Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3710-3722.doi: 10.3864/j.issn.0578-1752.2022.19.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize

ZHANG Chuan1(),LIU Dong1,WANG HongZhang1,REN Hao1,ZHAO Bin1,ZHANG JiWang1,REN BaiZhao1,LIU CunHui2(),LIU Peng1()   

  1. 1State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong
    2Shandong Seed Management Station, Ji’nan 250100
  • Received:2021-12-05 Accepted:2022-06-29 Online:2022-10-01 Published:2022-10-10
  • Contact: CunHui LIU,Peng LIU E-mail:zhangc9813@126.com;cunhuiliu@163.com;liupengsdau@126.com

Abstract:

【Objective】 Frequent, recurrent and prolonged high temperature stress had significant effects on grain yield of summer maize in Huang-Huai-Hai region. In this study, we investigated the effects of high temperature stress at the V12 stage and VT stage on leaf photosynthetic characteristics, carbon assimilate accumulation, distribution and grain yield of maize varieties with different heat tolerance. 【Method】 In this study, heat resistant maize variety Zhengdan 958 (ZD958) and heat sensitive maize variety Xianyu 335 (XY335) were used as materials. The normal temperature treatments (day 32℃12 h /night 22℃12 h) were set as the control at the same time. High temperature greenhouse equipped with automatic temperature and humidity control facilities was used to simulate the effect of natural field high temperature, the high temperature stress treatments (day 38℃12 h/night 28℃12 h) were set at V12 and VT stage, respectively. The dynamic characteristics of leaf area index (LAI), carbon metabolism enzyme activities, photosynthetic rate and carbon assimilate accumulation and allocation were compared after high temperature stress, aimed to determine the response mechanism of dry matter production performance and grain yield to high temperature stress. 【Result】 After high temperature stress, LAI, carbon metabolism enzyme activities, net photosynthetic rate and dry matter accumulation of two cultivars were significantly decreased. LAI, RuBP carboxylase activity, PEP carboxylase activity, net photosynthetic rate and dry matter accumulation of ZD958 and XY335 decreased by 2.98%-4.21%, 40.38%-54.46%, 16.88%-30.60%, 18.14%-25.49%, 12.83%-19.38% and 3.80%-5.07%, 56.56%-76.16%, 26.33%-33.66%, 22.37%-34.62%, 22.07%-26.72%, respectively. The decrease range of high temperature stress in VT stage was larger than that in V12 stage. After high temperature stress, transpiration rate of summer maize leaves increased, while leaf water use efficiency decreased significantly. Under high temperature stress, 13C assimilation of ZD958 and XY335 decreased by 18.48% and 22.82%, respectively, and the proportion of 13C assimilation in grains decreased. The high temperature stress significantly decreased grain number per spike and grain yield, although 1000 grain weight increased slightly. Compared to the optimum temperature, after V12 high temperature stress, the grain number per spike and yield of ZD958 decreased by 62.53% and 45.87%. After VT high temperature stress, grain number per spike and yield decreased by 70.53% and 66.89%. After V12 high temperature stress, the grain number per spike and yield of XY335 decreased by 70.50% and 62.87%. After VT high temperature stress, grain number per spike and yield decreased by 85.41% and 80.61%. The decrease range of high temperature stress in VT stage was larger than that in V12 stage, and XY335 decreased more than ZD958. 【Conclusion】 The high temperature stress reduced LAI, RuBP carboxylase and PEP carboxylase activities, and significantly reduced photosynthetic rate and dry matter production performance of summer maize. Under high temperature stress, the grain number per spike decreased significantly, which inhibited the transportation of carbohydrate from leaf and stem to grain, resulting in lower grain yield. The effects of high temperature stress on dry matter performance and grain yield of summer maize in VT stage was significantly greater than that in V12 stage. The decrease of heat sensitive variety XY335 was significantly greater than that of heat resistant variety ZD958 in two periods.

