Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2078-2091.doi: 10.3864/j.issn.0578-1752.2023.11.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System

WU JinZhi1(), HUANG XiuLi1, HOU YuanQuan1, TIAN WenZhong2,3, LI JunHong2,3, ZHANG Jie2,3, LI Fang2,3, LÜ JunJie2,3, YAO YuQing2,3, FU GuoZhan1, HUANG Ming1(), LI YouJun1()   

  1. 1 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan
    2 Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan
    3 Luoyang Dryland Agriculture Test Site, Chinese Academy of Agricultural Sciences, Luoyang 471023, Henan
  • Received:2022-08-25 Accepted:2022-12-05 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】The aim of the present study was to discuss the effects of different ridge and furrow planting patterns on crop productivity, soil properties and soil nitrate-N accumulation, and thus provided a scientific basis for improving soil fertility, increasing crop yield and water use efficiency, and alleviating environmental risks in summer maize-winter wheat rotation system (namely maize-wheat) in dryland.【Method】A study was carried out at the Luoyang Dry Farming Experimental of the Chinese Academy of Agricultural Sciences based on the long-term field experiment initiated in 2004. The experiment included five treatments: permanent ridge and furrow and 6 row wheat planted in ridge (6RPRF), ridge and furrow in each year and other managements kept with 6RPRE (6REYRF), permanent ridge and furrow and 4 row wheat planted in ridge (4RPRF), ridge and furrow in each year and other managements kept with 4RPRF (4REYRF), and conventional flat planting pattern according to the local farmer (CF). The effects of different treatments on the grain yield, water use efficiency of summer maize, winter wheat and the annual in 2015-2021, and the bulk density, nutrient content and enzyme activity in the 0-40 cm soil layer at harvest of summer maize in 2020, and the nitrate-N accumulation in the 0-380 cm soil profile at harvest of winter wheat in 2019-2020 was investigated. 【Result】 Compared with CF, the four ridge and furrow planting patterns improved grain yield in summer maize, winter wheat, and all year by 8.6%-32.1%, 12.5%-25.6%, and 11.3%-29.6%, respectively, and water use efficiency by 8.6%-31.4%, 12.5%-31.1% and 12.8%-30.3%, respectively, averaged across the 6 experimental years from 2015 to 2021. They also significantly decreased the soil bulk density by 7.3%-11.3% in 0-5 cm soil layer and by 4.9%-11.5% in 20-40 cm soil layer, respectively, increased the average content of organic matter by 6.0%-19.8%, total nitrogen by 80.8%-100.0%, available phosphors by 28.5%-80.9%, available potassium by 58.5%-141.2%, urease activity by 24.0%-46.9% in 0-40 cm soil layer, as well as increasing the nitrate-N accumulation by 38.8%-116.0% in 0-100 cm soil layer. Among the four ridge and furrow treatments, 4RPRF had the best productivity and the function of improving root layer but decreasing the sub-layer nitrate-N accumulation, in which the nitrate-N accumulation was significantly increased by 38.7% in the 0-100 cm soil layer but significantly decreased by 15.0% in 200-380 cm soil layer with the total amount in 0-380 cm soil layer maintaining at CF level. Compared with ridge and furrow in each year (EYRF), the 6 year average grain yield in summer maize and all year in permanent ridge and furrow (PRF) treatments were increased by 10.55% and 9.10%, respectively, as well as the WUE in summer maize under 6 rows wheat planted in ridge (6R) pattern, in winter wheat under 4 rows wheat planted in ridge (4R) pattern and in all year were increased by 21.08%, 15.06% and 8.23%, respectively. The soil nutrient content under PRF increased in surface layer but decreased in subsoil layer, and the nitrate nitrate-N accumulation decreased by 4.9%-30.2%, compared with EYRF. Compared with 6R pattern, 4R pattern increased the grain yield in summer maize and in all year by 9.9% and 6.8%, as well as the WUE by 7.4%, 16.5% and 6.7%, respectively, in summer maize under EYRF, in winter wheat under PRF and in all year, averaged across the 6 experimental years. Compared with 6R pattern, 4R pattern had a tendency to improve soil properties, but the effect varied with different indexes, ridge raising patterns and soil layer.【Conclusion】4RPRF could not only reduce soil bulk density and increase soil organic matter, total nitrogen and available potassium contents, but also increase the grain yield and water use efficiency in summer maize, winter wheat and all year under most conditions, and also effectively reduce the nitrate-N accumulation in 200-380 cm soil layer. Therefore, 4RPRF was an alternative planting pattern to achieve high yield, high efficiency and environmentally friendly in dryland summer maize-winter wheat rotation system.

