Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 203-216.doi: 10.3864/j.issn.0578-1752.2023.02.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat

CHEN JiHao1,2(),ZHOU JieGuang1(),QU XiangRu1,WANG SuRong1,TANG HuaPing1,JIANG Yun3,TANG LiWei4,$\boxed{\hbox{LAN XiuJin}}$1,WEI YuMing1,ZHOU JingZhong5(),MA Jian1()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    2College of Agronomy, Sichuan Agricultural University, Chengdu 611130
    3Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610000
    4PanZhiHua Academy of Agricultural and Forestry Sciences, Panzhihua 617061, Sichuan
    5Tongliao Institute of Agriculture and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia
  • Received:2022-07-05 Accepted:2022-08-12 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】 This study is to excavate embryo-related quantitative trait loci (QTL) with potential breeding value, to explore the genetic relationship between embryo and other agronomic traits in tetraploid wheat, and finally to aim at laying an important foundation for the fine mapping and breeding utilization of embryo-related traits in the future. 【Method】A total of 121 F8 recombinant inbred lines (RIL) constructed by crossing tetraploid durum wheat (Ailanmai) and wild emmer wheat (LM001) were used. This RIL population was planted in five different environments including Chongzhou (2018-2020), Wenjiang (2020), and Ya'an (2020) in Sichuan Province for phenotypic evaluation of embryo length (EL), embryo width (EW), embryo length/embryo width (EL/EW), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and embryo area (EA). QTL mapping was performed based on a genetic linkage map constructed based on the wheat 55K SNP. 【Result】 The embryo size-related traits showed approximately normal distribution in the RIL population satisfying the genetic characteristics of quantitative traits. A total of 27 QTL for embryo size-related traits were detected in five environments over three years. Among them, seven ones controlling EL could contribute 7.75%-21.74% of phenotypic variation. Seven QTLs controlling EW could explain 7.67%-33.29% of phenotypic variation. Five stable and major QTLs (QEL.sicau-AM-3B, QEW.sicau-AM-2B, QEW/KW.sicau-AM-2B, QEL/EW.sicau- AM-2B-1 and QEA.sicau-AM-2B) were identified, and they explained 11.88%-18.99%, 21.77%-29.41%, 8.80%-24.92%, 12.79%- 25.69% and 10.47%-15.22% of phenotypic variation, respectively. In addition, four QTL-rich regions were identified in the embryo size-related loci mentioned above. The QTL controlling EL/KL and EL was located on chromosome 1B, that for EW, EL/EW, EW/KW, and EA was located on 2B, that controlling EL and EA was on 3B, and that controlling EL/EW and EW/KW was on 6B. Embryo size was significantly and positively correlated with kernel size. Further, the major QTL for EL, QEL.sicau-AM-3B was co-located with that for kernel length identified previously, but that for EW QEW.sicau-AM-2B was independent of that for kernel width. Four genes likely involved in regulation of embryo size were identified in intervals where major QTL were mapped. 【Conclusion】Five stable and major QTLs were identified: QEL.sicau-AM-3B, QEW.sicau-AM-2B, QEW/KW.sicau-AM-2B, QEL/EW.sicau-AM-2B-1, QEA.sicau-AM-2B, among which QEW.sicau-AM-2B may be novel.

Key words: tetraploid wheat, embryo length, embryo width, embryo area, QTL mapping

Table 1

Phenotypic variation of embryo related traits for parents and RIL in AM population"

