Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3516-3529.doi: 10.3864/j.issn.0578-1752.2022.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize

XiaoFan LI(),JingYi SHAO(),WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG(),BaiZhao REN()   

  1. State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2021-12-01 Accepted:2022-01-28 Online:2022-09-16 Published:2022-09-22
  • Contact: ZHANG JiWang,REN BaiZhao E-mail:1014154724@qq.com;328479886@qq.com;renbaizhao@sina.com;jwzhang@sdau.edu.cn

Abstract:

【Objective】Climate change has led to global warming, with frequent occurrences of high temperatures and droughts, and high temperatures often accompany droughts during production. This study aimed to explore the physiological mechanism of the compound stress of high temperature and drought in different growth periods affecting the yield and photosynthetic characteristics of summer maize.【Method】DH605 was selected as the experimental hybrid. High temperature treatment (T), drought treatment (D) and the compound stress (T-D) treatment were set in different growth periods. In 2019, it was carried out at the third leaf stage (V3), the sixth leaf stage (V6) and flowering stage (VT); In 2020, it was carried out at the third leaf stage (V3), the twelfth leaf stage (V12) and flowering stage (VT). This experiment took natural temperature and normal moisture treatment as control (CK). The effects of high temperature and drought compound treatments on yield, photosynthetic characteristics, dry matter accumulation and distribution of summer maize were studied, and the differences of photosynthetic characteristics and yield between single treatment and compound treatment were compared.【Result】 After the combined stress treatment of high temperature and drought in different growth stages, the LAI and SPAD of summer maize decreased significantly, which affected the net photosynthetic rate (Pn) and it decreased significantly. Among that, the compound stress during the VT period had the most significant effect on Pn. The Pn under T-D treatment in the VT period decreased by 39.0% on average compared with CK, while the net photosynthetic rate of summer maize after the combined treatment of high temperature and drought decreased more than that under single stress such as high temperature and drought. The combined treatment of high temperature and drought caused the photosynthetic performance of summer maize to decrease, and it led to the decrease of dry matter accumulation capacity and distribution ratio of summer maize to grains, which in turn led to a significant decrease in yield. In 2019, the output of T-D at V3, V6, and VT decreased by 27.4%, 18.3%, and 66.5%, respectively, compared with CK; in 2020, the output of T-D treatment at V3, V12, and VT decreased by 14.5%, 14.6% and 68.7%, respectively, compared with CK.【Conclusion】After the combined stress of high temperature and drought, the leaf area index and chlorophyll content was decreased, gas exchange was inhibited, leading to the decrease of photosynthetic performance, and thus hindered the accumulation and distribution of photosynthetic compounds, resulting in a significant yield reduction of summer maize. The combined stress of high temperature and drought during the flowering stage had the greatest impact on the yield and photosynthetic characteristics of summer maize, and the combined stresses had greater impacts than that of single stress.

Key words: summer maize, high temperature, drought, combined stress of high temperature and drought, yield, photosynthetic characteristics, dry matter distribution

Fig. 1

Temperature and soil water content of each treatment (2019) V3, V6, and VT represents the third leaf stage, the sixth leaf stage, and the tasseling stage, T, D, and T-D represents high temperature treatment, drought treatment, and the combine treatment of high temperature and drought, CK represents natural temperature and normal moisture treatment. The same as below"

Fig. 2

Temperature and soil water content of each treatment (2020) V3, V12, and VT represents the third leaf stage, the twelfth leaf stage, and the tasseling stage, T, D, and T-D represents high temperature treatment, drought treatment, and the combined treatment of high temperature and drought, CK represents natural temperature and normal moisture treatment. The same as below"

Table 1

Effects of high temperature, drought and their combined treatment on summer maize yield and its components"