Key words: ridge and furrow planting patterns, dryland, maize-wheat rotation, soil properties, grain yield, water use efficiency, nitrate-N

Fig. 1

Monthly precipitation in the experimental years from 2015 to 2021 and from 2001 to 2021 The broken line shows the average precipitation of 20 years from 2001 to 2021"

Table 1

Treatment description"

处理Treatment 操作方法 Field management description
6RPRF 试验开始时起宽(95±5)cm垄,垄高20 cm,沟宽(40±5)cm,第一年起垄后,每年小麦播种前修复垄高,不再重新起垄。玉米季沟中种1行玉米,行距133 cm,垄上覆盖前茬0—40 cm高的小麦秸秆,麦季垄面种6行小麦,行距15 cm,沟中整秆覆盖前茬50%玉米秸秆
Ridged and furrowed only in 2004 when the experiment initiated. The ridge is (95±5) cm wide and 20 cm high. The furrow with a width (40±5) cm was formed where two ridges meet. After the first year, the ridge height was restored each year before wheat sowing but never re-ridged. In the summer maize growing season, 1 row maize was plated in the furrow with 133 cm space, and previous wheat straw with 0-40 cm height was mulched on ridge. In the winter wheat growing season, 6 rows wheat was planted on the ridge with 15 cm space, and 50% of previous maize straw (whole stalk) was mulched in furrow
6REYRF 每年在小麦播种前翻耕(20—30 cm)并起垄,垄沟规格及其他管理同6RPRF
Ridged and furrowed each year, which conducted after plowing (20-30 cm) before wheat sowing. The size of ridge and furrow and other managements were same as 6RPRF
4RPRF 垄宽(60±5)cm,垄高20 cm,沟宽(40±5)cm。玉米季沟中种1行玉米,行距100 cm,麦季垄面种4行小麦,行距15 cm,起垄方式和其他管理同6RPRF
The ridge is (60±5) cm wide and 20 cm high. The furrow is (40±5) cm wide. 1 row maize was plated in the furrow with 100 cm space, and 4 rows wheat was planted on the ridge with 15 cm space. The ridging method and other managements were same as 6RPRF
4REYRF 每年在小麦播种前翻耕(20—30 cm)并起垄,垄沟规格及其他管理同4RPRF
Ridged and furrowed each year, which conducted after plowing (20-30 cm) before wheat sowing. The size of ridge and furrow and other managements were same as 4RPRF
CF 按照当地传统的平作栽培模式,每季作物播前翻耕25—30 cm,不起垄平作种植玉米、小麦,行距分别为80 cm、20 cm,无秸秆还田
Plowed 25-30 cm before crop sowing in each growth season, maize and wheat planted as conventional flat cropping pattern and no straw mulching, with 80 cm and 20 cm space, respectively

Fig. 2

Planting diagram"

Table 2

Effects of ridge and furrow planting patterns on the crop yield in dryland summer maize and winter wheat rotation system (kg·hm-2)"

