAUX G, TAKAHASHI Y, SCHROEDER J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 2021, 105(2): 307-321.

doi: 10.1111/tpj.15067
[3]
张晓萍, 撒世娟, 伍涵宇, 乔丽媛, 郑蕊, 姚新灵. 马铃薯叶片气孔的开张与关闭同步伴随果胶的降解与合成. 中国农业科学, 2022, 55(17): 3278-3288.
ZHANG X P, SA S J, WU H Y, QIAO L Y, ZHENG R, YAO X L. Leaf stomatal close and opening orchestrate rhythmically with cell wall pectin biosynthesis and degradation. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288. (in Chinese)
[4]
IKKONEN E N, SHIBAEVA T G, SYSOEVA M I, SHERUDILO E G. Stomatal conductance in Cucumis sativus upon short-term and long-term exposures to low temperatures. Russian Journal of Plant Physiology, 2012, 59(5): 696-699.

doi: 10.1134/S102144371205007X
[5]
王丽娟, 李天来, 马刚, 张岚翠, 陈伟之. 苗期夜间低温对番茄叶片气孔开张度日变化及叶片超微结构的影响. 北方园艺, 2011(11): 1-4.
WANG L J, LI T L, MA G, ZHANG L C, CHEN W Z. Effects of low night temperature on the diurnal changes of stomatal opening extent and ultrastructure of tomato leaves. Northern Horticulture, 2011(11): 1-4. (in Chinese)
[6]
ROYCHOUDHURY A, PAUL S, BASU S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 2013, 32(7): 985-1006.

doi: 10.1007/s00299-013-1414-5 pmid: 23508256
[7]
WILKINSON S, CLEPHAN A L, DAVIES W J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiology, 2001, 126(4): 1566-1578.

pmid: 11500555
[8]
LIU Y F, ZHANG G X, QI M F, LI T L. Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 2015, 34(2): 263-273.

doi: 10.1007/s00344-014-9462-9
[9]
马熙达, 任传友, 王艳华, 徐一丹, 赵东妮, 陈伟, 杨斌, 田平. 孕穗开花期持续低温对不同熟期水稻气孔导度的影响. 中国农业气象, 2016, 37(6): 682-690.
MA X D, REN C Y, WANG Y H, XU Y D, ZHAO D N, CHEN W, YANG B, TIAN P. Effects of consecutive low temperature on stomatal conductance of rice with different maturity periods at booting and blooming stages in shenyang region. Chinese Journal of Agrometeorology, 2016, 37(6): 682-690. (in Chinese)
[10]
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424(6951): 901-908.

doi: 10.1038/nature01843
[11]
LIM S L, FLÜTSCH S, LIU J H, DISTEFANO L, SANTELIA D, LIM B L. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nature Communications, 2022, 13(1): 652.

doi: 10.1038/s41467-022-28263-2
[12]
KIM T H, BÖHMER M, HU H H, NISHIMURA N, SCHROEDER J I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 2010, 61(1): 561-591.

doi: 10.1146/annurev-arplant-042809-112226
[13]
HURRY V M, STRAND A, TOBIAESON M, GARDESTROM P, OQUIST G. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiology, 1995, 109(2): 697-706.

doi: 10.1104/pp.109.2.697 pmid: 12228623
[14]
JURCZYK B, GRZESIAK M, POCIECHA E, WLAZŁO M, RAPACZ M. Diverse stomatal behaviors mediating photosynthetic acclimation to low temperatures in Hordeum vulgare. Frontiers in Plant Science, 2019, 9: 1963.

doi: 10.3389/fpls.2018.01963
[15]
李鹏, 马骊, 徐芳, 刘丽君, 姚彦林, 蒲媛媛, 王旺田, 李学才, 方彦, 孙万仓, 武军艳. 越冬前北方不同类型强冬性冬油菜形态及生理响应研究. 干旱地区农业研究, 2022, 40(5): 42-51.
LI P, MA L, XU F, LIU L J, YAO Y L, PU Y Y, WANG W T, LI X C, FANG Y, SUN W C, WU J Y. Comparison of morphological and physiological responses of two different species of northern winter rapeseed before overwintering. Agricultural Research in the Arid Areas, 2022, 40(5): 42-51. (in Chinese)
[16]
孙万仓, 裴新梧, 马骊, 王学芳, 武军艳, 李学才, 蒲媛媛, 刘丽君, 柴鹏, 李孝泽, 贾玉娟, 王积军, 刘芳, 陈其鲜, 沈金雄. 我国北方冬季覆盖作物研究进展及发展前景. 中国农业科技导报, 2022, 24(1): 128-136.

