Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4927-4942.doi: 10.3864/j.issn.0578-1752.2022.24.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Optimization of Drying Process in Oat Noodle Production

LIU ZhenRong(),ZHAO WuQi(),HU XinZhong(),HE LiuCheng,CHEN YueYuan   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2022-03-21 Accepted:2022-06-06 Online:2022-12-16 Published:2023-01-04
  • Contact: WuQi ZHAO,XinZhong HU E-mail:liuzr@snnu.edu.cn;zwq65@163.com;hxinzhong@snnu.edu.cn

Abstract:

【Objective】 The effects of different drying modes, temperature, and relative humidity on drying quality and drying energy of oat noodles were studied. The modes were established and the multi-objective optimization was carried out to obtain the drying mode and process parameters of oat noodles with good quality and low energy consumption. 【Method】The effects of nine different drying modes of temperature and humidity on the drying quality and drying energy of oat noodles were studied. The factors of optimal cooking time, cooking loss, water absorption, ductility, hardness, chewiness, adhesiveness, bending strength, breaking distance, acidity and fatty acid value were analyzed to obtain the comprehensive evaluation value of quality and determine the optimal drying mode of oat noodle. Plackett-Burman test was used to screen the first temperature, the first relative humidity, the second temperature, the second relative humidity, the third temperature and the third relative humidity of the three-stage drying of oat noodles with variable temperature and humidity. Box-Behnken response surface test was used to optimize the drying process, and the optimal parameters were obtained and verified. 【Result】The best drying mode of oat noodles was first heating and then cooling combined with dehumidification. Plackett-Burman experiment showed that the key factors of drying oat noodles were the first stage relative humidity, the second stage temperature and the second stage relative humidity. The established regression model of oat noodle drying process parameters with unit energy consumption and the comprehensive score was significant (P<0.05). Each factor had extremely significant influence on unit energy consumption. The interaction between the first relative humidity, the second temperature, and the second relative humidity was extremely significant. All factors had a significant influence on the quality comprehensive score, and the order of influence was second-stage temperature>second-stage relative humidity>first relative humidity. The interaction between first relative humidity, first relative humidity and second relative humidity was significant. The optimal process parameters for three-stage variable temperature and humidity drying of oat noodles were first stage temperature of 25℃, first stage relative humidity of 88%, second stage temperature of 43℃, second stage relative humidity of 71%, third stage temperature of 35℃, and third stage relative humidity of 50%; under this condition, the drying energy of oat noodles was 93.42 kJ·g-1, and the comprehensive score was 1.02. 【Conclusion】The established quadratic polynomial regression model could be applied to analyze and predict the effects of drying process parameters on drying energy and the comprehensive score of oat noodles. Three-stage variable temperature and humidity drying could improve the drying quality of oat noodles and reduce energy consumption. The method of using experiment design and data processing technology to solve the drying process of oat noodles was comprehensive and efficient. The results were intuitive and accurate, and the experiment efficiency and accuracy were improved. This study provided a theoretical basis for industrial standard production, energy-saving, and consumption reduction of oat noodles.

Key words: oat noodles, temperature, relative humidity, Plackett-Burman test design, response surface

Fig. 1

Equipment diagram for drying noodle"

Table 1

The experiment design of different drying noodle modes"

干燥模式
Dry mode
序号
Serial number
第一阶段干燥
First stage drying
第二阶段干燥
Second stage drying
第三阶段干燥
Third stage drying
温度/湿度
Temperature (℃)/ Humidity (%)
水分含量
Moisture content (%)
温度/湿度
Temperature (℃)/ Humidity (%)
水分含量
Moisture content (%)
温度/湿度
Temperature (℃)/ Humidity (%)
水分含量
Moisture content (%)
恒温恒湿
Constant temperature and humidity
1 40℃/75% / 40℃/75% / 40℃/75% ≤14.5%
变温变湿(两段)
Alternating temperature and humidity
(two-section)
2 40℃/75% / 40℃/75% 16%-17% 50℃/65% ≤14.5%
3 40℃/75% / 40℃/75% 16%-17% 30℃/65% ≤14.5%
变温变湿(三段)
Alternating temperature and humidity
(three-section)
4 30℃/65% 27%-28% 40℃/75% 16%-17% 30℃/65% ≤14.5%
5 30℃/85% 27%-28% 40℃/75% 16%-17% 30℃/65% ≤14.5%
6 30℃/65% 27%-28% 40℃/75% 16%-17% 50℃/65% ≤14.5%
7 30℃/85% 27%-28% 40℃/75% 16%-17% 50℃/65% ≤14.5%
8 30℃/75% 27%-28% 40℃/75% 16%-17% 50℃/75% ≤14.5%
9 40℃/85% 27%-28% 40℃/75% 16%-17% 40℃/65% ≤14.5%