作物
Crop
处理
Treatment
年份Year 平均
Mean
2015—2016(2015) 2016—2017(2016) 2017—2018(2017) 2018—2019(2018) 2019—2020(2019) 2020—2021(2020)
夏玉米Summer maize 6RPRF 5973±201a 5427±333bc 2894±144a 6535±142bc 8337±390b 5665±143a 5805±9b
6REYRF 4278±465c 5020±333c 2070±498ab 6350±260cd 7582±103c 5347±430ab 5108±121c
4RPRF 5652±62ab 6642±484a 2674±866ab 7799±47a 9338±470a 5175±232ab 6213±238a
4REYRF 5240±184b 6113±394ab 2028±98b 6825±299b 9119±405a 5255±650ab 5763±149b
CF 3956±211c 4032±389d 1135±102c 6178±110d 7993±394bc 4928±219b 4703±72d
冬小麦
Winter wheat
6RPRF 3453±285ab 3603±589a 3406±224ab 2661±233ab 5348±295ab 1967±717a 3406±146ab
6REYRF 3271±13b 3539±286a 4084±738a 2313±315bc 5424±97a 1428±206a 3343±206b
4RPRF 3856±485a 3736±499a 4005±654ab 2931±265a 5502±248a 1742±227a 3628±176a
4REYRF 3686±234ab 3554±422a 3214±245b 2153±92c 5416±155a 1476±117a 3250±83b
CF 3285±122b 3656±313a 3280±201ab 1482±142d 5046±145b 583±238b 2888±56c
周年
All year
6RPRF 9426±385a 9030±539bc 6300±265ab 9196±146b 13685±497b 7632±714a 9211±137b
6REYRF 7549±468b 8559±287c 6153±501b 8663±558b 13006±52c 6775±630a 8451±162c
4RPRF 9508±468a 10378±224a 6679±230a 10730±218a 14840±349a 6916±273a 9842±67a
4REYRF 8925±287a 9667±563ab 5242±179c 8978±365b 14534±252a 6731±692a 9013±76c
CF 7241±333b 7687±276d 4415±106d 7659±34c 13038±248c 5511±20b 7592±58e

Table 3

Effects of ridge and furrow planting patterns on the crop water use efficiency in dryland summer maize and winter wheat rotation system (kg·hm-2·mm-1)"

作物
Crop
处理
Treatment
年份Year 平均
Mean
2015—2016(2015) 2016—2017(2016) 2017—2018(2017) 2018—2019(2018) 2019—2020(2019) 2020—2021(2020)
夏玉米Summer maize 6RPRF 32.13±1.08a 22.05±1.35b 12.75±0.63a 24.15±0.53a 26.06±1.22c 32.06±0.81a 24.87±0.11a
6REYRF 24.63±2.68b 17.68±1.17c 7.15±1.72b 20.30±0.83c 23.17±0.32d 30.29±2.44ab 20.54±0.71c
4RPRF 26.63±0.29b 25.34±1.84a 10.40±3.37ab 24.26±0.15a 28.46±1.43b 23.88±1.07c 23.16±0.85b
4REYRF 25.81±0.91b 22.08±1.42b 8.70±0.42b 24.08±1.05a 32.50±1.44a 25.70±3.18c 23.15±0.71b
CF 18.36±0.98c 15.58±1.50c 3.93±0.35c 21.83±0.39b 26.92±1.33ab 26.91±1.19bc 18.92±0.28d
冬小麦
Winter wheat
6RPRF 13.61±1.12b 11.16±1.83b 9.87±0.65b 9.62±0.84ab 16.21±0.90b 6.45±2.37a 11.15±0.48b
6REYRF 13.74±0.05b 13.14±1.06ab 13.82±2.50a 9.12±1.24b 16.50±0.30b 4.57±0.69b 11.82±0.74b
4RPRF 15.52±1.95ab 12.61±1.69ab 13.84±2.26a 10.85±0.98a 18.32±0.82a 6.81±0.85a 12.99±0.60a
4REYRF 16.77±1.07a 12.68±1.51ab 9.43±0.72b 6.68±0.29c 16.73±0.48b 5.40±0.43ab 11.28±0.26b
CF 13.56±0.50b 14.20±1.21a 9.89±0.61b 5.02±0.48d 14.90±0.43c 1.87±0.76c 9.91±0.24c
周年
All year
6RPRF 21.44±0.88a 15.87±0.95b 11.01±0.46b 16.81±0.27b 21.06±0.76b 15.84±1.52a 17.00±0.25b
6REYRF 18.34±1.14b 15.47±0.52b 10.52±0.86b 15.29±0.99c 19.83±0.08c 13.86±1.35b 15.55±0.35c
4RPRF 20.64±1.02a 18.58±0.40a 12.22±0.42a 18.14±0.37a 23.61±0.55a 14.64±0.62ab 17.97±0.11a
4REYRF 21.11±0.68a 17.36±1.01a 9.13±0.31c 14.83±0.60c 24.05±0.42a 14.10±1.53b 16.76±0.20b
CF 15.82±0.73c 14.89±0.54b 7.12±0.17d 13.25±0.06d 20.52±0.39ab 11.17±0.02c 13.79±0.13d