性状
Trait
环境
Environment
亲本 Parents 重组自交系群体 RIL population
Ailanmai LM001 范围
Range
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
广义遗传力
H2
EL
(mm)
2020WJ 2.58 3.09a 2.13—3.99 3.20 0.31 0.10 -0.38 0.81 0.75
2020YA 2.55 3.08a 2.14—4.00 2.94 0.41 0.14 0.82 0.13
2020CZ 2.51 3.08a 2.29—3.99 3.06 0.36 0.12 0.37 -0.22
2019CZ 2.64 3.10a 2.13—4.00 3.07 0.35 0.11 0.12 0.01
2018CZ 2.43 2.75a 2.43—4.00 3.13 0.31 0.10 0.21 0.04
BLUP 2.62 3.02 2.45—3.37 3.00 0.17 0.06 0.59 0.81
EW
(mm)
2020WJ 1.95a 1.88 1.48—2.95 2.02 0.33 0.16 0.84 0.05 0.76
2020YA 2.14a 1.93 1.51—2.94 1.98 0.30 0.15 0.94 0.65
2020CZ 1.98b 1.91 1.40—3.00 2.08 0.36 0.17 0.66 -0.12
2019CZ 2.19a 1.99 1.43—3.00 2.06 0.32 0.16 1.03 1.19
2018CZ 1.90a 1.54 1.45—3.00 2.01 0.30 0.15 1.16 1.48
BLUP 2.02 1.86 1.64—3.00 1.95 0.14 0.07 0.14 0.01
EL/KL 2020WJ 0.39b 0.36 0.31—0.49 0.38 0.03 0.08 0.85 0.64 0.37
2020YA 0.38b 0.36 0.27—0.41 0.34 0.03 0.09 0.12 -0.29
2020CZ 0.40b 0.37 0.29—0.48 0.35 0.03 0.09 0.93 3.09
2019CZ 0.40b 0.36 0.29—0.49 0.36 0.03 0.08 0.93 2.12
2018CZ 0.39a 0.34 0.34—0.49 0.38 0.03 0.08 1.21 1.42
BLUP 0.37 0.36 0.33—0.38 0.35 0.01 0.03 -0.66 1.88
EW/KW 2020WJ 0.50b 0.56 0.42—0.71 0.54 0.06 0.11 0.27 -0.29 0.64
2020YA 0.56 0.57 0.44—0.81 0.56 0.07 0.13 0.76 0.76
2020CZ 0.50b 0.57 0.39—0.76 0.57 0.07 0.12 0.18 0.23
2019CZ 0.56 0.58 0.39—0.69 0.54 0.06 0.11 0.01 -0.15
2018CZ 0.49b 0.46 0.42—0.65 0.55 0.06 0.11 0.26 -0.19
BLUP 0.53 0.55 0.47—0.65 0.55 0.03 0.05 0.22 0.14
EL/EW 2020WJ 1.33b 1.65 1.20—1.99 1.65 0.16 0.10 -0.41 0.16 0.72
2020YA 1.20 1.60a 1.15—1.99 1.49 0.16 0.11 0.71 0.68
2020CZ 1.28 1.62a 1.12—2.52 1.54 0.2 0.13 1.78 7.93
2019CZ 1.23 1.56 1.16—2.14 1.53 0.17 0.11 0.37 0.92
2018CZ 1.28b 1.79 1.28—2.16 1.6 0.16 0.10 0.33 0.58
BLUP 1.31 1.63 1.20—1.78 1.55 0.11 0.07 -0.52 0.47
EA
(mm2)
2020WJ 3.62a 4.17 2.44—6.26 4.39 0.69 0.16 0.10 -0.01 0.75
2020YA 3.93a 4.29 2.56—6.35 4.07 0.81 0.20 0.59 -0.22
2020CZ 3.56a 4.24 2.65—6.18 4.27 0.72 0.17 -0.05 -0.16
2019CZ 4.16a 4.44 2.74—6.17 4.35 0.73 0.17 0.25 -0.38
2018CZ 3.33b 3.04 2.76—6.63 4.33 0.71 0.16 0.39 0.32
BLUP 3.80 4.07 3.22—5.48 4.22 0.46 0.11 -0.12 -0.21

Table 2

Correlation analysis of embryo-related traits under different environments"

性状
Trait
环境
Environment
2020WJ 2020YA 2020CZ 2019CZ 2018CZ BLUP
胚长
EL
2020WJ 1
2020YA 0.34** 1
2020CZ 0.49** 0.38** 1
2019CZ 0.37** 0.32** 0.48** 1
2018CZ 0.35** 0.15** 0.39** 0.36** 1
BLUP 0.69** 0.58** 0.68** 0.68** 0.65** 1
胚宽
EW
2020WJ 1
2020YA 0.39** 1
2020CZ 0.38** 0.38** 1
2019CZ 0.43** 0.25** 0.47** 1
2018CZ 0.36** 0.41 0.34** 0.26* 1
BLUP 0.63** 0.66** 0.65** 0.60** 0.59** 1
胚长/粒长
EL/KL
2020WJ 1
2020YA 0.06 1
2020CZ 0.46** 0.19 1
2019CZ 0.45** 0.08 0.43** 1
2018CZ 0.37** 0.10 0.27* 0.31** 1
BLUP 0.68** 0.39** 0.64** 0.62** 0.51** 1
胚宽/粒宽
EW/KW
2020WJ 1
2020YA 0.29** 1
2020CZ 0.36** 0.30** 1
2019CZ 0.39** 0.35** 0.32** 1
2018CZ 0.54** 0.35** 0.42** 0.32** 1
BLUP 0.72** 0.69** 0.72** 0.68** 0.69** 1
胚长/胚宽
EL/EW
2020WJ 1
2020YA 0.42** 1
2020CZ 0.48** 0.61** 1
2019CZ 0.46** 0.42** 0.56** 1
2018CZ 0.63** 0.44** 0.43** 0.37** 1
BLUP 0.78** 0.78** 0.73** 0.71** 0.73** 1
胚面积
EA
2020WJ 1
2020YA 0.44** 1
2020CZ 0.62** 0.37** 1
2019CZ 0.58** 0.32** 0.48** 1
2018CZ 0.51** 0.41** 0.56** 0.54** 1
BLUP 0.80** 0.69** 0.79** 0.75** 0.75** 1