Key words: summer maize, high temperature stress, carbon metabolism enzyme activity, carbon assimilate accumulation and distribution, yield

Table 1

Effect of high temperature stress on field microclimate of summer maize"

年份
Year
处理
Treatment
平均光照强度
Average light intensity (μmol·m-2·s-1)
平均CO2浓度
Average CO2 concentration (μmol·mol-1)
相对湿度
Relative humidity (%)
2019 CK 1141.6a 420.0a 80.0a
HT 1136.8a 416.3a 78.8a
2020 CK 1127.3a 419.3a 84.5a
HT 1114.5a 411.9a 82.8a

Fig. 1

The average daily temperature in different treatments during high temperature stress"

Fig. 2

Effect of high temperature stress on leaf area index of summer maize ZD-CK: ZD958 normal temperature treatment; ZD-HT: ZD958 high temperature stress treatment; XY-CK: XY335 normal temperature treatment; XY-HT: XY335 high temperature stress treatment. V12+7: High temperature treatment for 7 days at the 12-leaf stage; VT: flowering stage; VT+7: High temperature treatment for 7 days at the flowering stage; R2: Grain filling stage; R3: Milk-ripe stage; R5: Ripening stage; R6: Maturity stage. The same as below"

Fig. 3

Effect of high temperature stress on RuBPcase activity of summer maize"

Fig. 4

Effect of high temperature stress on the PEPCase activity of summer maize"

Fig. 5

Effect of high temperature stress on net photosynthetic rate of summer maize leaf"

Fig. 6

Effect of high temperature stress on transpiration rate of summer maize leaf"

Fig. 7

Effect of high temperature stress on leaf water use efficiency of summer maize"

Table 2

Effect of high temperature stress on 13C assimilate accumulation and distribution of summer maize at maturity stage"

年份
Year
处理时期
Treatments stage
处理
Treatment
13C同化量 13C assimilate amount (mg/plant) 所占比例 Proportion (%)
总量
Total
茎秆
Stem
叶片
Leaf
籽粒
Grain
茎秆
Stem
叶片
Leaf
籽粒
Grain
2019 V12 ZD-CK 20.02a 4.95a 2.51d 12.56a 24.73 12.54 62.74
ZD-HT 16.32bc 6.25a 4.18c 5.87b 38.30 25.61 35.97
XY-CK 19.19ab 4.86a 2.30d 12.03a 25.33 11.99 62.69
XY-HT 14.81c 6.52a 4.55b 3.73d 44.02 30.72 25.19
VT ZD-CK 19.70a 4.86a 2.53d 12.31a 24.67 12.84 62.49
ZD-HT 15.64c 6.97a 4.13c 4.55c 44.57 26.41 29.09
XY-CK 19.74a 4.73a 2.37d 12.63a 23.96 12.01 63.98
XY-HT 13.34c 6.18a 5.05a 2.12e 46.33 37.86 15.89
2020 V12 ZD-CK 20.69a 4.53a 4.07a 12.09b 21.89 19.67 58.43
ZD-HT 18.33bc 6.70a 4.19a 7.43c 36.55 22.86 40.53
XY-CK 20.07ab 4.42a 3.86a 11.8b 22.02 19.23 58.79
XY-HT 14.90de 6.63a 4.12a 4.16e 44.50 27.65 27.92
VT ZD-CK 21.87a 4.40a 3.89a 13.57a 20.12 17.79 62.05
ZD-HT 16.96cd 6.50a 5.38a 5.10d 38.33 31.72 30.07
XY-CK 21.51a 5.10a 4.10a 12.31b 23.71 19.06 57.23
XY-HT 13.59e 5.74a 4.57a 3.28f 42.24 33.63 24.14

Table 3

Effects of high temperature stress on dry matter accumulation and grain yield of summer maize"