Table 2

PBD factor level table"

因素
Factor
代表字母
Letter
水平 Level
-1 1
第一阶段温度First stage temperature (℃) A 25℃ 35℃
第一阶段相对湿度First stage relative humidity (%) B 80% 90%
第二阶段温度Second stage temperature (℃) C 40℃ 50℃
第二阶段相对湿度Second stage relative humidity (%) D 65% 75%
第三阶段温度 Third stage temperature (℃) E 25℃ 35℃
第三阶段相对湿度Third stage relative humidity (%) F 50% 60%

Table 3

Test factors and levels of response surface design"

水平/因子
Level/Factor
A第一阶段相对湿度
First stage relative humidity (%)
B第二阶段温度
Second stage temperature (℃)
C第二阶段相对湿度
Second stage relative humidity (%)
-1 70 30 60
0 80 40 70
1 90 50 80

Fig. 2

Effects of different drying modes on quality characteristics of oat noodle before cooking Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 3

Effects of different drying modes on quality characteristics of cooked oat noodle"

Fig. 4

Effects of different drying modes on unite energy consumption per unit of oat noodle"

Table 4

Comprehensive evaluation results of oat noodles under different drying modes"

序号
Code
酸度
Acidity
(mL/10 g)
脂肪酸值
Fatty acid value
(mg/100 g)
最佳煮
制时间
Optimum cooking time (s)
蒸煮损失
Cooking loss
(%)
烹调吸水率
Cooking water absorption (%)
延展性
Ductility (g·s-1)
硬度
Hardness (g)
咀嚼性
Chewiness (g·s)
黏着性
Adhesiveness (g·s)
抗弯曲强度
Bending strength
(g)
折断距离
Breaking distance (mm)
主成分
F1
Principal component
F1
主成分
F2
Principal component
F2
品质综合评分
FA
Comprehensive quality score
单位能耗
Unite energy consumption (kJ·g-1)
1 3.03 31.32 322.50 10.67 169.70 0.29 51.81 18.71 1.31 10.12 30.77 -1.62 0.63 -1.04 122.20
2 3.45 33.32 322.50 10.42 170.05 0.30 51.76 18.82 1.22 9.95 31.12 -1.08 -0.20 -0.85 92.48
3 3.15 27.33 320.00 10.61 170.44 0.30 46.80 19.07 1.14 10.19 30.86 -0.81 1.19 -0.30 92.48
4 3.30 31.32 312.5 9.39 172.07 0.31 47.59 19.62 1.04 10.72 30.93 0.52 -0.06 0.37 75.96
5 2.85 26.53 307.50 8.92 173.37 0.33 46.23 20.07 0.94 11.03 31.79 1.45 1.32 1.42 82.57
6 3.55 34.12 315.00 9.27 171.01 0.31 48.79 19.29 1.15 10.60 30.95 0.29 -0.88 -0.01 105.69
7 3.65 35.31 317.50 9.01 171.90 0.31 48.18 19.45 1.11 10.38 31.27 0.50 -1.12 0.08 112.29
8 3.85 34.51 312.50 9.84 171.71 0.30 49.96 18.91 1.20 10.20 30.71 -0.14 -1.43 -0.48 95.78
9 3.25 28.53 312.50 9.30 172.59 0.32 47.15 19.86 0.99 10.82 31.48 0.91 0.55 0.81 125.50

Table 5

PBD experimental design and results"