Fig. 3

Effects of ridge and furrow planting patterns on soil bulk density in dryland summer maize and winter wheat rotation system Different lowercase letters above bars within the same layer indicated that significant difference among treatments at 0.05 probability level. The same as below"

Table 4

Effects of ridge and furrow planting patterns on soil organic matter content and total nitrogen content in dryland summer maize and winter wheat rotation system (g·kg-1)"

处理
Treatment
土壤有机质含量 Soil organic matter content 土壤全氮含量 Soil total nitrogen content
0—5 cm 5—10 cm 10—20 cm 20—40 cm 0—5 cm 5—10 cm 10—20 cm 20—40 cm
6RPRF 26.60±0.78b 19.40±0.32b 17.55±0.35c 15.81±1.12bc 1.53±0.05a 0.95±0.04b 0.82±0.02c 0.77±0.02a
6REYRF 23.38±2.14c 22.66±3.71ab 18.73±0.78bc 15.75±1.22b 1.16±0.07b 1.18±0.09a 0.92±0.07b 0.79±0.03a
4RPRF 30.73±0.17a 21.56±1.28b 19.90±0.60ab 17.45±0.22a 1.54±0.13a 1.20±0.02a 0.95±0.03b 0.79±0.03a
4REYRF 24.77±1.56bc 24.39±3.03a 20.99±1.02a 18.05±0.63a 1.16±0.10b 1.15±0.11a 1.10±0.08a 0.80±0.05a
CF 20.89±0.37d 20.38±0.26b 17.85±0.01bc 15.70±0.69c 0.64±.02c 0.62±.02c 0.54±.04d 0.44±.03b

Table 5

Effects of ridge and furrow planting patterns on soil available phosphors content and available potassium content in dryland summer maize and winter wheat rotation system (mg·kg-1)"

处理
Treatment
土壤有效磷含量 Soil available phosphors content 土壤速效钾含量 Soil available potassium content
0—5 cm 5—10 cm 10—20 cm 20—40 cm 0—5 cm 5—10 cm 10—20 cm 20—40 cm
6RPRF 9.47±0.40a 7.78±0.75a 5.21±0.15a 3.28±0.10a 685.0±3.2b 331.6±2.3b 130.5±1.2c 122.9±4.3bc
6REYRF 7.74±0.40b 4.69±0.18c 3.16±0.24c 2.70±0.84ab 453.5±10.4c 241.6±2.3c 179.1±9.1b 131.3±2.6a
4RPRF 9.36±0.28a 6.88±0.23b 4.55±0.21b 2.42±0.37ab 814.6±36.7a 426.6±14.3a 168.7±13.0b 120.5±7.1c
4REYRF 7.64±0.53b 5.33±0.23c 4.25±0.07b 2.01±0.81b 444.9±22.0 c 323.0±7.6b 245.6±7.4a 129.6±1.7ab
CF 5.80±0.19c 3.54±0.13d 2.77±0.24d 2.12±0.47b 227.6±40.3d 182.3±11.9d 116.1±7.4c 108.6±4.4d

Fig. 4

Effects of ridge and furrow planting patterns on soil urease activity (A) and sucrase activity (B) in dryland summer maize and winter wheat rotation system"

Fig. 5

Effects of ridge and furrow planting patterns on the nitrate-N accumulation in 0-380 cm soil layer in dryland summer maize and winter wheat rotation system"

[1]
樊志龙, 柴强, 曹卫东, 于爱忠, 赵财, 谢军红, 殷文, 胡发龙. 绿肥在我国旱地农业生态系统中的服务功能及其应用. 应用生态学报, 2020, 31(4): 1389-1402.

doi: 10.13287/j.1001-9332.202004.023
FAN Z L, CHAI Q, CAO W D, YU A Z, ZHAO C, XIE J H, YIN W, HU F L. Ecosystem service function of green manure and its application in dryland agriculture of China. Chinese Journal of Applied Ecology, 2020, 31(4): 1389-1402. (in Chinese)
[2]
DAI J, WANG Z H, LI F C, HE G, WANG S, LI Q, CAO H B, LUO L C, ZAN Y L, MENG X Y, ZHANG W W, WANG R H, MALHI S S. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China. Field Crops Research, 2015, 181: 32-41.