年份
Year
生育时期
Growth stage
处理
Treatment
穗粒数
Kernels per spike
千粒重
1000-grain weight (g)
产量
Grain yield (g/plant)
2019 V3 T 600.3d 364.5bc 254.4d
D 556.0e 366.7b 237.1e
T-D 554.7e 343.9d 221.8f
V6 T 648.0b 368.7b 277.8b
D 633.0c 362.6bc 266.9c
T-D 556.3e 385.4a 249.4d
VT T 266.0g 351.2cd 108.6g
D 507.3f 365.9bc 215.8f
T-D 261.0g 337d 102.3g
CK 725.3a 362.0bc 305.4a
2020 V3 T 681.3cd 347.5b 275.3b
D 700.0b 339.4c 276.3b
T-D 653.7f 332.3d 252.7d
V12 T 684.3c 333.7d 265.5c
D 674.0d 334.5d 262.2c
T-D 663.0e 327.1e 252.2d
VT T 269.7g 322.5f 101.1e
D 654.3f 331.5d 252.3d
T-D 256.0h 311.0g 92.5e
CK 709.0a 358.1a 295.4a
变异来源
Source of variation
年份Year (Y) ** ** **
生育时期Growth stage (G) ** ** **
处理Treatment (T) ** ** **
Y×G ** ** **
Y×T ** ** **
T×G ** ** **
Y×G×T ** ** **

Table 2

Effects of high temperature, drought and their combined treatment on photosynthetic rate and gas exchange parameters of maize"

年份
Year
生育时期
Growth stage
处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
蒸腾速率
Tr (μmol·m-2·s-1)
气孔导度
Gs (μmol·m-2·s-1)
胞间二氧化碳浓度
Ci (μmol·m-2·s-1)
2019 V3 T 35.8ab 7.0bc 450.0a 278.7a
D 32.5b 6.9bc 339.0b 227.7c
T-D 26.9c 6.7bcd 315.0c 191.3d
V6 T 32.6b 7.7ab 330.3b 180.3e
D 31.9b 5.8de 163.0h 263.0b
T-D 27.6c 5.4e 221.0g 158.0f
VT T 25.1cd 6.0cde 236.5e 112.5g
D 25.9cd 5.4e 235.3ef 187.5d
T-D 22.4d 5.0e 225.0fg 91.0h
CK 37.6a 8.4a 284.3d 161.9f
变异来源
Source of variation
生育时期Growth stage (G) * ** ** **
处理Treatment (T) * * ** **
G×T ns ns ** *
2020 V3 T 40.5a 7.3ab 479.7ab 154.0bc
D 39.0ab 7.2ab 482.3ab 138.7cde
T-D 38.0abc 6.8b 411.3abc 150.3bcd
V12 T 39.1ab 7.1ab 455.7ab 160.7ab
D 38.4abc 7.0ab 456.7ab 153.7bc
T-D 34.8bc 5.7cd 374.7bc 143.0bcde
VT T 33.3c 5.6cd 296.7cd 126.7ef
D 39.2ab 6.1c 321.3cd 132.0def
T-D 26.8d 5.0d 218.0d 115.7f
CK 42.9a 7.7a 538.0a 177.4a
变异来源
Source of variation
生育时期Growth stage (G) ** ** ** **
处理Treatment (T) ** ** * *
G×T * * ns *

Fig. 3

Effects of high temperature, drought and their combined treatment on the relative content of chlorophyll R3 and R6 represent the milk stage and physiological maturity stage. The same as below"

Fig. 4

Effects of high temperature, drought and their combined treatment on LAI"

Fig. 5

Effects of high temperature, drought and their combined treatment on dry matter accumulation"

Table 3

Effects of high temperature, drought and their combined treatment on dry matter distribution"