Fig. 1

Phenotypic frequency distribution of embryo-related traits under different environments"

Table 3

Correlation between embryo-related traits and other agronomic traits"

性状
Trait
分蘖数
Tiller number
株高
Plant height
粒长
Kernel length
粒宽
Kernel width
千粒重
Thousand-kernel weight
开花期
Flowering period
胚长 EL 0.03 0.62** 0.71** 0.33** 0.71** -0.11
胚宽 EW -0.06 0.16 0.02 0.36** 0.31** 0.08
胚长/粒长 EL/KL -0.27** 0.08 -0.19* 0.36** 0.08 0.11
胚宽/粒宽 EW/KW -0.12 -0.01 -0.07 -0.15 0.17 0.13
胚长/胚宽 EL/EW 0.07 0.33** 0.53** -0.08 0.23* -0.13
胚面积 EA -0.02 0.42** 0.38** 0.40** 0.57** -0.02

Table 4

QTL mapping results of embryo-related traits"

性状
Trait
数量性状位点
QTL
环境Environment 染色体
Chromosome
左标记
Left marker
右标记
Right marker
位置
Position (cM)
阈值
LOD
表型变异率
PVE (%)
加性效应
Add
胚长
EL
QEL.sicau-AM-3B 2020WJ 3B AX-110375013 AX-110569582 6.91—7.34 5.15 16.21 -0.11
2020YA 3B AX-110375013 AX-110569582 6.91—7.34 3.63 11.88 -0.10
2020CZ 3B AX-111112626 AX-110375013 6.91—7.34 4.60 14.95 -0.10
2019CZ 3B AX-110375013 AX-110569582 6.91—7.34 4.90 18.99 -0.12
BLUP 3B AX-110375013 AX-110569582 6.91—7.34 8.41 21.74 -0.09
QEL.sicau-AM-1B-1 2020CZ 1B AX-108913437 AX-111510846 46.84—47.27 2.78 8.28 0.08
BLUP 1B AX-108913437 AX-111510846 46.84—47.27 4.22 9.77 0.06
QEL.sicau-AM-1B-2 2020YA 1B AX-111720572 AX-110579523 50.30—51.15 4.14 13.37 0.11
QEL.sicau-AM-7B 2020WJ 7B AX-110995675 AX-109951040 171.56—172.01 2.61 7.75 0.07
胚宽
EW
QEW.sicau-AM-2B 2020WJ 2B AX-109390001 AX-110571221 0.00—1.92 7.42 24.13 0.10
2020CZ 2B AX-109390001 AX-110571221 0.00—1.92 7.41 22.40 0.10
2019CZ 2B AX-109390001 AX-110571221 0.00—1.92 6.19 21.77 0.09
2018CZ 2B AX-109390001 AX-110571221 0.00—1.92 6.50 29.41 0.11
BLUP 2B AX-109390001 AX-110571221 0.00—1.92 12.89 33.29 0.08
QEW.sicau-AM-2A-1 2020WJ 2A AX-109455008 AX-109024104 70.71—74.53 2.55 7.67 0.06
2019CZ 2A AX-109455008 AX-109024104 70.71—74.53 2.75 9.12 0.06
BLUP 2A AX-109455008 AX-109024104 70.71—74.53 4.80 10.74 0.05
QEW.sicau-AM-2A-2 2020CZ 2A AX-109934383 AX-109314401 98.92—105.82 3.31 9.79 0.07
胚长/粒长
EL/KL
QEL/KL.sicau-AM-1B-1 2020YA 1B AX-109379021 AX-111720572 49.00—50.30 2.78 12.45 0.01
QEL/KL.sicau-AM-1B-2 2020CZ 1B AX-108913437 AX-111510846 46.84—47.27 3.07 12.68 0.01
QEL/KL.sicau-AM-4B 2019CZ 4B AX-109052054 AX-109931786 11.56—12.43 2.77 11.29 0.01
QEL/KL.sicau-AM-5B 2019CZ 5B AX-109990234 AX-108886889 76.90—79.56 2.54 10.13 -0.01
QEL/KL.sicau-AM-2A BLUP 2A AX-109455008 AX-109024104 70.71—74.53 3.70 9.03 0.01
QEL/KL.sicau-AM-2B BLUP 2B AX-109390001 AX-110571221 0.00—1.92 6.66 20.67 0.01
胚宽/粒宽
EW/KW
QEW/KW.sicau-AM-2B 2020CZ 2B AX-109390001 AX-110571221 0.00—1.92 4.05 12.49 0.02