Run 第一阶段
First stage
第二阶段
Second stage
第三阶段
The third stage
最佳煮
制时间
Optimum cooking time
(s)
蒸煮
损失Cooking loss
(%)
烹调吸
水率Cooking water absorption (%)
延展性Ductility (g·s-1) 硬度Hardness
(g)
咀嚼性Chewiness
(g·s)
黏着性Adhesiveness (g·s) 抗弯曲强度Bending strength (g) 折断
距离Breaking distance (mm)
酸度
Acidity (mL/10 g)
脂肪酸值
Fatty acid value (mg/100 g)
主成分
F1
Principal component F1
主成分
F2
Principal component F2
品质综
合评分
FB
Compre-
hensive quality score
A温度
Temperature (℃)
B相对
湿度
Relative humidity (%)
C温度
Temperature (℃)
D相对
湿度
Relative humidity (%)
E温度
Temperature (℃)
F相对
湿度
Relative humidity (%)
1 25℃ 90% 50℃ 65% 35℃ 50% 285.00 8.41 183.95 0.317 49.06 19.54 1.105 10.76 30.87 3.88 33.05 0.40 -1.42 -0.06
2 35℃ 80% 50℃ 75% 25℃ 60% 295.00 8.63 180.91 0.308 49.93 19.26 1.171 10.52 30.67 3.45 31.64 -0.64 -.15 -0.52
3 25℃ 90% 40℃ 65% 25℃ 60% 280.00 8.20 183.97 0.318 49.08 19.47 1.101 10.74 30.98 3.11 29.77 -0.16 0.63 0.04
4 35℃ 80% 50℃ 65% 25℃ 50% 305.00 9.27 178.60 0.294 51.47 19.03 1.257 10.06 30.1 3.52 31.92 -1.62 -0.05 -1.23
5 35℃ 90% 40℃ 75% 25℃ 50% 255.00 7.75 187.82 0.332 47.31 20.11 0.921 11.46 31.88 3.21 29.83 1.51 -0.04 1.12
6 35℃ 90% 50℃ 65% 35℃ 60% 310.00 8.98 176.74 0.301 52.03 18.85 1.301 10.524 30.07 3.76 32.11 -1.47 -0.47 -1.22
7 35℃ 90% 40℃ 75% 35℃ 50% 275.00 7.89 188.42 0.334 46.62 20.08 0.933 11.32 31.56 3.22 30.13 1.26 -0.02 0.94
8 25℃ 80% 50℃ 75% 35℃ 50% 295.00 8.72 181.10 0.307 49.86 19.31 1.169 10.61 30.71 3.57 33.51 -0.39 -0.84 -0.5
9 25℃ 90% 50℃ 75% 25℃ 60% 285.00 8.31 183.86 0.319 49.01 19.57 1.103 10.77 30.94 3.83 33.77 0.50 -1.54 -0.01
10 35℃ 80% 40℃ 65% 35℃ 60% 285.00 8.08 183.99 0.317 48.82 19.81 1.079 10.86 30.96 2.94 27.33 -0.33 1.58 0.15
11 25℃ 80% 40℃ 75% 35℃ 60% 275.00 7.38 187.88 0.335 46.71 20.13 0.917 11.36 31.67 2.97 27.96 1.10 0.99 1.07
12 25℃ 80% 40℃ 65% 25℃ 50% 285.00 8.11 184.49 0.318 48.76 19.83 1.086 10.96 31.09 2.96 28.02 -0.17 1.33 0.21

Table 6

Results of analysis of variance in PBD test"


Item
效应
Effect
系数
Coefficient
T-value P-value 显著性排序
Significance ranking
常量Constant -0.001 13.18 0.022
第一阶段温度First stage temperature (℃) -0.252 0.126 -1.16 0.297 4
第一阶段相对湿度First stage relative humidity (%) 0.272 0.136 1.32 0.245 3
第二阶段温度Second stage temperature (℃) -1.178 -0.589 -5.43 0.003 1
第二阶段相对湿度Second stage relative humidity (%) 0.702 0.351 3.33 0.021 2
第三阶段温度 Third stage temperature (℃) 0.128 0.064 0.64 0.549 6
第三阶段相对湿度Third stage relative humidity (%) -0.162 -0.081 -0.78 0.472 5

Fig. 5

Pareto chart of comprehensive score"

Table 7

response surface design and results"