doi: 10.1016/j.fcr.2015.06.014
[3]
黄明, 吴金芝, 李友军, 付国占, 赵凯男, 张振旺, 杨中帅, 侯园泉. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响. 中国农业科学, 2021, 54(24): 5206-5219.

doi: 10.3864/j.issn.0578-1752.2021.24.004
HUANG M, WU J Z, LI Y J, FU G Z, ZHAO K N, ZHANG Z W, YANG Z S, HOU Y Q. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.24.004
[4]
彭小瑜, 吴喜慧, 吴发启, 王效琴, 佟小刚. 陕西关中地区冬小麦-夏玉米轮作系统生命周期评价. 农业环境科学学报, 2015, 34(4): 809-817.
PENG X Y, WU X H, WU F Q, WANG X Q, TONG X G. Life cycle assessment of winter wheat-summer maize rotation system in Guanzhong region of Shaanxi Province. Journal of Agro-Environment Science, 2015, 34(4): 809-817. (in Chinese)
[5]
邓浩亮, 张恒嘉, 肖让, 张永玲, 田建良, 李福强, 王玉才, 周宏, 李煊. 陇中半干旱区不同覆盖种植方式对土壤水热效应和玉米产量的影响. 中国农业科学, 2020, 53(2): 273-287.

doi: 10.3864/j.issn.0578-1752.2020.02.005
DENG H L, ZHANG H J, XIAO R, ZHANG Y L, TIAN J L, LI F Q, WANG Y C, ZHOU H, LI X. Effects of different covering planting patterns on soil moisture, temperature characteristics and maize yield in semi-arid region of the Loess Plateau. Scientia Agricultura Sinica, 2020, 53(2): 273-287. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.02.005
[6]
谢孟林, 查丽, 郭萍, 王兴龙, 马晓君, 袁继超, 孔凡磊. 垄作覆膜对川中丘区土壤物理性状和春玉米产量的影响. 干旱地区农业研究, 2017, 35(2): 31-38.
XIE M L, ZHA L, GUO P, WANG X L, MA X J, YUAN J C, KONG F L. Effects of different ridging and mulching measures on soil physical properties and yield of spring maize in hilly area of central Sichuan Basin. Agricultural Research in the Arid Areas, 2017, 35(2): 31-38. (in Chinese)
[7]
张剑, 高宇, 任永峰, 赵沛义, 任冬生, 刁生鹏, 聂晶, 骆洪. 垄膜集雨种植对土壤微生物及酶活性的影响. 土壤通报, 2018, 49(5): 1103-1108.
ZHANG J, GAO Y, REN Y F, ZHAO P Y, REN D S, DIAO S P, NIE J, LUO H. Effects of ridge planting with film mulching for rainwater harvesting on soil microorganism and enzyme activities. Chinese Journal of Soil Science, 2018, 49(5): 1103-1108. (in Chinese)
[8]
赵七雄. 不同种植方式对旱作春玉米土壤酶活性及生长状况的影响. 灌溉排水学报, 2016, 35(11): 92-96.
ZHAO Q X. Effects of tillage methods on soil enzyme and growth status of spring maize in dryland. Journal of Irrigation and Drainage, 2016, 35(11): 92-96. (in Chinese)
[9]
王法宏, 杨洪宾, 徐成忠, 李升东, 司纪升. 垄作栽培对小麦植株形态和产量性状的影响. 作物学报, 2007, 33(6): 1038-1040.
WANG F H, YANG H B, XU C Z, LI S D, SI J S. Effect of raised bed planting on plant morphological characters and grain yield of winter wheat. Acta Agronomica Sinica, 2007, 33(6): 1038-1040. (in Chinese)
[10]
李升东, 王法宏, 司纪升, 孔令安, 冯波, 张宾, 刘建军, 秦晓胜. 垄作小麦群体的光分布特征及其对不同叶位叶片光合速率的影响. 中国生态农业学报, 2009, 17(3): 465-468.
LI S D, WANG F H, SI J S, KONG L A, FENG B, ZHANG B, LIU J J, QIN X S. Light distribution in wheat population and its effect on leaf photosynthetic rate under raised-bed planting method. Chinese Journal of Eco-Agriculture, 2009, 17(3): 465-468. (in Chinese)