2019CZ 2B AX-109390001 AX-110571221 0.00—1.92 2.57 8.80 0.02
2018CZ 2B AX-109390001 AX-110571221 0.00—1.92 5.16 24.92 0.02
BLUP 2B AX-109390001 AX-110571221 0.00—1.92 6.65 20.68 0.01
QEW/KW.sicau-AM-4A 2019CZ 4A AX-109272723 AX-110524110 11.88—31.77 2.78 13.49 -0.02
QEW/KW.sicau-AM-6B 2020CZ 6B AX-111012548 AX-108984460 136.24—162.46 3.47 10.94 -0.02
胚长/胚宽
EL/EW
QEL/EW.sicau-AM-2B-1 2020WJ 2B AX-109390001 AX-110571221 0.00—1.92 8.00 21.55 -0.08
2020YA 2B AX-109390001 AX-110571221 0.00—1.92 4.04 16.41 -0.09
2020CZ 2B AX-109390001 AX-110571221 0.00—1.92 8.83 25.69 -0.08
2019CZ 2B AX-109390001 AX-110571221 0.00—1.92 4.19 12.79 -0.06
2018CZ 2B AX-109390001 AX-110571221 0.00—1.92 5.45 23.41 -0.07
BLUP 2B AX-109390001 AX-110571221 0.00—1.92 11.64 31.13 -0.06
性状
Trait
数量性状位点
QTL
环境Environment 染色体
Chromosome
左标记
Left marker
右标记
Right marker
位置
Position (cM)
阈值
LOD
表型变异率
PVE (%)
加性效应
Add
QEL/EW.sicau-AM-2B-2 2018CZ 2B AX-111525915 AX-109297362 64.00—66.68 3.01 12.12 -0.05
QEL/EW.sicau-AM-2B-3 2020WJ 2B AX-110447950 AX-108942420 33.21—39.07 3.03 7.89 -0.05
QEL/EW.sicau-AM-6B 2020CZ 6B AX-111012548 AX-108984460 136.24—162.46 3.38 9.10 0.05
QEL/EW.sicau-AM-2A-1 2020WJ 2A AX-109314401 AX-110069674 105.82—124.56 3.14 8.05 -0.05
QEL/EW.sicau-AM-2A-2 BLUP 2A AX-110492886 AX-109523500 92.49—95.29 2.76 6.33 -0.03
胚面积
EA
QEA.sicau-AM-2B 2020WJ 2B AX-109390001 AX-110571221 0.00—1.92 4.23 11.34 0.25
2019CZ 2B AX-109390001 AX-110571221 0.00—1.92 2.88 10.47 0.21
2018CZ 2B AX-109390001 AX-110571221 0.00—1.92 3.01 15.22 0.25
BLUP 2B AX-109390001 AX-110571221 0.00—1.92 6.66 20.67 0.01
QEA.sicau-AM-2A-1 2020WJ 2A AX-109437513 AX-109974497 66.15—67.06 4.29 11.41 0.25
QEA.sicau-AM-2A-2 BLUP 2A AX-109455008 AX-109024104 70.71—74.53 3.07 9.03 0.01
QEA.sicau-AM-3B 2019CZ 3B AX-110375013 AX-110569582 6.91—7.34 4.65 17.65 -0.28
QEA.sicau-AM-4B 2020CZ 4B AX-108737791 AX-110544397 20.75—22.08 3.47 13.18 0.23

Fig. 2

Distribution of QTL for embryo-related traits on chromosomes QEL: QTL of embryo length; QEW: QTL of embryo width; QEL/KL: QTL of embryo length/kernel length; QEW/KW: QTL of embryo width/kernel width; QEL/EW: QTL of embryo length/embryo width; QEA: QTL of embryo area. The same as below"

Fig. 3

Additive effect of major QTL for embryo length and embryo width in AM population * represents the difference at 0.05 level; + and - represent lines with and without the positive allele of the corresponding QTL based on the genotype of flanking markers; #RILs: Number of corresponding lines"

Table 5

QTL physical location interval of embryo-related traits"