doi: 10.13304/j.nykjdb.2020.0689
SUN W C, PEI X W, MA L, WANG X F, WU J Y, LI X C, PU Y Y, LIU L J, CHAI P, LI X Z, JIA Y J, WANG J J, LIU F, CHEN Q X, SHEN J X. Advances and outlook of winter cover crop development research in Northern China. Journal of Agricultural Science and Technology, 2022, 24(1): 128-136. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0689
[17]
杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014, 47(3): 452-461.
YANG N N, SUN W C, LIU Z G, SHI P H, FANG Y, WU J Y, ZENG X C, KONG D J, LU M H, WANG Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in Northern China. Scientia Agricultura Sinica, 2014, 47(3): 452-461. (in Chinese)
[18]
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
ZOU Q. Experimental Instruction of Plant Physiology. Beijing: China Agriculture Press, 2000. (in Chinese)
[19]
张会轩, 钱前, 王钧, 贺睿, 王莉, 李毅, 胡延萍. 唐古特大黄叶片气孔制片方法的比较研究. 时珍国医国药, 2020, 31(11): 2673-2674.
ZHANG H X, QIAN Q, WANG J, HE R, WANG L, LI Y, HU Y P. Comparative study on the methods of leaf stomata section in Rheum tanguticum. Lishizhen Medicine and Materia Medica Research, 2020, 31(11): 2673-2674. (in Chinese)
[20]
蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52(19): 3291-3308.
PU Y Y, ZHAO Y H, WU J Y, LIU L J, BAI J, MA L, NIU Z X, JIN J J, FANG Y, LI X C, SUN W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in Northern China. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308. (in Chinese)
[21]
何荆洲, 黄昌艳, 闫海霞, 覃耿敏, 卜朝阳. 25个蝴蝶兰品种气孔特征及其相关性研究和分类学意义. 西南农业学报, 2019, 32(11): 2661-2669.
HE J Z, HUANG C Y, YAN H X, QIN G M, BU Z Y. Leaf stomatal characteristics and correlation analysis of 25 Phalaenopsis cultivars and taxonomic significance. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2661-2669. (in Chinese)
[22]
王孟珂, 田梦妮, 毕泉鑫, 刘肖娟, 于海燕, 王利兵. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选. 植物研究, 2021, 41(6): 957-964.

doi: 10.7525/j.issn.1673-5102.2021.06.014
WANG M K, TIAN M N, BI Q X, LIU X J, YU H Y, WANG L B. Evaluation of drought tolerance based on stomatal characters and selection of germplasm resources from Xanthoceras sorbifolia. Bulletin of Botanical Research, 2021, 41(6): 957-964. (in Chinese)
[23]
王瑞云, 连帅, 刘笑瑜. 气孔对环境因子的感知及趋适应答. 山西农业大学学报(自然科学版), 2014, 34(6): 481-487.
WANG R Y, LIAN S, LIU X Y. The function of stomata in sensing and adapting to climate factors. Journal of Shanxi Agricultural University (Natural Science Edition), 2014, 34(6): 481-487. (in Chinese)
[24]
李岩, 徐珊珊, 王根轩. 气孔发育机制及其内外调控因子的研究进展. 生命科学, 2018, 30(5): 491-499.
LI Y, XU S S, WANG G X. Advance in stomatal development mechanism and its regulation of external and internal cues. Chinese Bulletin of Life Sciences, 2018, 30(5): 491-499. (in Chinese)
[25]
谢美娟, 曹高燚, 包曙光, 李明, 丁博, 陈小强, 谢晓东, 王俊斌. 植物钙依赖蛋白激酶的结构、表达特性及其生物学功能. 分子植物育种, 2021-06-02, 1-18.
XIE M J, CAO G Y, BAO S G, LI M, DING B, CHEN X Q, XIE X D, WANG J B. Structure, expression and biological functions of calcium-dependent protein kinases in plants. Molecular Plant Breeding, 2021-06-02, 1-18. (in Chinese)
[26]
钟克友, 唐湘如, 胡飞, 黎国喜, 肖立中, 段美洋. 水稻剑叶气孔性状与孕穗期耐冷性的关系研究. 西北植物学报, 2010, 30(1): 98-103.
ZHONG K Y, TANG X R, HU F, LI G X, XIAO L Z, DUAN M Y. Correlations between the cold tolerance during the booting stage and the stomatal traits of flag leaf surface in rice. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(1): 98-103. (in Chinese)
[27]
赵跃龙, 罗玉英. 水稻品种抗寒性与其形态的相关性研究. 云南农业大学学报(自然科学), 1989(1): 52- 56, 93-94.
ZHAO Y L, LUO Y Y. Study of cold resistance and itscyto- morphological correlation with rice. Journal of Yunnan Agricultural University (Natural Science), 1989(1): 52- 56, 93-94. (in Chinese)
[28]
李映晖, 李润唐, 吴钿, 邹雪娟, 叶昌辉. 3个菠萝品种叶片气孔特征及其与抗寒性的关系. 安徽农业科学, 2013, 41(1): 1-3.
LI Y H, LI R T, WU D, ZOU X J, YE C H. Studies on relationship between stomata and cold resistance of 3 pineapple cultivars. Journal of Anhui Agricultural Sciences, 2013, 41(1): 1-3. (in Chinese)
[29]
吴林, 刘海广, 刘雅娟, 林东慧, 李亚东. 越橘叶片组织结构及其与抗寒性的关系. 吉林农业大学学报, 2005, 27(1): 48-50, 54.
WU L, LIU H G, LIU Y J, LIN D H, LI Y D. Studies on leaf tissue structure and its relations to cold resistance of blueberry. Journal of Jilin Agricultural University, 2005, 27(1): 48-50, 54. (in Chinese)
[30]
崔国文, 马春平. 紫花苜蓿叶片形态结构及其与抗寒性的关系. 草地学报, 2007, 15(1): 70-75.