年份
Year
生育时期
Growth stage
处理
Treatment
茎Stem 叶Leaf 粒Kernel 轴Cob
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
2019 V3 T 169.0cd 41.70 42.5bc 10.50 154.9e 38.30 38.4abc 9.50
D 174.4bc 41.70 44.2abc 10.60 157.3de 37.60 41.9ab 10.00
T-D 165.9d 44.80 38.8c 10.50 133.0f 35.90 32.3d 8.70
V6 T 178.5ab 39.90 47.5ab 10.60 180.8b 40.40 40.3ab 9.00
D 181.6a 41.70 48.6a 11.20 168.1c 38.60 37.5bc 8.60
T-D 166.3d 41.20 40.2c 10.00 162.4cd 40.20 34.9cd 8.60
VT T 159.5e 43.50 39.0c 10.60 129.6f 35.40 38.5abc 10.50
D 152.0f 38.80 46.6ab 11.90 153.0e 39.00 40.6ab 10.40
T-D 132.6g 41.80 39.9c 12.60 110.0g 34.60 35.1cd 11.10
CK 180.1ab 37.40 49.5a 10.30 208.9a 43.30 43.4a 9.00
2020 V3 T 162.4d 37.70 48.8ef 11.30 182.4b 42.30 37.2cde 8.60
D 151.7e 35.70 51.6ef 12.10 186.8b 43.90 34.9de 8.20
T-D 151.1e 37.00 47.6f 11.70 175.8c 43.10 33.7e 8.30
V12 T 174.8bc 37.60 63.2b 13.60 186.5b 40.10 41.0ab 8.80
D 148.1e 35.20 58.1d 13.80 180.7bc 42.90 34.2e 8.10
T-D 160.6d 39.70 52.7e 13.00 153.3e 37.90 38.2bcd 9.40
VT T 185.3a 52.50 59.5bcd 16.90 69.2f 19.60 39.1bc 11.10
D 171.5c 39.10 62.4bc 14.20 169.4d 38.60 35.8cde 8.20
T-D 176.9b 53.10 58.8cd 17.70 63.0g 18.90 34.3e 10.30
CK 178.8b 37.00 68.1a 14.10 193.0a 39.90 42.8a 8.90
[1] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. International Publishers Copyright Council, Geneva, Switzerland, 2014, 151.
[2] ZHAO C, LIU B, PIAO S, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSENS I A, LI T, LIN E, LIU Q, MARTRE P, MULLER C, PENG S S, PENUELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331.
[3] MITRA R, BHATIA C R. Bioenergetic cost of heat tolerance in wheat crop. Current Science, 2008, 94(8): 1049-1053.
[4] 任丽雯, 王兴涛, 刘明春, 丁文魁, 蒋菊芳. 干旱胁迫对土壤水分动态及玉米水分利用效率影响研究. 中国农学通报, 2015, 31(32): 142-147.
REN L W, WANG X T, LIU M C, DING W K, JIANG J F. Effects of drought stress on soil moisture dynamics and water use efficiency in corn. Chinese Agricultural Science Bulletin, 2015, 31(32): 142-147. (in Chinese)
[5] ALIZADEH M R, ADAMOWSKI J, NIKOO M R, AGHAKOUCHAK A, DENNISON P, SADEGH M. A century of observations reveals increasing likelihood of continental- scale compound dry-hot extremes, Science Advances, 2020, 6(39): 1-12.
[6] RIZWAN M, ALI S, ABBAS T, ADREES M, ZIA-UR-REHMAN M, IBRAHIM M, ABBAS F, QAYYUM M F, NAWAZ R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 2018, 206(15): 676-683.
doi: 10.1016/j.jenvman.2017.10.035
[7] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21(4): 492-496.
XU Q Z, WANG Q C, NIU Y Z, WANG Z X, ZHANG J. Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agronomica Sinica, 1995, 21(4): 492-496. (in Chinese)
[8] BROOKS A, FARQUHAR G D. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta, 1985, 165: 397-406.
doi: 10.1007/BF00392238
[9] 张吉旺, 董树亭, 王空军, 刘鹏, 胡昌浩. 大田增温对夏玉米光合特性的影响. 应用生态学报, 2008, 19(1): 81-86.
ZHANG J W, DONG S T, WANG K J, LIU P, HU C H. Effects of increasing field temperature on photosynthetic characteristics of summer maize. Chinese Journal of Applied Ecology, 2008, 19(1): 81-86. (in Chinese)
[10] PRASAD P V V, PISIPATI S R, MOMCILOVIC I, RISTIC Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 2011, 197(6): 430-441.
doi: 10.1111/j.1439-037X.2011.00477.x
[11] WANG B M, LI Z, RAN Q J, LI P, PENG Z H, ZHANG J R. ZmNF-YB 16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Frontiers in Plant Science, 2018, 9: 709.