性状
Trait
QTL 遗传标记区间
Flanking markers
野生二粒小麦参考基因组
v2.0物理位置
Wild Emmer v2.0 physical map (Mb)
中国春参考基因组v2.1物理位置
Chines Spring wheat v2.1 physical map
(Mb)
胚长
EL
QEL.sicau-AM-3B AX-110375013AX-110569582 695.42—696.83 690.52—692.06
QEW.sicau-AM-2B AX-109390001AX-110571221 6.41—53.55 3.69—9.15
胚宽
EW
QEL/KL.sicau-AM-1B-1 AX-108913437AX-111510846 409.17—411.07 395.61—397.54
QEL.sicau-AM-1B-2 AX-111720572AX-110579523 432.54—447.52 418.79—434.50
胚长/粒长 EL/KL QEW.sicau-AM-2A-1 AX-109455008AX-109024104 614.32—618.45 615.12—619.25
胚宽/粒宽
EW/KW
QEW/KW.sicau-AM-2B AX-109390001AX-110571221 6.41—53.55 3.69—9.15
QEA.sicau-AM-2B AX-109390001AX-110571221 6.41—53.55 3.69—9.15
胚面积 EA QEW/KW.sicau-AM-6B AX-111012548AX-108984460 712.45—723.67 721.64—730.61

Table 6

Comparison of QEW.sicau-AM-2B and QKL.sicau-AM-3B with previous reported quantitative trait loci (QTL) or marker- trait associations (MTAs) for embryo length (EL) and width (EW)"

