Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1127-1138.doi: 10.3864/j.issn.0578-1752.2023.06.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area

LI DeJin1(), MA Xiang1,2, SUN Yue1, XU MingGang1,3, DUAN YingHua1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
    2 Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232
    3 Engineer and Technology Academy of Ecology and Environment, Shanxi Agricultural University, Taiyuan 030031
  • Received:2022-02-24 Accepted:2022-05-18 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 Straw and manure are the main sources of organic materials in China, and rotary tillage is the main way of returning farmland. In this study, the characteristics and driving factors of their decomposition process in typical farmland soils in China were investigated to provide a scientific basis for better utilization of straw resources and rational application of manure. 【Method】 The landfill experiment of field organic material mixed with soil was carried out on a typical black soil, fluvo-aquic soil, and red soil in China. Four treatments were set up: wheat straw plus soil (WS+Soil), maize straw plus soil (MS+Soil), pig manure plus soil (PM+Soil), and cow manure plus soil (CM+Soil). All the organic materials (8 g carbon) were mixed with 200 g of soil in a nylon mesh bag buried in soil, six samples were taken within one year after landfilling, once from 2 to 2.5 years after landfilling, and once in 3 years, then a total of eight samples were taken. The decomposition differences of organic materials in different mixtures were analyzed. The double exponential equation was used to clarify the proportion and decomposition rate of easy-to-decompose carbon pool and refractory organic carbon pool, and to clarify the fast decomposition rate, slow decomposition rate and accumulated temperature turning point of organic materials in each soil. The random forest model was used to quantify the relative contribution of material composition and environmental factors to the decomposition rate. 【Result】 The humification coefficient of straw pluil was ranged from 22% to 43%, and that of manure plus soil was ranged from 45% to 58%. The decomposition rate of manure plus soil was slower than straw plus soil, and there was little difference between regions. Besides, the decomposition of organic materials was accelerated from north to south, and the decomposition of straw was faster than that of organic fertilizers. The proportion of decomposable organic carbon poor of straw (70%-87%) was higher than that of organic fertilizer (57%-83%), and the decomposition rate of straw decomposable carbon pool k1 (1.0%·a-1-4.9%·a-1) was higher than that of organic fertilizer k1 ( 0.7%·a-1-1.1%·a-1). There was little difference in the turning point of accumulated temperature of straw in the three types of soil. Before 3 700℃, it was the stage of rapid decomposition, and then it was the stage of slow decomposition. On the other hand, the difference in accumulated temperature at the turning point of rapid decomposition and slow decomposition of organic fertilizer gradually increased from north to south, and the accumulated temperature at the turning point of organic fertilizer was 2-5 times higher that of straw. Soil accumulated temperature and soil organic carbon content were the main driving factors of mixed soil straw and organic fertilizer, contributing about 17% and 13% of the decomposition rate, respectively. In addition, the main driving factor for mixed soil straw was the ratio of soil carbon to nitrogen, but the main driving factor for mixed soil organic fertilizer was the time. 【Conclusion】 Straw returning to the field decomposed faster than organic fertilizer, and the high proportion of easily decomposable organic carbon pool with fast decomposition rate of straw was one of the main reasons for the difference. For straw, the ratio of carbon to nitrogen was the main factor affecting its decomposition, and for organic fertilizer, it was time. Therefore, the ratio of carbon to nitrogen of soil and material should be considered to regulate the decomposition of straw, and the long-term effect of organic fertilizer should be fully considered.

Key words: straw, organic fertilizer, raction of carbon remaining, proportion of organic carbon pool, soil accumulated temperature

Table 1

The basic properties of soils at field experiment sites"

指标
Indicator
pH 有机碳
SOC
(g·kg-1)
全氮Total N (g·kg-1) 碳氮比C/N 全磷Total P (g·kg-1) 全钾Total K (g·kg-1) 速效磷Available P (mg·kg-1) 速效钾Available K (mg·kg-1) 砂粒Sand
(%)
粉粒
Silt
(%)
黏粒
Clay
(%)
土壤质地*
Soil texture
黑土 Black soil
7.85 15.1 1.31 11.50 0.60 24.0 6.95 110 40.0 29.7 30.3 壤质黏土
Loamy clay
潮土
Fluvo-aquic soil
7.92 6.1 1.01 6.04 0.71 23.7 38.6 150 70.0 19.5 10.5 砂壤土
Sandy loam
红壤 Red soil 5.25 10.1 1.1 9.13 0.92 15.6 23.8 120 19.9 33.7 46.4 黏土 Clay

Table 2

Carbon and nitrogen content of organic materials and their mixtures before landfill"