编号
Code
A第一
阶段相
对湿度
First stage relative humidity (%)
B第二阶
段温度
Second stage temperature (℃)
C第二阶段相对湿度
Second stage relative humidity (%)
最佳煮
制时间
Optimum cooking time (s)
蒸煮
损失
Cooking loss
(%)
烹调
吸水率
Cooking water absorption (%)
延展性
Ductility (g·s-1)
硬度
Hardness (g)
咀嚼性
Chewiness (g·s)
黏着性
Adhesiveness (g·s)
抗弯曲
强度
Bending strength (g)
折断距离
Breaking distance
(mm)
酸度
Acidity
(mL/10 g)
脂肪酸值
Fatty acid value (mg/100 g)
主成分
F1
Principal component F1
主成分
F2
Principal component F2
品质综合
评分FC
Comprehensive quality score
单位能耗
Unite energy consumption
(kJ·g-1)
1 80 50 70 313.00 8.31 185.11 0.311 48.06 19.30 1.10 10.84 31.10 3.23 28.41 -0.29 0.51 0.01 52.84
2 80 50 70 314.50 8.33 184.96 0.310 48.09 19.25 1.105 10.82 31.06 3.26 28.50 -0.26 0.35 -0.04 56.15
3 80 50 70 317.00 8.27 185.18 0.314 47.97 19.38 1.086 10.90 31.18 3.17 28.17 -0.24 0.63 0.08 52.84
4 80 40 60 306.00 8.11 185.69 0.324 47.64 19.64 1.032 11.14 31.47 2.94 27.42 0.46 0.69 0.55 71.01
5 80 40 80 303.50 8.02 186.01 0.330 47.48 19.80 1.002 11.27 31.64 2.85 26.93 0.62 0.98 0.75 138.72
6 80 50 70 312.50 8.35 184.81 0.308 48.13 19.21 1.114 10.79 31.03 3.29 28.60 -0.15 0.09 0.16 51.85
7 90 60 70 330.50 8.63 183.76 0.290 48.67 18.73 1.203 10.38 30.52 3.70 30.02 -1.14 -0.34 -0.84 49.54
8 80 60 80 328.00 8.55 183.98 0.295 48.53 18.87 1.178 10.49 30.66 3.60 29.57 -0.86 -0.26 -0.64 75.96
9 70 50 80 307.50 8.24 185.21 0.317 47.89 19.43 1.076 10.96 31.23 3.12 27.97 0.26 0.27 0.26 102.39
10 80 50 70 320.00 8.41 184.67 0.304 48.24 19.15 1.130 10.71 30.92 3.38 28.85 -0.54 0.24 0.05 57.47
11 70 60 70 334.50 8.77 182.73 0.281 48.97 18.48 1.250 10.18 30.25 3.52 30.14 -0.06 -2.41 -0.94 42.94
12 90 40 70 290.00 7.85 185.36 0.341 47.12 20.11 0.945 11.51 31.95 2.54 26.11 3.04 -1.24 1.44 108.99
13 70 40 70 296.50 7.94 186.77 0.335 47.3 19.97 0.975 11.38 31.76 2.67 26.21 0.55 1.72 1.04 92.48
14 90 50 80 310.00 8.19 185.33 0.319 47.81 19.51 1.052 11.02 31.32 3.07 28.25 0.17 0.52 0.3 95.78
15 70 50 60 324.00 8.49 183.57 0.299 48.4 18.98 1.159 10.58 30.77 3.51 29.31 0.17 -1.31 -0.48 46.24
16 80 60 60 335.00 8.89 182.86 0.273 49.21 18.27 1.291 10.01 30.03 4.10 31.23 -1.77 -0.97 -1.47 39.63
17 90 50 60 317.00 8.17 185.17 0.317 47.91 19.48 1.056 10.96 31.32 3.12 28.03 0.04 0.52 0.24 69.36

Table 8

Regression equation coefficient significance test results of each index"

来源
Source
P P value
Y1 Y2
模型Model <0.0001 <0.0001
A 0.0105 0.0132
B <0.0001 <0.0001
C <0.0001 0.0020
AB 0.2599 0.3041
AC 0.0029 0.0402
BC 0.0060 0.0527
A2 0.0043 0.0179
B2 0.0008 0.2656
C2 <0.0001 0.0329
R2 0.9908 0.9852
Adj R2 0.9789 0.9662
失拟项 Lack of fit 0.0748 0.0552

Fig. 6

Response surface diagram of the influence of interaction of various factors on unite energy consumption"

Fig. 7

Response surface diagram of the influence of interaction of various factors on comprehensive quality score"

Table 9

Prediction effect of regression equation"