doi: 10.3389/fpls.2018.00709
[12] WEBBER H, MARTRE P, ASSENG S, KIMBALL B, WHITE J W, OTTMAN M, WALL G, SANCTIS G, DOLTRA J, GRANT R, KASSIE B, MAIORANO A, OLESEN J, RIPOCHE D, REZAEI E, SEMENOV M, STRATONOVITCH P, EWERT F. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202: 21-35.
doi: 10.1016/j.fcr.2015.10.009
[13] KARIM Y, FRACHEBOUD Y, STAMP Y. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. Journal of Agronomy and Crop Science, 2000, 184(4): 217-223.
doi: 10.1046/j.1439-037x.2000.00376.x
[14] 赵丽晓, 雷鸣, 王璞, 陶洪斌. 花期高温对玉米子粒发育和产量的影响. 作物杂志, 2014(4): 6-9.
ZHAO L X, LEI M, WANG P, TAO H B. Effects of high temperature stress during flowering on maize kernel development and grain yield. Crops, 2014(4): 6-9. (in Chinese)
[15] 王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响[D]. 北京: 中国农业大学, 2018.
WANG L J. Spatiol-temporal characteristics of drought, heat and its effect on yield for summer maize in Huang-Huai-Hai Plian, China[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[16] DEMIRALAY M, ALTUNTAS M, SEZGIN C, TERZI R, KADIOGLU A. Application of proline to root medium is more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought. Turkish Journal of Biology, 2017, 41(4): 649-660.
doi: 10.3906/biy-1702-19
[17] ZHAO J, LANG Y, ZHANG S Y, ZHAO Q, ZHANG C Y, XIA J. Photosynthetic characteristics and chlorophyll a fluorescence transient in Lonicera japonica under drought stress. Acta Physiologiae Plantarum, 2019, 41(7): 1-9.
doi: 10.1007/s11738-018-2785-6
[18] HASANUZZAMAN M, NAHAR K, ALAM M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.
doi: 10.3390/ijms14059643
[19] 宋凤斌, 戴俊英. 干旱胁迫对玉米雌穗生长发育和产量的影响. 吉林农业大学学报, 2000, 22(1): 18-22.
SONG F B, DAI J Y. Effect of drought stress on growth and development of female inflorecence and yield of maize. Journal of Jilin Agricultural University, 2000, 22(1): 18-22. (in Chinese)
[20] 张红萍. 干旱胁迫对豌豆冠层生长及叶片生理生化指标的影响[D]. 兰州: 甘肃农业大学, 2008.
ZHANG H P. Effects of drought stress on growth of pea canopy and physiological indexes of leaves[D]. Lanzhou: Gansu Agricultural University, 2008. (in Chinese)
[21] 丁梦秋. 花后高温干旱胁迫影响糯玉米叶片衰老的生理机制研究[D]. 扬州: 扬州大学, 2019.
DING M Q. Physiological mechanism of post-silking high temperature and drought stress affecting leaf senescence of waxy maize[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[22] CRAWFORD A J, MCLACHLAN D, HETHERINGTON A, FRANKLIN K. High temperature exposure increases plant cooling capacity. Current Biology, 2012, 22(10): 396-397.
[23] CIAIS P, REICHSTEIN M, VIOVY N, GRANIER A, OGÉE J, ALLARD V, AUBINET M, BUCHMANN N, BERNHOFER C, CARRARA A, CHEVALLIER F, NOBLET N, FRIEND A, FRIEDLINGSTEIN P, GRÜNWALD T, HEINESCH B, KERONEN P, KNOHL A, KRINNER G, LOUSTAU D, MANCA G, MATTEUCCI G, MIGLIETTA F, OURCIVAL J, PAPALE D, PILEGAARD K, RAMBAL S, SEUFERT G, SOUSSANA M, SANZ M, SCHULZE E, VESALA T, VALENTINI R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(1/2): 529-533.
doi: 10.1038/nature03972
[24] BOTA J, MEDRANO H, FLEXAS J. Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? The New Phytologist, 2004, 162(3): 671-681.
[25] 邵靖宜, 李小凡, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响. 中国农业科学, 2021, 54(17): 3623-3631.
SHAO J Y, LI X F, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631. (in Chinese)