处理 Treatment 有机碳Organic carbon ( g·kg-1) 全氮Total nitrogen ( g·kg-1) 碳氮比C﹕N ratio
小麦秸秆WS 纯物料 Pure material 396 6.23 63.6
混合黑土 WS+Black soil 62.3 1.89 33.0
混合潮土 WS+Fluvo-aquic soil 53.8 1.46 36.8
混合红壤 WS+Red soil 55.7 1.58 35.2
玉米秸秆MS 纯物料 Pure material 396 7.47 53.1
混合黑土 MS+Black soil 67.2 1.99 33.8
混合潮土 MS+Fluvo-aquic soil 54.9 1.66 33.1
混合红壤 MS+Red soil 56.3 1.71 32.9
猪粪PM 纯物料 Pure material 233 20.3 11.5
混合黑土 MS+Black soil 52.2 4.19 12.4
混合潮土 MS+Fluvo-aquic soil 48.4 4.09 11.8
混合红壤 MS+Red soil 49.8 4.21 11.8
牛粪CM 纯物料 Pure material 293 23.4 12.5
混合黑土 MS+Black soil 53.2 4.05 13.1
混合潮土 MS+Fluvo-aquic soil 45.4 3.87 11.7
混合红壤 MS+Red soil 47.2 4.01 11.8

Table 3

Humification coefficient of straw and manure under one calendar year and thermal year (%)"

处理
Treatment
1个公历年 1 calendar year 1个积温年
1 thermal year
黑土 Black soil 潮土 Fluvo-aquic soil 红壤 Red soil
小麦秸秆混土WS + soil 43.1 bA 29.2 bB 22.7 bB 37.3
玉米秸秆混土MS + soil 39.7 bcA 27.1 bB 22.4 bB 22.7
猪粪混土 PM + soil 58.1 aA 50.8 aB 45.7 aC 47.1
牛粪混土CM + soil 56.1 abA 54.7 aA 45.0 aB 53.0

Fig. 1

Dynamic change of decomposition residue rate under organic material mixed soil treatments"

Table 4

Carbon pool ratio and decomposition rate of each organic material after mixing"

土壤类型
Soil type
有机物料混土
Organic material+soil
易分解有机碳库比例
R1 (%)
难分解有机碳库比例
R2 (%)
易分解有机碳腐解速率
k1 (%·a-1)
难分解有机碳腐解速率
k2 (%·a-1)
R2
黑土
Black soil
小麦秸秆混土WS+soil 85.8 aA 14.2 bB 1.0 a 9.1×10-9 aB 0.84*
玉米秸秆混土MS+soil 85.2 aA 14.8 bB 1.1 a 1.2×10-8 aB 0.89*
猪粪混土 PM+soil 70.0 bA 30.0 aB 0.9 a 3.2×10-9 aB 0.91*
牛粪混土 CM+soil 70.8 bA 29.2 aB 0.7 b 1.8×10-10 bB 0.88*
潮土
Fluvo-aquic soil
小麦秸秆混土WS+soil 87.2 aA 12.8 bC 1.2 a 1.2×10-8 aB 0.86*
玉米秸秆混土MS+soil 87.2 aA 12.8 bC 1.5 a 6.4×10-9 bB 0.90*
猪粪混土PM+soil 76.6 aA 23.4 aC 0.9 a 1.0×10-8 aB 0.77*
牛粪混土CM+soil 82.8 aA 17.2 aC 0.7 a 1.6×10-8 aB 0.76*
红壤
Red soil
小麦秸秆混土WS+soil 70.4 bA 29.6 aA 4.9 a 0.4 aA 0.99*
玉米秸秆混土MS+soil 80.8 aA 19.2 aA 2.6 ab 0.2 bA 0.99*
猪粪混土PM+soil 67.6 bB 32.4 aA 1.1 b 0.2 bA 0.99*
牛粪混土CM+soil 57.2 bB 42.8 aA 1.0 b 0.3 abA 0.99*

Fig. 2

The change of residue rate of organic material mixed soil with soil accumulated temperature The data points in the figure correspond to the corresponding segmented simulation double lines, and each material decomposes mixed soil with the corresponding soil"

Table 5

Decomposition rate and turning point accumulated temperature of organic materials in different decomposition stages"