指标
Indicator
单位能耗
Unite energy consumption (kJ·g-1)
品质综合评分
Comprehensive evaluation
理论预测值
Theoretical predicted value
93.42 1.02
实测值 Measured value 89.50 0.99
相对误差 Relative error (%) 4.24 2.94
[1] LI M, ZHU K X, WANG B W, GUO X N. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chemistry, 2015, 135(4): 2163-2169. doi: 10.1016/j.foodchem.2012.06.103.
doi: 10.1016/j.foodchem.2012.06.103
[2] 姚惠源. 中国粮食加工科技与产业的发展现状与趋势. 中国农业科学, 2015, 48(17): 3541-3546. doi: 10.3864/j.issn.0578-1752.2015.17.019.
doi: 10.3864/j.issn.0578-1752.2015.17.019
YAO H Y. The present development status and tendency of grain processing technology and industry in China. Scientia Agricultura Sinica, 2015, 48(17): 3541-3546. doi: 10.3864/j.issn.0578-1752.2015.17.019. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.019
[3] 崔丽琴, 崔素萍, 马平, 张丽萍, 张洪微. 豆渣粉对小麦面团、馒头质构特性及馒头品质的影响. 食品科学, 2014, 35(5): 85-88. doi: 10.7506/spkx1002-6630-201405017.
doi: 10.7506/spkx1002-6630-201405017
CUI L Q, CUI S P, MA P, ZHANG L P, ZHANG H W. Effect of soybean dregs powder on sensory evaluation of Chinese steamed bread (CSB) and textural properties of wheat dough and CSB. Food Science, 2014, 35(5): 85-88. doi: 10.7506/spkx1002-6630-201405017. (in Chinese)
doi: 10.7506/spkx1002-6630-201405017
[4] 王钰麟, 雷琳, 熊文文, 叶发银, 赵国华. 蒸煮-老化预处理对炒制青稞粉理化性质及体外淀粉消化的影响. 中国农业科学, 2021, 54(19): 4207-4217.
WANG Y L, LEI L, XIONG W W, YE F Y, ZHAO G H. Effects of steaming-retrogradation pretreatment on physicochemical properties and in vitro starch digestibility of the roasted highland barley flour. Scientia Agricultura Sinica, 2021, 54(19):4207-4217. (in Chinese)
[5] AYDIN E, GOCMEN D. Cooking quality and sensorial properties of noodle supplemented with oat flour. Food Science and Biotechnology, 2011, 20(2): 507-511. doi: 10.1007/s10068-011-0070-1.
doi: 10.1007/s10068-011-0070-1
[6] 陈曦, 李叶贝, 屈展平, 张乐道, 任广跃. 马铃薯-燕麦复合面条的研制. 食品科技, 2017, 42(10): 148-152.
CHEN X, LI Y B, QU Z P, ZHANG Y D, REN G Y. Development of potato-oat compound nutrition noodle. Food Science and Technology, 2017, 42(10): 148-152. (in Chinese)
[7] CHEN J S, FEI M J, SHI C L, TIAN J C, SUN C L, ZHANG H, MA Z, DONG H X. Effect of particle size and addition level of wheat bran on quality of dry white Chinese noodles. Journal of Cereal Science, 2011, 53(2): 217-224. doi: 10.1016/j.jcs.2010.12.005.
doi: 10.1016/j.jcs.2010.12.005
[8] 余可, 刘磊, 张瑞芬, 池建伟, 贾栩超, 张名位. 预酶解-滚筒干燥加工工艺对全麦片品质的影响. 中国农业科学, 2020, 53(6): 1256-1268.
doi: CNKI:SUN:ZNYK.0.2020-06-017
YU K, LIU L, ZHANG R F, CHI J W, JIA X C, ZHANG M W. Effect of pre-enzymatic-drum drying process on the quality of whole wheat flakes. Scientia Agricultura Sinica, 2020, 53(6): 1256-1268. doi: CNKI:SUN:ZNYK.0.2020-06-017. (in Chinese)
doi: CNKI:SUN:ZNYK.0.2020-06-017
[9] BASMAN A, YALCIN S. Quick-boiling noodle production by using infrared drying. Journal of Food Engineering, 2011, 106(3): 245-252.
doi: 10.1016/j.jfoodeng.2011.05.019
[10] 武亮, 张影全, 王振华, 于晓磊, 魏益民. 挂面干燥特性与模型拟合研究. 中国食品学报, 2019, 19(8): 119-129. doi: 10.16429/j.1009-7848.2019.08.014.
doi: 10.16429/j.1009-7848.2019.08.014
WU L, ZHANG Y Q, WANG Z H, YU X L, WEI Y M. Studies on drying characteristics and modelling of Chinese dried noodle. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 119-129. doi: 10.16429/j.1009-7848.2019.08.014. (in Chinese)