性状
Trait
QTL 染色体Chromosome 左标记 Left marker 右标记 Right marker
标记ID
Marker ID
物理位置
WE v2.0/CS 2.1 (Mb)
标记ID
Marker ID
物理位置
WE v2.0/CS 2.1(Mb)
粒长Kernel length qKL.3B 3B * * Xwmc754 21.66/14.4
QGl.ccsu-3B.1 3B Xgwm566 91.51/77.7 Xgwm376 64.63/38.9
QKL.sicau-AM-3B 3B AX-110375013 695.42/690.52 AX-111112626 675.62/655.4
胚长EL QEL.sicau-AM-3B 3B AX-110375013 695.42/690.52 AX-110569582 696.83/692.06
胚宽EW QEW.sicau-AM-2B 2B AX-109390001 6.41/3.69 AX-110571221 53.55/9.15
千粒重
Thousand grain weight
QTgw.crc-2B 2B Xwmc661 6.49/9.53 * *
粒重Kernel weight qKLW2B-1 2B Xgwm501 98.15/680.09 Xmag3512 780.69/771.06
粒宽Kernel width QKw.ncl-2B.1 2B Xbarc183 123.83/2.60 Xbarc13 134.83/125.20
QTkw.ncl-2B.1 2B Xbarc183 123.83/2.60 Xbarc7 134.82/125.20
[1] PATIL R M, TAMHANKAR S A, OAK M D, RAUT A L, HONRAO B K, RAO V S, MISRA S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190(1): 117-129.
doi: 10.1007/s10681-012-0785-y
[2] HAO C Y, DONG Y C, WANG L F, YOU G X, ZHANG H N, GE H M, JIA J Z, ZHANG X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chinese Science Bulletin, 2008, 53(10): 1518-1526.
[3] 兰秀锦, 颜济. 中国四倍体地方小麦品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用. 四川农业大学学报, 1992, 10(4): 581-585.
LAN X J, YAN J. An amphidiploid derived from a Chinese landrace of tetraploid wheat, Ailanmai crossed with aegilops tauschII native to China and with reference to its utilization in wheat breeding. Journal of Sichuan Agricultural University, 1992, 10(4): 581-585. (in Chinese)
[4] 刘洁宇. 野生二粒小麦作为小麦种质资源的评价与育种利用[D]. 杨凌: 西北农林科技大学, 2015.
LIU J Y. Evaluation and breeding utilization of wild emmer as the germplasm resources of wheat[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[5] 李爽, 高英, 杨光, 聂小军, 宋卫宁. 野生二粒小麦NBS-LRR类抗病基因家族的鉴定及其表达分析. 麦类作物学报, 2021, 41(6): 680-688.
LI S, GAO Y, YANG G, NIE X J, SONG W N. Identification and expression profile analysis of NBS-LRR family in wild wheat (Triticum dicoccoides L.). Journal of Triticeae Crops, 2021, 41(6): 680-688. (in Chinese)
[6] GOLAN G, AYALON I, PERRY A, ZIMRAN G, ADE-AJAYI T, MOSQUNA A, DISTELFELD A, PELEG Z. GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2353-2365.
doi: 10.1007/s00122-019-03358-5 pmid: 31079164
[7] 程啸天, 萧峰, 丰宇凯, 吴莎莎, 丁明全, 周伟, 戎均康, 孙丽英. 野生二粒小麦粒重QTLs位点分析. 麦类作物学报, 2014, 34(3): 298-303.
CHENG X T, XIAO F, FENG Y K, WU S S, DING M Q, ZHOU W, RONG J K, SUN L Y. Analysis on QTLs controlling grain weight in Triticum dicoccoides. Journal of Triticeae Crops, 2014, 34(3): 298-303. (in Chinese)
[8] CAMPBELL K G, BERGMAN C J, GUALBERTO D G, ANDERSON J A, GIROUX M J, HARELAND G, FULCHER R G, SORRELLS M E, FINNEY P L. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Science, 1999, 39(4): 1184-1195.
doi: 10.2135/cropsci1999.0011183X003900040039x
[9] CHASTAIN T G, WARD K J, WYSOCKI D J. Stand establishment response of soft white winter wheat to seedbed residue and seed size. Crop Science, 1995, 35(1): 213-218.
doi: 10.2135/cropsci1995.0011183X003500010040x
[10] PETERSON C M, KLEPPER B, RICKMAN R W. Seed reserves and seedling development in winter wheat. Agronomy Journal, 1989, 81(2): 245-251.
doi: 10.2134/agronj1989.00021962008100020022x
[11] MOORE C, REBETZKE G. Genomic regions for embryo size and early vigour in multiple wheat (Triticum aestivum L.) populations. Agronomy, 2015, 5(2): 152-179.
doi: 10.3390/agronomy5020152
[12] 王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2): 398-407.
WANG R X, ZHANG X Y, WU L, WANG R, HAI L, YOU G X, YAN C S, XIAO S H. QTL analysis of grain size and related traits in winter wheat under different ecological environment. Scientia Agricultura Sinica, 2009, 42(2): 398-407. (in Chinese)
[13] 周小鸿. 西藏半野生小麦粒型及根系QTL的定位分析[D]. 雅安: 四川农业大学, 2017.
ZHOU X H. Mapping QTLs for kernel traits and seedling root traits in Tibet semi-wild wheat[D]. Yaan: Sichuan Agricultural University, 2017. (in Chinese)
[14] HUANG R Y, JIANG L G, ZHENG J S, WANG T S, WANG H C, HUANG Y M, HONG Z L. Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 2013, 18(4): 218-226.
doi: 10.1016/j.tplants.2012.11.001 pmid: 23218902
[15] 李学军, 李立群, 王辉, Mark E Sorrells. 小麦粒长和粒宽的QTL定位分析. 西北农林科技大学学报(自然科学版), 2009, 37(3): 95-100.
LI X J, LI L Q, WANG H, SORRELLS M E. Quantitative trait loci analysis for kernel length and width in wheat (Triticum aestivum L.). Journal of Northwest A&F University (Natural Science Edition), 2009, 37(3): 95-100. (in Chinese)
[16] 韩立杰. 高粱粒重的QTL分析及qGW1的精细定位[D]. 北京: 中国农业大学, 2016.