土壤类型 Soil type 处理Treatment 快速腐解速率kq (%·℃-1) 慢速腐解速率ks (%·℃-1) 积温转折点Tt (℃)
黑土
Black soil
小麦秸秆混土WS+soil 68.6 22.7 3710
玉米秸秆混土MS+soil 56.4 21.9 2370
猪粪混土PM+soil 48.1 11.1 3680
牛粪混土CM+soil 46.5 16.0 3530
潮土
Fluvo-aquic soil
小麦秸秆混土WS+soil 63.9 13.3 2970
玉米秸秆混土MS+soil 64.7 13.6 3660
猪粪混土PM+soil 63.9 6.70 5890
牛粪混土CM+soil 64.4 15.3 5890
红壤
Red soil
小麦秸秆混土WS+soil 65.0 17.8 3660
玉米秸秆混土MS+soil 71.3 23.0 1580
猪粪混土PM+soil 51.6 24.0 7850
牛粪混土CM+soil 51.3 27.5 8580

Fig. 3

The relative contribution of different types of factors to straw and organic fertilizer mixed soil with soil decomposition"

[1]
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. doi:10.1126/science.1097396.

doi: 10.1126/science.1097396 pmid: 15192216
[2]
ZHANG W J, XU M G, WANG X J, HUANG Q H, NIE J, LI Z Z, LI S L, HWANG S W, LEE K B. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments, 2012, 12(4): 457-470. doi:10.1007/s11368-011-0467-8.

doi: 10.1007/s11368-011-0467-8
[3]
YADVINDER-SINGH, GUPTA R K, JAGMOHAN-SINGH, GURPREET- SINGH, GOBINDER-SINGH, LADHA J K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in northwestern India. Nutrient Cycling in Agroecosystems, 2010, 88(3): 471-480. doi:10.1007/s10705-010-9370-8.

doi: 10.1007/s10705-010-9370-8
[4]
HAMDI S, CHEVALLIER T, BERNOUX M. Testing the application of an agronomic concept to microbiology: a degree-day model to express cumulative CO2 emission from soils. European Journal of Agronomy, 2012, 43: 18-23. doi:10.1016/j.eja.2012.05.003.

doi: 10.1016/j.eja.2012.05.003
[5]
李勇, 张磊, 曹鸿鹏, 邹思佳. 农作物秸秆综合利用现状及对策研究. 吉林农业, 2018(20): 40. doi:10.14025/j.cnki.jlny.2018.20.019.

doi: 10.14025/j.cnki.jlny.2018.20.019
LI Y, ZHANG L, CAO H P, ZOU S J. Study on the present situation and countermeasures of comprehensive utilization of crop straw. Agriculture of Jilin, 2018(20): 40. doi:10.14025/j.cnki.jlny.2018.20.019. (in Chinese)

doi: 10.14025/j.cnki.jlny.2018.20.019
[6]
韩鲁佳, 闫巧娟, 刘向阳, 胡金有. 中国农作物秸秆资源及其利用现状. 农业工程学报, 2002, 18(3): 87-91. doi:10.3321/j.issn:1002-6819.2002.03.022.

doi: 10.3321/j.issn:1002-6819.2002.03.022
HAN L J, YAN Q J, LIU X Y, HU J Y. Straw resources and their utilization in China. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(3): 87-91. doi:10.3321/j.issn:1002-6819.2002.03.022. (in Chinese)

doi: 10.3321/j.issn:1002-6819.2002.03.022
[7]
张雪辰, 邓双, 王旭东. 快腐剂对畜禽粪便堆肥过程中腐熟度的影响. 环境工程学报, 2015, 9(2): 888-894.
ZHANG X C, DENG S, WANG X D. Impact of decay promoting agent on maturity changes during composting of livestock and poultry manure. Chinese Journal of Environmental Engineering, 2015, 9(2): 888-894. (in Chinese)
[8]
杨帆, 李荣, 崔勇, 段英华. 我国有机肥料资源利用现状与发展建议. 中国土壤与肥料, 2010(4): 77-82. doi:10.3969/j.issn.1673-6257.2010.04.017.

doi: 10.3969/j.issn.1673-6257.2010.04.017
YANG F, LI R, CUI Y, DUAN Y H. Utilization and develop strategy of organic fertilizer resources in China. Soil and Fertilizer Sciences in China, 2010(4): 77-82. doi:10.3969/j.issn.1673-6257.2010.04.017. (in Chinese)