doi: 10.16429/j.1009-7848.2019.08.014
[11] 魏益民, 王杰, 张影全, 张波, 刘锐, 王振华. 挂面的干燥特性及其与干燥条件的关系. 中国食品学报, 2017, 17(1): 62-68. doi: 10.16429/j.1009-7848.2017.01.008.
doi: 10.16429/j.1009-7848.2017.01.008
WEI Y M, WANG J, ZHANG Y Q, ZHANG B, WANG Z H. Relations between drying characteristics and drying conditions of Chinese dried noodle. Journal of Chinese Institute of Food Science and Technology, 2017, 17(1): 62-68. doi: 10.16429/j.1009-7848.2017.01.008. (in Chinese)
doi: 10.16429/j.1009-7848.2017.01.008
[12] 惠滢, 张影全, 张波, 刘锐, 王振华. 高温、高湿干燥工艺对挂面产品特性的影响. 中国食品学报, 2019, 19(10): 117-125. doi: b79f093ed51046559c7dc41002728f57.
doi: b79f093ed51046559c7dc41002728f57
HUI Y, ZHANG Y Q, ZHANG B, WANG Z H. Effects of high temperature and relative humidity drying technology on the product properties of Chinese dried noodles. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 117-125. doi: b79f093ed51046559c7dc41002728f57. (in Chinese)
doi: b79f093ed51046559c7dc41002728f57
[13] 张影全, 惠滢, 张波, 于晓磊, 张国权, 魏益民. 不同干燥条件下挂面烹饪特性比较分析. 现代食品科技, 2021, 37(1): 164-171.
ZHANG Y Q, HUI Y, ZHANG B, YU X L, ZHANG G Q, WEI Y M. Comparative Analysis of the Cooking Quality of Chinese Dried Noodles under Different Drying Parameters. Modern Food Science and Technology, 2021, 37(1): 164-171. (in Chinese)
[14] 郭颖, 陆启玉. 高温烘干挂面品质研究. 粮食与油脂, 2014, 27(11): 35-38. doi: 10.3969/j.issn.1008-9578.2014.11.009.
doi: 10.3969/j.issn.1008-9578.2014.11.009
GUO Y, LU Q Y. Research on the quality of vermicelli of the high temperature drying. Cereals & Oils, 2014, 27(11): 35-38. doi: 10.3969/j.issn.1008-9578.2014.11.009. (in Chinese)
doi: 10.3969/j.issn.1008-9578.2014.11.009
[15] 张仲欣, 许凯, 许丹, 任广跃. 绿麦挂面配方及干燥工艺参数优化. 河南科技大学学报(自然科学版), 2017, 38(6): 63-69. doi: 10.15926/j.cnki.issn1672-6871.2017.06.013.
doi: 10.15926/j.cnki.issn1672-6871.2017.06.013
ZHANG Z X, XU K, XU D, REN G Y. Optimization of formula and drying process parameters of green wheat noodles. Journal of Henan University of Science and Technology (Natural Science Edition), 2017, 38(6): 63-69. doi: 10.15926/j.cnki.issn1672-6871.2017.06.013. (in Chinese)
doi: 10.15926/j.cnki.issn1672-6871.2017.06.013
[16] 王春, 高飞, 陈洁, 程娟. 温度对挂面干燥工艺品质的影响. 粮食与饲料工业, 2010, 13(6): 33-35. doi: 10.3969/j.issn.1003-6202.2010.06.011.
doi: 10.3969/j.issn.1003-6202.2010.06.011
WANG C, GAO F, CHEN J, CHENG J. Effect of temperature on the quality of of vermicelli drying. Cereal & Feed Industry, 2010, 3(6): 33-35. doi: 10.3969/j.issn.1003-6202.2010.06.011. (in Chinese)
doi: 10.3969/j.issn.1003-6202.2010.06.011
[17] 施润淋, 王晓东. 高温烘干-挂面干燥新技术. 面粉通讯, 2005, 15(2): 33-38.
SHI R L, WANG X D. High temperature drying-New drying technology of hanging flour. Modern Flour Milling Industry, 2005, 15(2): 33-38. (in Chinese)
[18] SUPARAT R, CHOMDAO S, CHAWLADDA T. Nutritive improvement of instant fried noodles with oat bran. Songklanakarin Journal of Science and Technology, 2006, 28(1): 89-97.
[19] 王杰, 张影全, 刘锐, 张波, 魏益民. 挂面干燥工艺研究及其关键参数分析. 中国粮油学报, 2014, 29(10): 88-93.
WANG J, ZHANG Y Q, LIU R, ZHANG B, WEI Y M. The drying process and its key parameters of Chinese dried noodle. Journal of the Chinese Cereals and Oils Association, 2014, 29(10): 88-93. (in Chinese)
[20] 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧. 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010, 43(12): 2491-2499.