[26] 王秋玲, 周广胜, 麻雪艳. 夏玉米叶片含水率及光合特性对不同强度持续干旱的响应. 生态学杂志, 2015, 34(11): 3111-3117.
WANG Q L, ZHOU G S, MA X Y. Responses of summer maize leaf water content and photosynthetic characteristics to consecutive drought with different intensities. Chinese Journal of Ecology, 2015, 34(11): 3111-3117. (in Chinese)
[27] 田琳, 谢晓金, 包云轩, 胡继超, 於俐, 王金鑫. 不同生育期水分胁迫对夏玉米叶片光合生理特性的影响. 中国农业气象, 2013, 34(6): 655-660.
TIAN L, XIE X J, BAO Y X, HU J C, YU L, WANG J X. Effects of moisture stress on photosynthetic characteristics of summer maize leaf during growth stages. Chinese Journal of Agrometeorology, 2013, 34(6): 655-660. (in Chinese)
[28] 芮鹏环, 韩坤龙, 王长进, 李文阳. 灌浆期高温对玉米叶片抗氧化酶活性及渗透调节物质的影响. 江苏农业科学, 2018, 46(24): 82-84.
RUI P H, HAN K L, WANG C J, LI W Y. High temperature during grain filling period on antioxidant enzyme activities of maize leaves and the influence of osmotic adjustment substance. Jiangsu Agricultural Sciences, 2018, 46(24): 82-84. (in Chinese)
[29] 丁梦秋, 闻诗文, 陆卫平, 陆大雷. 结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响. 核农学报, 2017, 31(5): 964-971.
doi: 10.11869/j.issn.100-8551.2017.05.0964
DING M Q, WEN S W, LU W P, LU D L. Effects of weak-light stress after pollination on grain filling and leaf senescence in sweet maize. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 964-971. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.05.0964
[30] SHEN X F, DONG Z, CHEN Y. Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiologiae Plantarum, 2015, 37(2): 1-8.
doi: 10.1007/s11738-014-1746-y
[31] 刘佳. 不同抗旱性玉米品种响应干旱及复水的光合生理机制[D]. 杨凌: 西北农林科技大学, 2019.
LIU J. The photosynthetic physiology response mechanism of different drought-resistant maize varieties under drought stress and re-watering[D]. Yangling: North West Agriculture and Forestry University, 2019. (in Chinese)
[32] SINSAWAT V, LEIPNER J, STAMP P, FRACHEBOUD Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany, 2004, 52(2): 123-129.
doi: 10.1016/j.envexpbot.2004.01.010
[33] 付景, 孙宁宁, 刘天学, 杨豫龙, 赵霞, 李潮海. 高温胁迫对玉米形态、叶片结构及其产量的影响. 玉米科学, 2019, 27(1): 46-53.
FU J, SUN N N, LIU T X, YANG Y L, ZHAO X, LI C H. Effect of high temperature stress on morphology, leaf structure and grain yield of maize. Journal of Maize Sciences, 2019, 27(1): 46-53. (in Chinese)
[34] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain Yield and quality of different genotypes of maize (Zea Mays L.). Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. (in Chinese)
[35] 高杰, 张仁和, 王文斌, 李志伟, 薛吉全. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响. 应用生态学报, 2015, 26(5): 1391-1396.
GAO J, ZHANG R H, WANG W B, LI Z W, XUE J Q. Effects of drought stress on performance of photosystem Ⅱ in maize seedling stage. Chinese Journal of Applied Ecology, 2015, 26(5): 1391-1396. (in Chinese)
[36] 宋贺, 蒋延玲, 许振柱, 周广胜. 玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应. 生态学报, 2019, 39(7): 2405-2415.
SONG H, JIANG Y L, XU Z Z, ZHOU G S. Response of photosynthetic physiological parameters of maize to drought during the whole growth period and after the jointing stage. Acta Ecologica Sinica, 2019, 39(7): 2405-2415. (in Chinese)
[37] 马郁荻, 王闯, 宋韶帅, 宋楠, 李松平. 干旱对夏玉米生育期生长及耗水的影响. 河南水利与南水北调, 2021, 50(6): 88-90.
MA Y D, WANG C, SONG S S, SONG N, LI S P. Effect of drought on growth and water consumption of summer corn. Henan Water Conservancy and South-to-North Water Diversion, 2021, 50(6): 88-90. (in Chinese)