doi: 10.3969/j.issn.1673-6257.2010.04.017
[9]
程汝饱. 秆粪肥在赤红壤中的矿化研究. 热带亚热带土壤科学, 1994, 3(2): 83-89.
CHENG R B. Study on humification and mineralization of different kinds of stalk-dung fertilizers in latored soil. Ecology and Environmnet, 1994, 3(2): 83-89. (in Chinese)
[10]
王金洲, 卢昌艾, 张文菊, 冯固, 王秀君, 徐明岗. 中国农田土壤中有机物料腐解特征的整合分析. 土壤学报, 2016, 53(1): 16-27.
WANG J Z, LU C A, ZHANG W J, FENG G, WANG X J, XU M G. Decomposition of organic materials in cropland soils across China: a metaanalysis. Acta Pedologica Sinica, 2016, 53(1): 16-27. (in Chinese)
[11]
介晓磊, 寇太记, 刘芳, 化党领, 刘世亮, 谭金芳, 朱建国, 董县中, 李有田. 有机物料在砂土中不同时段的腐解状况研究. 河南农业大学学报, 2006, 40(3): 266-269.
JIE X L, KOU T J, LIU F, HUA D L, LIU S L, TAN J F, ZHU J G, DONG X Z, LI Y T. The study on decomposition law of organic material during different time in sandy soil. Journal of Henan Agricultural University, 2006, 40(3): 266-269. (in Chinese)
[12]
马想, 徐明岗, 赵惠丽, 段英华. 我国典型农田土壤中有机物料腐解特征及驱动因子. 中国农业科学, 2019, 52(9): 1564-1573. doi:10.3864/j.issn.0578-1752.2019.09.008.

doi: 10.3864/j.issn.0578-1752.2019.09.008
MA X, XU M G, ZHAO H L, DUAN Y H. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China. Scientia Agricultura Sinica, 2019, 52(9): 1564-1573. doi:10.3864/j.issn.0578-1752.2019.09.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.09.008
[13]
李忠佩, 林心雄. 瘠薄红壤中有机物质的分解特征. 生态学报, 2002, 22(8): 1224-1230. doi:10.3321/j.issn:1000-0933.2002.08.008.

doi: 10.3321/j.issn:1000-0933.2002.08.008
LI Z P, LIN X X. Characteristics of organic materials decomposition in infertile red soils. Acta Ecologica Sinica, 2002, 22(8): 1224-1230. doi:10.3321/j.issn:1000-0933.2002.08.008. (in Chinese)

doi: 10.3321/j.issn:1000-0933.2002.08.008
[14]
王晓玥, 蒋瑀霁, 隋跃宇, 孙波. 田间条件下小麦和玉米秸秆腐解过程中微生物群落的变化: BIOLOG分析. 土壤学报, 2012, 49(5): 1003-1011.
WANG X Y, JIANG Y J, SUI Y Y, SUN B. Changes of microbial communities during decomposition of wheat and maize straw: analysis by biolog. Acta Pedologica Sinica, 2012, 49(5): 1003-1011. (in Chinese)
[15]
PRESCOTT C E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, 101(1/2/3): 133-149. doi:10.1007/s10533-010-9439-0.

doi: 10.1007/s10533-010-9439-0
[16]
YOUSEFI A R, OVEISI M, GONZALEZ-ANDUJAR J L. Prediction of annual weed seed emergence in garlic (Allium sativum L.) using soil thermal time. Scientia Horticulturae, 2014, 168: 189-192. doi:10.1016/j.scienta.2014.01.035.

doi: 10.1016/j.scienta.2014.01.035
[17]
GREGORICH E G, JANZEN H, ELLERT B H, HELGASON B L, QIAN B D, ZEBARTH B J, ANGERS D A, BEYAERT R P, DRURY C F, DUGUID S D, MAY W E, MCCONKEY B G, DYCK M F. Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology, 2017, 23(4): 1725-1734. doi:10.1111/gcb.13502.

doi: 10.1111/gcb.13502 pmid: 27633488
[18]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[19]
CAI A D, LIANG G P, ZHANG X B, ZHANG W J, LI L, RUI Y C, XU M G, LUO Y Q. Long-term straw decomposition in agro- ecosystems described by a unified three-exponentiation equation with thermal time. Science of the Total Environment, 2018, 636: 699-708. doi:10.1016/j.scitotenv.2018.04.303.

doi: 10.1016/j.scitotenv.2018.04.303
[20]
BRELAND T A. Enhanced mineralization and denitrification as a result of heterogeneous distribution of clover residues in soil. Plant and Soil, 1994, 166(1): 1-12. doi:10.1007/BF02185475.

doi: 10.1007/BF02185475
[21]
陈兵, 王小利, 徐明岗, 李然, 李建华, 靳东升, 段英华, 孙楠. 煤矿复垦区不同有机物料的分解特征. 植物营养与肥料学报, 2020, 26(6): 1126-1134. doi:10.11674/zwyf.19478.