MA Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X. Factor analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. ‘Dongzao’) advanced selections. Scientia Agricultura Sinica, 2010, 43(12): 2491-2499. (in Chinese)
[21] CHEN J Y, ZHANG H, MIAO Y. The effect of quantity of salt on the drying characteristics of fresh noodles. Agriculture & Agricultural Science Procedia, 2014, (2): 207-211. doi: 10.1016/j.aaspro.2014.11.029.
doi: 10.1016/j.aaspro.2014.11.029
[22] 刘雪, 曾祥媛, 张园, 罗蓉, 高若曦, 赵武奇. 恒温及变温气体射流冲击干燥对猕猴桃片干燥特性及品质的影响. 核农学报, 2020, 34(11): 2470-2476.
doi: 10.11869/j.issn.100-8551.2020.11.2470
LIU X, ZENG X Y, ZHANG Y, LUO R, GAO R X, ZHAO W Q. Effects of constant and alternating temperatures air impingement drying on the drying characteristics and quality of kiwifruit slices. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2470-2476. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.11.2470
[23] 陈建伟. 挂面烘干新工艺. 粮油食品科技, 2006, 16(2): 38. doi: 10.16210/j.cnki.1007-7561.2006.02.016.
doi: 10.16210/j.cnki.1007-7561.2006.02.016
CHEN J W. New drying technology of hanging noodles. Science and Technology of Cereals, Oils and Foods, 2006, 16(2): 38. doi: 10.16210/j.cnki.1007-7561.2006.02.016. (in Chinese)
doi: 10.16210/j.cnki.1007-7561.2006.02.016
[24] PEKKA L, KATJA K, ILKKA L, SIMO L. Effect of heat treatment on lipid stability in processed oats. Journal of Cereal Science, 2003, 37(2): 215-221.
doi: 10.1006/jcrs.2002.0496
[25] 姬长英, 蒋思杰, 张波, 郭俊, MUHAMMAD S M. 辣椒热泵干燥特性及工艺参数优化. 农业工程学报, 2017, 33(13): 296-302. doi: 10.11975/j.issn.1002-6819.2017.13.039.
doi: 10.11975/j.issn.1002-6819.2017.13.039
JI C Y, JIANG S J, ZHANG B, GUO J, MUHAMMAD S M. Heat pump drying properties of chili and optimization of technical parameters. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 296-302. doi: 10.11975/j.issn.1002-6819.2017.13.039. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2017.13.039
[26] 李华伟, 陈洁, 王春, 高峰. 预干燥阶段对挂面品质影响的研究. 粮油加工, 2009(5): 84-86.
LI H W, CHEN J, WANG C, GAO F. Study on influence of pre-drying stage on quality of noodle. Cereals and Oils Processing, 2009(5): 84-86. (in Chinese)
[27] 赵建华, 述小英, 李浩霞, 郑慧文, 尹跃, 安巍, 王亚军. 不同果色枸杞鲜果品质性状分析及综合评价. 中国农业科学, 2017, 50(12): 2338-2348. doi: 10.3864/j.issn.0578-1752.2017.12.014.
doi: 10.3864/j.issn.0578-1752.2017.12.014
ZHAO J H, SHU X Y, LI H X, ZHENG H W, YIN Y, AN W, WANG Y J. Analysis and comprehensive evaluation of the quality of wolfberry (Lycium L.) fresh fruits with different fruit colors. Scientia Agricultura Sinica, 2017, 50(12): 2338-2348. doi: 10.3864/j.issn.0578-1752.2017.12.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.014
[28] 木合塔尔·扎热, 阿卜杜许库尔·牙合甫, 故丽米热·卡克什, 马合木提·阿不来提, 哈地尔·依沙克. 新疆地方品种梨果实品质性状综合评价. 农业工程学报, 2021, 37(7): 278-285. doi: 10.11975/j.issn.1002-6819.2021.07.034.
doi: 10.11975/j.issn.1002-6819.2021.07.034
MUHTAR Z, ABDUXUKUR Y, MAHMUT A, GULMIRA K, KADIR E. Comprehensive evaluation of fruit quality traits of local pear cultivars in Xinjiang Region of China. Society of Agricultural Engineering, 2021, 37(7): 278-285. doi: 10.11975/j.issn.1002-6819.2021.07.034. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2021.07.034
[29] 古丽尼沙·卡斯木, 木合塔尔·扎热, 张东亚, 郭靖, 艾吉尔·阿布拉, 盛玮, 阿布都热西提·热合曼. 基于因子分析的无花果引进品种果实品质性状综合评价. 食品科学, 2018, 39(1): 99-104. doi: 10.7506/spkx1002-6630-201801015.