年份
Year
处理时期
Treatment
stage
处理
Treatment
干物质积累量
Dry matter accumulate amount (g/plant)
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
产量
Yield
(g/plant)
收获指数
HI
大喇叭口期 V12 开花期 VT 完熟期 R6
2019 V12 ZD-CK 111.63a 143.15c 311.50bc 591.2a 299.12bc 151.93a 0.49a
ZD-HT 90.00c 120.78e 219.68d 219.5d 306.17a 82.25b 0.37c
XY-CK 104.28b 157.03b 308.48c 515.2c 298.64bc 153.26a 0.49a
XY-HT 76.42d 115.89e 211.52d 152.0e 308.10a 57.44c 0.26d
VT ZD-CK 153.35b 329.54a 562.6ab 293.87c 159.58a 0.47b
ZD-HT 133.68d 221.2d 165.8e 304.90ab 52.83c 0.24e
XY-CK 177.53a 320.09ab 544.3bc 293.70c 151.26a 0.48ab
XY-HT 138.35cd 199.92e 79.4f 301.83ab 29.33d 0.14f
2020 V12 ZD-CK 97.31a 140.18b 311.12b 571.1a 305.195d 173.46a 0.56ab
ZD-HT 86.80b 116.49c 275.84c 247.1b 311.663bc 99.69d 0.35d
XY-CK 84.04b 140.34b 284.78c 545.5a 309.672c 161.39bc 0.58a
XY-HT 64.73c 102.42d 243.80e 188.1cd 318.725a 64.47f 0.26ef
VT ZD-CK 152.81a 326.09a 544.5a 311.207bc 169.35ab 0.51c
ZD-HT 139.68b 260.05d 194.9c 314.107b 77.92e 0.28e
XY-CK 146.00ab 300.27b 550.4a 309.438c 157.59c 0.53bc
XY-HT 124.94c 212.47f 151.9d 321.509a 52.77g 0.24f
[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. (in Chinese)
[2] 任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5): 109-115.
REN H, LIU P, DONG S T, ZHANG J W, ZHAO B. Research advancements of effect of high temperature stress on growth and development of maize. Journal of Maize Sciences, 2019, 27(5): 109-115. (in Chinese)
[3] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53(17): 3479-3495.
WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495. (in Chinese)
[4] ZHANG Q, YANG Z Q. Impact of extreme heat on corn yield in main summer corn cultivating area of China at present and under future climate change. International Journal of Plant Production, 2019, 13(4): 267-274.
doi: 10.1007/s42106-019-00052-w
[5] JHA U C, BOHRA A, SINGH N P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 2014, 133(6): 679-701.
doi: 10.1111/pbr.12217
[6] 苌建峰. 不同基因型玉米碳氮代谢差异研究[D]. 郑州: 河南农业大学, 2007.
CHANG J F. Study on differences of carbon and nitrogen metabolism in different genotype maize[D]. Zhengzhou: Henan Agricultural University, 2007. (in Chinese)
[7] LEMMA A T. Action and reaction of plants to high temperature: Improving response of wheat to heat stress. Current Journal of Applied Science and Technology, 2021, 40(10): 62-70.
[8] ZHEN F X, ZHOU J J, MAHMOOD A, WANG W, CHANG X N, LIU B, LIU L L, CAO W X, ZHU Y, TANG L. Quantifying the effects of short term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. The Crop Journal, 2020, 8(2): 194-212.
doi: 10.1016/j.cj.2019.07.002
[9] 张保仁, 董树亭, 胡昌浩, 王空军. 高温对玉米籽粒淀粉合成及产量的影响. 作物学报, 2007, 33(1): 38-42.
ZHANG B R, DONG S T, HU C H, WANG K J. Effect of high air temperature during different growth stage on starch synthesis in grain and yield in maize (Zea mays L.). Acta Agronomica Sinica, 2007, 33(1): 38-42. (in Chinese)
[10] 王海梅. 高温胁迫对河套灌区玉米生理指标及产量构成要素的影响. 干旱气象, 2015, 33(1): 59-62.
WANG H M. Temperature stress on physiological indexes and yield components of maize in Hetao irrigation district. Journal of Arid Meteorology, 2015, 33(1): 59-62. (in Chinese)
[11] XU Y F, CHU C C, YAO S G. The impact of high temperature stress on rice: Challenges and solutions. The Crop Journal, 2021, 9(5): 963-976.
doi: 10.1016/j.cj.2021.02.011