HAN L J. QTL analysis of grain weight and fine mapping of qGW1[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[17] 余徐润, 顾清钦, 冉莉萍, 姚慧慧, 臧勇, 熊飞. 花后低温对小麦胚形态发育的影响. 麦类作物学报, 2021, 41(8): 969-976.
YU X R, GU Q Q, RAN L P, YAO H H, ZANG Y, XIONG F. Effect of low temperature after anthesis on morphological development of wheat embryo. Journal of Triticeae Crops, 2021, 41(8): 969-976. (in Chinese)
[18] 王磊. 玉米幼胚胚性愈伤组织诱导能力候选基因GRMZM2G038183的功能初探[D]. 雅安: 四川农业大学, 2019.
WANG L. Function identification of candidate gene GRMZM2G038183 involving inducing ability of embryogenic callus from maize immature embryo[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
[19] WEN J, XU J F, LONG Y, WU J G, XU H M, MENG J L, SHI C H. QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. Journal of the Science of Food and Agriculture, 2016, 96(2): 465-473.
doi: 10.1002/jsfa.7112
[20] 周淼平, 任丽娟, 张旭, 余桂红, 马鸿翔, 陆维忠. 小麦产量性状的QTL分析. 麦类作物学报, 2006, 26(4): 35-40.
ZHOU M P, REN L J, ZHANG X, YU G H, MA H X, LU W Z. Analysis of QTLs for yield traits of wheat. Journal of Triticeae Crops, 2006, 26(4): 35-40. (in Chinese)
[21] 崔法. 高密度小麦遗传连锁图谱构建及产量相关性状QTL定位[D]. 泰安: 山东农业大学, 2011.
CUI F. Construction of high-density wheat molecular genetic map and QTL analysis for yield-related traits[D]. Taian: Shandong Agricultural University, 2011. (in Chinese)
[22] 丁安明, 崔法, 李君, 赵春华, 王秀芹, 王洪刚. 小麦单株产量与株高的QTL分析. 中国农业科学, 2011, 44(14): 2857-2867.
DING A M, CUI F, LI J, ZHAO C H, WANG X Q, WANG H G. QTL analysis on grain yield per plant and plant height in wheat. Scientia Agricultura Sinica, 2011, 44(14): 2857-2867. (in Chinese)
[23] 周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005, 38(10): 1951-1957.
ZHOU X G, JING R L, HAO Z F, CHANG X P, ZHANG Z B. Mapping QTL for seeding root traits in common wheat. Scientia Agricultura Sinica, 2005, 38(10): 1951-1957. (in Chinese)
[24] 廖森, 方正武, 张春梅, 高德荣, 胡文静. 小麦抗赤霉病遗传与机理研究现状与展望. 江苏农业科学, 2021, 49(19): 51-56.
LIAO S, FANG Z W, ZHANG C M, GAO D R, HU W J. Research status and prospect of genetic and mechanism of wheat resistance to fusarium head blight. Jiangsu Agricultural Sciences, 2021, 49(19): 51-56. (in Chinese)
[25] 陈秋玲, 高建明, 罗峰, 魏进招, 裴忠有, 孙守钧. 分子标记技术在禾本科作物基因定位上的研究进展. 中国农学通报, 2010, 26(9): 42-48.
CHEN Q L, GAO J M, LUO F, WEI J Z, PEI Z Y, SUN S J. Research and development of molecular marker technologies for gene mapping of gramineous crops. Chinese Agricultural Science Bulletin, 2010, 26(9): 42-48. (in Chinese)
[26] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35(2): 270-278.
doi: 10.3724/SP.J.1006.2009.00270
ZHANG K P, XU X B, TIAN J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agronomica Sinica, 2009, 35(2): 270-278. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00270
[27] MO Z Q, ZHU J, WEI J T, ZHOU J G, XU Q, TANG H P, MU Y, DENG M, JIANG Q T, LIU Y X, CHEN G Y, WANG J R, QI P F, LI W, WEI Y M, ZHENG Y L, LAN X J, MA J. The 55K SNP-based exploration of QTLs for spikelet number per spike in a tetraploid wheat (Triticum turgidum L.) population: Chinese Landrace “Ailanmai” × Wild emmer. Frontiers in Plant Science, 2021, 12: 732837.
doi: 10.3389/fpls.2021.732837
[28] LIU D C, CHI Y, YANG J L, ZHENG Y L, LAN X J. The chromosomal locations of high crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica, 1999, 108(2): 79-82.
doi: 10.1023/A:1003691925501
[29] ZHOU J G, LI C, YOU J N, TANG H P, MU Y, JIANG Q T, LIU Y X, CHEN G Y, WANG J R, QI P F, MA J, GAO Y T, HABIB A, WEI Y M, ZHENG Y L, LAN X J, MA J. Genetic identification and characterization of chromosomal regions for kernel length and width increase from tetraploid wheat. BMC Genomics, 2021, 22(1): 706.
doi: 10.1186/s12864-021-08024-z pmid: 34592925
[30] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 1-9 [2022-07-02]. http://kns.cnki.net/kcms/detail/61.1359.s.20220609.1537.012.html.
CHEN H X, LI C, WU K Y, WANG Y, MOU Y, TANG H P, TANG L W, LAN X J, MA J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effects. Journal of Wheat Crops, 1-9 [2022-07-02]. http://kns.cnki.net/kcms/detail/61.1359.s.20220609.1537.012.html. (in Chinese)
[31] LIN H X, QIAN H R, ZHUANG J Y, LU J, MIN S K, XIONG Z M, HUANG N, ZHENG K L. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1996, 92(8): 920-927.
doi: 10.1007/BF00224031
[32] ZHU T T, WANG L, RIMBERT H L, RODRIGUEZ J C, DEAL K R, DE OLIVEIRA R, CHOULET F, KEEBLE-GABRIEL G, TIBBITS J, ROGERS J, EVERSOLE K, APPELS R, GU Y Q, MASCHER M, DVORAK J, LUO M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 2021, 107(1): 303-314.