doi: 10.7506/spkx1002-6630-201801015
GULNISA K, MUHTAR Z, ZHANG D Y, GUO J, AJAR A, SHENG W, ABUDUREXIT R. Factor analysis and comprehensive evaluation of fruit quality traits of introduced fig cultivars. Food Science, 2018, 39(1): 99-104. doi: 10.7506/spkx1002-6630-201801015. (in Chinese)
doi: 10.7506/spkx1002-6630-201801015
[30] YAN L B, ZHANG Z L, ZHANG Y, YANG H J, QIU G R, WANG D S, LIAN Y Y. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnology Letters, 2021, 43(9): 1765-1778. doi: 10.1007/s10529-021-03144-8.
doi: 10.1007/s10529-021-03144-8 pmid: 34021830
[31] SHU G W, MEI S, ZHANG Q, XIN N, CHEN H. Application of the Plackett-Burman design to determine the main factors affecting the anti-oxidative activity of goat’s milk casein hydrolyzed by Alcalase and papain. Acta scientiarum polonorum Technologia Alimentaria, 2018, 17(3): 257-266. doi: 10.17306/J.AFS.0580.
doi: 10.17306/J.AFS.0580
[32] 吴斯宇, 曾盈蓉, 唐聘, 桂卉, 胡立志. RGD环肽修饰的姜黄素/黄芩苷靶向共递送纳米脂质体的制备工艺优化及表征. 中草药, 2021, 52(22): 6824-6844.
WU S Y, ZENG Y R, TANG P, GUI H, HU L Z. Preparation process optimization and characterization of RGD cyclopeptide modified curcumin/baicalin co-delivery targeted liposomes. Chinese Traditional and Herbal Drugs, 2021, 52(22): 6824-6844. (in Chinese)
[33] 柯巧媚, 曾威, 帅雨桐, 金建. 酒糟纤维素超声波辅助酶解工艺研究. 食品工业科技, 2022, 43(8): 196-203. doi: 10.13386/j.issn1002-0306.2021070206.
doi: 10.13386/j.issn1002-0306.2021070206
KE Q M, ZENG W, SHUAI Y T, JIN J. Study on ultrasonic-assisted enzymatic hydrolysis of distiller’s grains cellulose. Science and Technology of Food Industry, 2022, 43(8): 196-203. doi: 10.13386/j.issn1002-0306.2021070206. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021070206
[34] 赵莹, 严龙飞, 严文静, 章建浩. 低温等离子体活化水与介质阻挡联合处理对草莓冷杀菌效果及品质的影响. 食品科学, 2021, 43(17): 105-116.
ZHAO Y, YAN L F, YAN W J, ZHANG J H. Effect of combined treatment of cold plasma activated water and dielectric barrier discharge plasma on sterilization efficiency of strawberry. Food Science, 2021, 43(17): 105-116. (in Chinese)
[35] 陈海燕, 程仕群, 胡腾鑫, 郦明浩. 蜂蜜中果糖、葡萄糖、蔗糖的稳定性. 食品工业, 2021, 42(11): 237-242.
CHEN H Y, CHENG S Q, HU T X, LI M H. Stability of fructose, glucose and sucrose in honey. The Food Industry, 2021, 42(11): 237-242. (in Chinese)
[36] 曾祥媛, 赵武奇, 卢丹, 吴妮, 孟永宏, 高贵田, 雷玉山. 超声波对猕猴桃片的渗糖效果及干燥能耗与品质的影响. 中国农业科学, 2019, 52(4): 725-737.
ZENG X Y, ZHAO W Q, LU D, WU N, MENG Y H, GAO G T, LEI Y S. Effects of ultrasound on the sugar permeability effect, drying energy consumption and quality of kiwifruit slices. Scientia agricultura sinica, 2019, 52(4): 725-737. (in Chinese)
[37] 蒋晗, 赵进, 方结红, 黄光荣, 李红亮, 潘家荣. Plackett-Burman设计和响应面法在食品专业综合实验教学中的应用. 食品工程, 2017(2): 10-14.
JIANG H, ZHAO J, FANG J H, HUANG G R, LI H L, PAN J R. Application of Plackett-Burman design and response surface methodology in the food speciality comprehensive experiment teaching. Food Engineering, 2017(2): 10-14. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[9] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[10] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[11] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[14] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[15] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!