[12] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. (in Chinese)
[13] 孙宁宁. 玉米叶、粒对高温胁迫的响应[D]. 郑州: 河南农业大学, 2017.
SUN N N. Responses of maize (Zea mays L.) leaf and kernel to heat stress[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[14] 陈传晓. 不同积温带春玉米碳代谢机理及化学调控效应的研究[D]. 保定: 河北农业大学, 2013.
CHEN C X. Studies on the mechanism of carbon metabolism of spring maize and chemical regulation effects under different accumulated temperature zones[D]. Baoding: Hebei Agricultural University, 2013. (in Chinese)
[15] 孙胜楠, 王强, 孙晨晨, 刘丰娇, 毕焕改, 艾希珍. 黄瓜幼苗光合作用对高温胁迫的响应与适应. 应用生态学报, 2017, 28(5): 1603-1610.
doi: 10.13287/j.1001-9332.201705.009
SUN S N, WANG Q, SUN C C, LIU F J, BI H G, AI X Z. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress. Chinese Journal of Applied Ecology, 2017, 28(5): 1603-1610. (in Chinese)
doi: 10.13287/j.1001-9332.201705.009
[16] 张英华, 杨佑明, 曹莲, 郝杨凡, 黄菁, 李金鹏, 姚得秀, 王志敏. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响. 作物学报, 2015, 41(1): 136-144.
doi: 10.3724/SP.J.1006.2015.00136
ZHANG Y H, YANG Y M, CAO L, HAO Y F, HUANG J, LI J P, YAO D X, WANG Z M. Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat. Acta Agronomica Sinica, 2015, 41(1): 136-144. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00136
[17] MAESTRI E, KLUEVA N, PERROTTA C, GULLI M, NGUYEN H T, MARMIROLI N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 2002, 48(5): 667-681.
doi: 10.1023/A:1014826730024
[18] MORALES D, RODRIGUEZ P, DELL'AMICO J, NICOLAS E, TORRECILLAS A, SANCHEZ-BLANCO M J. High temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 2003, 47(2): 203-208.
[19] 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40(3): 854-863.
JIA S J, LI H W, JIANG Y P, ZHAO G Q, WANG H Z, YANG S J, YANG Q H, GUA J M, SHAO R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecologica Sinica, 2020, 40(3): 854-863. (in Chinese)
[20] 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报(中英文), 2022, 30(1): 57-71.
MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of the photosynthetic fluorescence characteristics, pollination and yield compositions of different tolerant/susceptible maize varieties to high temperature during flowering. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57-71. (in Chinese)
[21] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54(17): 3592-3608.
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. (in Chinese)
[22] 张翼飞. 施氮对甜菜氮素同化与碳代谢的调控机制研究[D]. 哈尔滨: 东北农业大学, 2013.
ZHANG Y F. Study on regulation mechanism of nitrogen application on nitrogen assimilation and carbon metabolism in sugar beet (Beta Vulgaris L.)[D]. Harbin: Dongbei Agricultural University, 2013. (in Chinese)
[23] 魏爱丽, 张英华, 黄琴, 王志敏. 小麦不同绿色器官光合速率与碳同化酶活性及其基因型差异研究. 作物学报, 2007, 33(9): 1426-1431.
WEI A L, ZHANG Y H, HUANG Q, WANG Z M. Dynamic characteristics of photosynthetic rate and carbon assimilation enzyme activities of different green organs in different genotypes of wheat. Acta Agronomica Sinica, 2007, 33(9): 1426-1431. (in Chinese)
[24] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg·hm-2以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40(9): 1898-1906.
HUANG Z X, WANG Y J, WANG K J, LI D H, ZHAO M, LIU J G, DONG S T, WANG H J, WANG J H, YANG J S. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg·ha-1. Scientia Agricultura Sinica, 2007, 40(9): 1898-1906. (in Chinese)