doi: 10.1111/tpj.15289
[33] ZHU T T, WANG L, RODRIGUEZ J C, DEAL K R, AVNI R, DISTELFELD A, MCGUIRE P E, DVORAK J, LUO M C. Improved genome sequence of wild emmer wheat zavitan with the aid of optical maps. G3, 2019, 9(3): 619-624.
doi: 10.1534/g3.118.200902
[34] CHEN W G, SUN D Z, YAN X, LI R Z, WANG S G, SHI Y G, JING R L. QTL analysis of wheat kernel traits, and genetic effects of qKW-6A on kernel width. Euphytica, 2019, 215(2): 1-13.
doi: 10.1007/s10681-018-2319-8
[35] TYAGI S, MIR R R, BALYAN H S, GUPTA P K. Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica, 2015, 201(3): 367-380.
doi: 10.1007/s10681-014-1217-y
[36] HUANG X Q, CLOUTIER S, LYCAR L, RADOVANOVIC N, HUMPHREYS D G, NOLL J S, SOMERS D J, BROWN P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113(4): 753-766.
doi: 10.1007/s00122-006-0346-7
[37] PRAKASH P, SHARMA-NATU P, GHILDIYAL M C. Effect of different temperature on starch synthase activity in excised grains of wheat cultivars. Indian Journal of Experimental Biology, 2004, 42(2): 227-230.
pmid: 15282961
[38] AVNI R, NAVE M, BARAD O, BARUCH K, TWARDZIOK S O, GUNDLACH H, HALE I, MASCHER M, SPANNAGL M, WIEBE K, JORDAN K W, GOLAN G, DEEK J, BEN-ZVI B, BEN-ZVI G, HIMMELBACH A, MACLACHLAN R P, SHARPE A G, FRITZ A, BEN-DAVID R, BUDAK H, FAHIMA T, KOROL A, FARIS J D, HERNANDEZ A, MIKEL M A, LEVY A A, STEFFENSON B, MACCAFERRI M, TUBEROSA R, CATTIVELLI L, FACCIOLI P, CERIOTTI A, KASHKUSH K, POURKHEIRANDISH M, KOMATSUDA T, EILAM T, SELA H N, SHARON A, OHAD N, CHAMOVITZ D A, MAYER K F X, STEIN N, RONEN G, PELEG Z, POZNIAK C J, AKHUNOV E D, DISTELFELD A. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357(6346): 93-97.
doi: 10.1126/science.aan0032 pmid: 28684525
[39] GAUBIER P, RAYNAL M, HULL G, HUESTIS G M, GRELLET F, ARENAS C, PAGÈS M, DELSENY M. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Molecular & General Genetics, 1993, 238(3): 409-418.
[40] 付琳琳. 拟南芥过氧化物酶体蛋白酶的功能研究[D]. 济南: 山东师范大学, 2019.
FU L L. Functional study of peroxidase in Arabidopsis thaliana[D]. Jinan: Shandong Normal University, 2019. (in Chinese)
[41] GONZALEZ-GRANDIO E, CUBAS P. Chapter 9-TCP Transcription factors:Evolution, structure, and biochemical function//Gonzalez D H. Plant Transcription Factors. Boston: Academic Press, 2016: 139-151.
[1] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[2] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[3] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[4] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[5] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[6] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[7] WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16 [J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
[8] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[9] CHEN JingJing, LIU XieXiang, YU LiLi, LU YiPeng, ZHANG SiTian, ZHANG HaoChen, GUAN RongXia, QIU LiJuan. QTL Mapping of Hard Seededness in Wild Soybean Using BSA Method [J]. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219.
[10] WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041.
[11] YingBin DING, LiZhen ZHANG, Rui XU, YanYan WANG, XiaoMing ZHENG, LiFang ZHANG, YunLian CHENG, Fan WU, QingWen YANG, WeiHua QIAO, JinHao LAN. Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line [J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444.
[12] MA YaRu, FENG JianCan, LIU ChongHuai, FAN XiuCai, SUN HaiSheng, JIANG JianFu, ZHANG Ying. Development and Application of SSR New Molecular Marker for Seedless Traits in Grape [J]. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630.
[13] LIANG YinPei, SUN Jian, SUO YiNing, LIU HuaLong, WANG JingGuo, ZHENG HongLiang, SUN XiaoXue, ZOU DeTang. QTL Mapping and QTL × Environment Interaction Analysis of Salt and Alkali Tolerance-Related Traits in Rice(Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2017, 50(10): 1747-1762.
[14] HUANG Ji-xiang, XIONG Hua-xin, PAN Bing, NI Xi-yuan, ZHANG Xiao-yu, ZHAO Jian-yi. Mapping QTL of Flowering Time and Their Genetic Relationships with Seed Weight in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3073-3083.
[15] ZHANG Kai-jing, SONG Hui, BO Kai-liang, LI Ji, MA Zheng, LOU Qun-feng, QIAN Chun-tao, CHEN Jin-feng. QTL Mapping of Multi-Locule-Number Trait in Xishuangbanna Cucumber [J]. Scientia Agricultura Sinica, 2015, 48(16): 3211-3220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!