[38] 张继波, 李楠, 邱粲, 薛晓萍. 水分临界期持续干旱胁迫对夏玉米光合生理与产量形成的影响. 干旱气象, 2021, 39(5): 734-741.
ZHANG J B, LI N, QIU C, XUE X P. Effect of continuous drought stress during critical period of water on photosynthetic physiology and yield formation of summer maize. Journal of Arid Meteorology, 2021, 39(5): 734-741. (in Chinese)
[39] 马赟花, 薛吉全, 张仁和, 张林春, 郝扬, 孙娟. 不同高产玉米品种干物质积累转运与产量形成的研究. 广东农业科学, 2010, 37(3): 36-40.
MA Y H, XUE J Q, ZHANG R H, ZHANG L C, HAO Y, SUN J. Relationship between dry matter accumulation and distribution to yield of different maize cultivars. Guangdong Agriculture Science, 2010, 37(3): 36-40. (in Chinese)
[40] BASSU S, BRISSON N, DURAND J L, BOOTE K, LIZASO J, JONES J W, ROSENZWEIG C, RUANE A, ADAM M, BARON C, BASSO B, BIERNATH C, BOOGAARD H, CONIJN S, CORBEELS M, DERYNG D, SANCTIS G, GAYLER S, GRASSINI P, HATFIELD J, HOEK S, LZAURRALDE C, JONGSCHAAP R, KEMANIAN A, KERSEBAUM K, KIM S H, KUMAR N S, MAKOWSKI D, MULLER C, NENDEL C, PRIESACK E, PRAVIA M V, SAU F, SHCHERBAK I, TAO F, TEIXEIRA E, TIMLIN D, WAHA K. How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 2014, 20(7): 2301-2320.
doi: 10.1111/gcb.12520
[41] 李素美, 东先旺, 陈建华. 不同土壤目标含水量对夏玉米光合性能及产量的影响. 华北农学报, 1999(3): 55-59.
LI S M, DONG X W, CHEN J H. Effect of different target water content in soil on photosynthetic property and yield of summer- sowing corn. Acta Agriculture Boreali-Sinica, 1999(3): 55-59. (in Chinese)
[42] 杜彩艳, 段宗颜, 张乃明, 丘学礼, 胡万里, 陈安强, 付斌, 潘艳华, 余小芬, 陈拾华, 杨艳鲜. 云南主栽玉米品种抗旱性鉴定与评价. 干旱地区农业研究, 2015, 33(4): 181-189.
DU C Y, DUAN Z Y, ZHANG N M, QIU X L, HU W L, CHEN A Q, FU B, PAN Y H, YU X F, CHEN S H, YANG Y X. Identification and evaluation of drought resistance in different maize varieties widely grown in Yunnan. Agricultural Research in the Arid Areas, 2015, 33(4): 181-189. (in Chinese)
[43] 张保仁. 高温对玉米产量和品质的影响及调控研究[D]. 泰安: 山东农业大学, 2003.
ZHANG B R. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2003. (in Chinese)
[44] 白向历. 玉米抗旱机制及鉴定指标筛选的研究[D]. 沈阳: 沈阳农业大学, 2009.
BAI X L. Study of drought resistance mechanism and identification parameters screening in maize[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese)
[45] 潘攀. H2O2和Ca2+/CaM参与了sHSP26保护的玉米叶绿体耐高温干旱复合胁迫[D]. 郑州: 河南农业大学, 2014.
PAN P. H2O2 and Ca2+/CaM involving in sHSP26 protecting maize chloroplast from the combination of drought and heat stress[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese)
[46] 付景, 孙宁宁, 刘天学, 马俊峰, 杨豫龙, 赵霞, 穆心愿, 李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响. 作物杂志, 2019(3): 118-125.
FU J, SUN N N, LIU T X, MA J F, YANG Y L, ZHAO X, MU X Y, LI C H. The effects of high temperature at spike stage on grain- filling physiology and yield of maize. Crops, 2019(3): 118-125. (in Chinese)
[47] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01839
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[9] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[10] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[11] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[12] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[13] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[14] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[15] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!