doi: 10.3724/SP.J.1011.2009.00465
[11]
邵运辉, 岳俊芹, 郑飞, 方保停, 汪庆昌, 秦峰. 垄作栽培对小麦生理特性和产量的影响. 麦类作物学报, 2011, 31(2): 314-317.
SHAO Y H, YUE J Q, ZHENG F, FANG B T, WANG Q C, QIN F. Effect of bed-planting on the physiological characteristics and yield of wheat. Journal of Triticeae Crops, 2011, 31(2): 314-317. (in Chinese)
[12]
岳俊芹, 邵运辉, 郑飞, 方保停, 秦峰, 汪庆昌. 垄作栽培对小麦旗叶光合及叶绿素荧光特性的响应. 麦类作物学报, 2012, 32(2): 289-292.
YUE J Q, SHAO Y H, ZHENG F, FANG B T, QIN F, WANG Q C. Effects of bed-planting on the photosynthetic characteristics and chlorophyll fluorescence in flag leaves of wheat. Journal of Triticeae Crops, 2012, 32(2): 289-292. (in Chinese)
[13]
FANG H, LI Y N, GU X B, LI Y P, CHEN P P. Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China? Agricultural Water Management, 2021, 246: 106686.

doi: 10.1016/j.agwat.2020.106686
[14]
马丽, 李潮海, 赵振杰, 张学林. 冬小麦、夏玉米一体化垄作的养分利用研究. 植物营养与肥料学报, 2011, 17(2): 500-505.
MA L, LI C H, ZHAO Z J, ZHANG X L. Nutrients utilization of integrative ridge planting system of winter wheat and summer maize. Plant Nutrition and Fertilizer Science, 2011, 17(2): 500-505. (in Chinese)
[15]
WU Y, JIA Z K, REN X L, ZHANG Y, CHEN X, BING H Y, ZHANG P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agricultural Water Management, 2015, 158: 1-9.

doi: 10.1016/j.agwat.2015.03.021
[16]
冯波, 孔令安, 张宾, 司纪升, 李升东, 王法宏. 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响. 作物学报, 2012, 38(6): 1107-1114.
FENG B, KONG L A, ZHANG B, SI J S, LI S D, WANG F H. Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition. Acta Agronomica Sinica, 2012, 38(6): 1107-1114. (in Chinese)

doi: 10.3724/SP.J.1006.2012.01107
[17]
张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响. 草业学报, 2020, 29(2): 123-133.

doi: 10.11686/cyxb2019403
ZHANG J J, DANG Y, ZHAO G, WANG L, FAN T L, LI S Z, LEI K N. Effect of no-tillage with film and stubble residues on soil nutrients, microbial populations and enzyme activity in dryland maize fields. Acta Prataculturae Sinica, 2020, 29(2): 123-133. (in Chinese)
[18]
陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675.
CHEN J, MA Z M, LIU L L, X D. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities. Plant Nutrition and Fertilizer Science, 2016, 22(3): 667-675. (in Chinese)
[19]
杨荣, 黄高宝. 固定道结合垄面覆盖种植模式对春小麦冠层结构特性的影响. 作物学报, 2010, 36(1): 163-169.

doi: 10.3724/SP.J.1006.2010.00163
YANG R, HUANG G B. Canopy architecture characteristics of spring wheat under controlled traffic tillage with mulching in ridge. Acta Agronomica Sinica, 2010, 36(1): 163-169. (in Chinese)

doi: 10.3724/SP.J.1006.2010.00163
[20]
李青峰, 杜文华. 陇东旱塬区不同宽度垄沟集雨种植对玉米营养生长的影响. 草原与草坪, 2013, 33(4): 54-57, 62.
LI Q F, DU W H. Effect of the different width of ridge-furrow planting on corn growth in semi-arid areas of Longdong. Grassland and Turf, 2013, 33(4): 54-57, 62. (in Chinese)
[21]
LIU X L, WANG Y D, YAN X Q, HOU H Z, LIU P, CAI T, ZHANG P, JIA Z K, REN X L, CHEN X L. Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region. Agricultural Water Management, 2020, 240: 106289.