[25] 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性. 浙江农业学报, 2019, 31(7): 1045-1056.
doi: 10.3969/j.issn.1004-1524.2019.07.03
FANG F, HE X C, ZHANG Z H, ZHANG Q, GUAN Y J, HU J, HU W M. Response mechanism and stress resistance of maize inbred lines to high temperature stress at seedling stage. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1045-1056. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2019.07.03
[26] 曲明南. CO2升高和短期高温胁迫对玉米幼苗生理生化指标的影响[D]. 沈阳: 沈阳农业大学, 2013.
QU M N. Effects of elevated CO2 and short term heat stress on physiological and biochemical variables in maize seedlings[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese)
[27] 付景, 孙宁宁, 刘天学, 杨豫龙, 赵霞, 李潮海. 高温胁迫对玉米形态、叶片结构及其产量的影响. 玉米科学, 2019, 27(1): 46-53.
FU J, SUN N N, LIU T X, YANG Y L, ZHAO X, LI C H. Effect of high temperature stress on morphology, leaf structure and grain yield of maize. Journal of Maize Sciences, 2019, 27(1): 46-53. (in Chinese)
[28] 陈岩, 岳丽杰, 杨勤, 张会玲, 柯国华, 刘永红. 高温热害对玉米生长发育的影响及研究进展. 耕作与栽培, 2019, 39(1): 26-31.
CHEN Y, YUE L J, YANG Q, ZHANG H L, KE G H, LIU Y H. Effects of high temperature on maize development and its research advances. Tillage and Cultivation, 2019, 39(1): 26-31. (in Chinese)
[29] FUKAYAMA H, UEGUCHI C, NISHIKAWA K, KATOH N, ISHIKAWA C, MASUMOTO C, HATANAKA T, MISOO S. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing rubisco content in rice leaves. Plant & Cell Physiology, 2012, 53(6): 976-986.
[30] LIAN L, LIN Y L, WEI Y D, HE W, CAI Q H, HUANG W, ZHENG Y M, XU H B, WANG F X, ZHU Y S, LUO X, XIE H A, ZHANG J F. PEPC of sugarcane regulated glutathione S-transferase and altered carbon-nitrogen metabolism under different N source concentrations in Oryza sativa. BMC Plant Biology, 2021, 21(1): 287.
doi: 10.1186/s12870-021-03071-w
[31] 毕焕改, 董绪兵, 王美玲, 艾希珍. 钙和水杨酸对亚适温弱光下黄瓜幼苗光合酶活性和基因表达的影响. 园艺学报, 2015, 42(1): 56-64.
BI H G, DONG X B, WANG M L, AI X Z. Foliar spray calcium and salicylic acid improve the activities and gene expression of photosynthetic enzymes in cucumber seedlings under low light intensity and suboptimal temperature. Acta Horticulturae Sinica, 2015, 42(1): 56-64. (in Chinese)
[32] 罗宏海, 李俊华, 张宏芝, 何在菊, 勾玲, 张旺锋. 源库调节对新疆高产棉花产量形成期光合产物生产与分配的影响. 棉花学报, 2009, 21(5): 371-377.
LUO H H, LI J H, ZHANG H Z, HE Z J, GOU L, ZHANG W F. Effects of source and sink manipulation on transportation and allocation of leaf photosynthetic products during flowering and boll setting stage in high yield cotton of Xinjiang. Cotton Science, 2009, 21(5): 371-377. (in Chinese)
[33] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L, LI C H, LIU T X. Screening and comprehensive evaluation of heat tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese)
[34] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53(19): 3954-3963.
GAO Y B, ZHANG H, SHAN J, XUE Y F, QIAN X, DAI H C, LIU K C, LI Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. (in Chinese)
[35] 许振柱, 周广胜. 全球变化下植物的碳氮关系及其环境调节研究进展-从分子到生态系统. 植物生态学报, 2007, 31(4): 738-747.
doi: 10.17521/cjpe.2007.0094
XU Z Z, ZHOU G S. Relationship between carbon and nitrogen and environmental regulation in plants under global change-From molecule to ecosystem. Journal of Plant Ecology, 2007, 31(4): 738-747. (in Chinese)
doi: 10.17521/cjpe.2007.0094
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!