doi: 10.11674/zwyf.19478
CHEN B, WANG X L, XU M G, LI R, LI J H, JIN D S, DUAN Y H, SUN N. Decomposition characteristics of different organic materials in coal mine reclamation area. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1126-1134. doi:10.11674/zwyf.19478. (in Chinese)

doi: 10.11674/zwyf.19478
[22]
李玲. 典型农田土壤中有机物料分解特性及影响因素[D]. 北京: 中国农业科学院, 2018.
LI L. Decomposition characteristics of organic materials and driving factors in typical cropland soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[23]
杨志臣, 吕贻忠, 张凤荣, 肖小平, 刘沫. 秸秆还田和腐熟有机肥对水稻土培肥效果对比分析. 农业工程学报, 2008, 24(3): 214-218. doi:10.3321/j.issn:1002-6819.2008.03.043.

doi: 10.3321/j.issn:1002-6819.2008.03.043
YANG Z C, Y Z, ZHANG F R, XIAO X P, LIU M. Comparative analysis of the effects of straw-returning and decomposed manure on paddy soil fertility betterment. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 214-218. doi:10.3321/j.issn:1002-6819.2008.03.043. (in Chinese)

doi: 10.3321/j.issn:1002-6819.2008.03.043
[24]
AMIN B A Z, CHABBERT B, MOORHEAD D, BERTRAND I. Impact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soil. Biogeochemistry, 2014, 117(1): 169-183. doi:10.1007/s10533-013-9856-y.

doi: 10.1007/s10533-013-9856-y
[25]
寇太记, 刘世亮, 介晓磊, 朱建国, 化党领, 李有田. 砂土中有机物质腐解与有机质调控. 土壤通报, 2006, 37(2): 2244-2248.
KOU T J, LIU S L, JIE X L, ZHU J G, HUA D L, LI Y T. Decomposition and management of organic matters in sandy soil. Chinese Journal of Soil Science, 2006, 37(2): 2244-2248. (in Chinese)
[26]
李然, 段英华, 孙楠, 邬磊, 张强, 靳东升, 郜春花, 洪坚平, 徐明岗. 煤矿区复垦土壤中有机肥的分解动态及其驱动因素. 应用生态学报, 2021, 32(12): 4467-4474. doi:10.13287/j.1001-9332.202112.013.

doi: 10.13287/j.1001-9332.202112.013
LI R, DUAN Y H, SUN N, WU L, ZHANG Q, JIN D S, GAO C H, HONG J P, XU M G. Decomposition dynamics and driving factors of manure in reclaimed soils in coal mining area. Chinese Journal of Applied Ecology, 2021, 32(12): 4467-4474. doi:10.13287/j.1001-9332.202112.013. (in Chinese)

doi: 10.13287/j.1001-9332.202112.013
[27]
LUO Y Q, WHITE L W, CANADELL J G, DELUCIA E H, ELLSWORTH D S, FINZI A, LICHTER J, SCHLESINGER W H. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 2003, 17(1): 1021. doi:10.1029/2002gb001923.

doi: 10.1029/2002gb001923
[28]
王宏燕, 彭驰, 侯中田. 降水和地积温对有机肥腐解的动态分析. 东北农业大学学报, 1996, 27(1): 20-25.
WANG H Y, PENG C, HOU Z T. The effect of rainfall and accumulated temperature of soil on the dynamic humifi cation of manure. Journal of Northeast Agricultural University, 1996, 27(1): 20-25. (in Chinese)
[29]
COTRUFO M F, WALLENSTEIN M D, BOOT C M, DENEF K, PAUL E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19(4): 988-995. doi:10.1111/gcb.12113.

doi: 10.1111/gcb.12113 pmid: 23504877
[30]
TIAN G, BADEJO M A, OKOH A I, ISHIDA F, KOLAWOLE G O, HAYASHI Y, SALAKO F K. Effects of residue quality and climate on plant residue decomposition and nutrient release along the transect from humid forest to Sahel of West Africa. Biogeochemistry, 2007, 86(2): 217-229. doi:10.1007/s10533-007-9158-3.

doi: 10.1007/s10533-007-9158-3
[31]
WANG X Y, SUN B, MAO J D, SUI Y Y, CAO X Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environmental Science & Technology, 2012, 46(13): 7159-7165. doi:10.1021/es300522x.

doi: 10.1021/es300522x
[32]
马想. 我国典型农田土壤中有机物料的腐解特征及驱动因子[D]. 北京: 中国农业科学院, 2019.
MA X. Decomposition characteristics and driving factors of organic materials in typical cropland in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[1] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[2] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[3] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[6] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[7] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[8] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[9] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[10] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[11] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[12] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[13] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[14] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[15] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!