doi: 10.11733/j.issn.1007-0435.2007.01.013
CUI G W, MA C P. Research on leaf morphology and cold resistance of alfalfa. Acta Agrestia Sinica, 2007, 15(1): 70-75. (in Chinese)
[31]
王晖, 周守标, 史国芹. 假俭草和结缕草营养器官结构对抗逆性的影响. 植物研究, 2007, 27(6): 701-707.
WANG H, ZHOU S B, SHI G Q. Structure of vegetative organs of Eremochloa ophiuroides and Zoysia japonica related with resistance. Bulletin of Botanical Research, 2007, 27(6): 701-707. (in Chinese)

doi: 10.7525/j.issn.1673-5102.2007.06.011
[32]
宋绪忠. 茶树无性系苗期抗寒特性研究[D]. 泰安: 山东农业大学, 2002.
SONG X Z. Cold resistance characteristics of tea clonal seedlings[D]. Taian: Shandong Agricultural University, 2002. (in Chinese)
[33]
李国华, 徐涛, 陈国云, 岳海, 梁国平. 10个品种澳洲坚果叶片解剖学的比较研究. 热带作物学报, 2009, 30(10): 1437-1441.
LI G H, XU T, CHEN G Y, YUE H, LIANG G P. Anatomical structure of leaves of 10 Macadamia cultivars. Chinese Journal of Tropical Crops, 2009, 30(10): 1437-1441. (in Chinese)
[34]
周影, 郑林, 魏建华, 马艳, 戴绍军, 王宏芝. 气孔运动中保卫细胞壁作用的研究进展. 生物技术进展, 2019, 9(5): 455-460.
ZHOU Y, ZHENG L, WEI J H, MA Y, DAI S J, WANG H Z. Advances on roles of guard cell wall in stomatal movement. Current Biotechnology, 2019, 9(5): 455-460. (in Chinese)
[35]
吴李红, 赵艺, 屈闪闪, 江昆. 微丝结合蛋白调控气孔运动的研究进展. 植物生理学报, 2020, 56(11): 2347-2355.
WU L H, ZHAO Y, QU S S, JIANG K. Advances in the understanding of stomatal regulation by actin-binding proteins. Plant Physiology Journal, 2020, 56(11): 2347-2355. (in Chinese)
[36]
姚卫杰, 张艳福, 丹曲, 郭其强, 李慧娥. 砂生槐叶片气孔特性对干旱和低温胁迫的响应. 贵州农业科学, 2015, 43(9): 23-29.
YAO W J, ZHANG Y F, DAN Q, GUO Q Q, LI H E. Stomatal feature of sophora moorcroftiana leaf under drought and cold stress. Guizhou Agricultural Sciences, 2015, 43(9): 23-29. (in Chinese)
[37]
HAN S K, KWAK J M, QI X Y. Stomatal lineage control by developmental program and environmental cues. Frontiers in Plant Science, 2021, 12: 751852.

doi: 10.3389/fpls.2021.751852
[38]
燕飞, 蒋文华, 曲东, 付静, 赵璇. 外源5-氨基乙酰丙酸对低温胁迫下茶树叶片光合及生理特性的影响. 茶叶科学, 2020, 40(5): 597-606.
YAN F, JIANG W H, QU D, FU J, ZHAO X. Effects of exogenous 5-aminolevulinic acid on photosynthetic and physiological characteristics of tea plants under low temperature stress. Journal of Tea Science, 2020, 40(5): 597-606. (in Chinese)
[39]
WILSON J M. The mechanism of chill- and drought-hardening of Phaseolus vulgaris leaves. New Phytologist, 1976, 76(2): 257-270.

doi: 10.1111/j.1469-8137.1976.tb01459.x
[40]
DAVIES W J, RODRIGUEZ J L, FISCUS E L. Stomatal behaviour and water movement through roots of wheat plants treated with abscisic acid. Plant, Cell & Environment, 1982, 5(6): 485-493.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[8] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[9] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[10] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[11] LI Hui-Min-12, HU Jie-1, HE Jun-Min-1. Effect of Phosphatidylinositol 3-Phosphate on UV-B-Induced H2O2 Production in Guard Cells and Stomatal Closure of Broad Bean [J]. Scientia Agricultura Sinica, 2013, 46(20): 4246-4253.
[12] MA Xian-Ge, HE Jun-Min. Role of Heterotrimeric G Protein in UV-B-Induced Arabidopsis Stomatal Closure [J]. Scientia Agricultura Sinica, 2012, 45(5): 848-853.
[13] YE Zi, HUANG Cong-Cong, YU Rong. Microtubules in Guard Cells Involve in Serine/Threonine Phosphorylation During Stomatal Movement [J]. Scientia Agricultura Sinica, 2012, 45(21): 4351-4360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!