doi: 10.1016/j.agwat.2020.106289
[22]
LIU X L, WANG Y D, REN X L, CHEN X L. Optimized ridge-furrow ratio to decrease greenhouse gas emissions and increase winter wheat yield in dry semi-humid areas. Agronomy Journal, 2022, 12(8): 1815.
[23]
刘佩, 刘小利, 王金金, 蔡铁, 张鹏, 任小龙, 贾志宽, 陈小莉. 集雨种植模式对小麦-玉米周年农田土壤水分及作物产量的影响. 灌溉排水学报, 2019, 38(6): 37-43.
LIU P, LIU X L, WANG J J, CAI T, ZHANG P, REN X L, JIA Z K, CHEN X L. Soil moisture dynamic and crop production of a rainfed wheat-summer maize rotation system. Journal of Irrigation and Drainage, 2019, 38(6): 37-43. (in Chinese)
[24]
李娟, 解文强, 崔婧婧, 于玲玲, 郭强. 沟垄集雨系统垄宽对玉米水分和养分利用效率的影响. 节水灌溉, 2021(5): 36-40.
LI J, XIE W Q, CUI J J, YU L L, GUO Q. Effect of ridge width on maize water and nutrient use efficiency under ridge-furrow rainfall harvesting planting mode. Water Saving Irrigation, 2021(5): 36-40. (in Chinese)
[25]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[26]
王玉功, 刘婧晶, 刘贻熙, 马亮. 苯酚-次氯酸钠比色法测定土壤脲酶活性影响因素的研究. 土壤通报, 2019, 50(5): 1166-1170.
WANG Y G, LIU J J, LIU Y X, MA L. Effective factors of urease activities in soil by using the phenolsodium hypochlorite colorimetric method. Chinese Journal of Soil Science, 2019, 50(5): 1166-1170. (in Chinese)
[27]
李朝英, 郑路. 基于DNS比色法的土壤蔗糖酶检测条件选择. 中国农学通报, 2016, 32(27): 171-176.

doi: 10.11924/j.issn.1000-6850.casb16010021
LI Z Y, ZHENG L. Soil sucrase: Detection conditions based on DNS colorimetric. Chinese Agricultural Science Bulletin, 2016, 32(27): 171-176. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb16010021
[28]
马丽, 刘天学, 韩德果, 付景, 赵振杰, 李潮海. 垄作对冬小麦、夏玉米产量和水分利用效率的影响. 核农学报, 2010, 24(5): 1062-1067.
MA L, LIU T X, HAN D G, FU J, ZHAO Z J, LI C H. Effects of ridge culture on grain yield and water use efficiency of winter wheat and summer maize. Journal of Nuclear Agricultural Sciences, 2010, 24(5): 1062-1067. (in Chinese)
[29]
GHOLAMHOSEINI M, DOLATABADIAN A, HABIBZADEH F. Ridge-furrow planting system and wheat straw mulching effects on dryland sunflower yield, soil temperature, and moisture. Agronomy Journal, 2019, 111(6): 3383-3392.

doi: 10.2134/agronj2019.02.0097
[30]
马忠明, 张立勤, 吕晓东, 潘艳华. 干旱灌区固定道耕作对土壤水热效应及春小麦产量的影响. 麦类作物学报, 2015, 35(7): 988-994.
MA Z M, ZHANG L Q, X D, PAN Y H. Effect of permanent raised bed on moisture and thermal of soil and yield of spring wheat in arid irrigation area. Journal of Triticeae Crops, 2015, 35(7): 988-994. (in Chinese)
[31]
张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述. 生态环境学报, 2019, 28(12): 2464-2472.

doi: 10.16258/j.cnki.1674-5906.2019.12.020
ZHANG X Q, YANG W F, XU Y J. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review. Ecology and Environmental Sciences, 2019, 28(12): 2464-2472. (in Chinese)
[32]
雷金银, 雷晓婷, 周丽娜, 何进勤, 贾爱平, 余建军, 张慧, 路芳. 耕作措施对缓坡耕地土壤养分分布及肥料利用率的影响. 农业工程学报, 2020, 36(18): 127-134.
LEI J Y, LEI X T, ZHOU L N, HE J Q, JIA A P, YU J J, ZHANG H, LU F. Effects of tillage measures on soil nutrients distribution and fertilizer use efficiency on gentle slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 127-134. (in Chinese)
[33]
TIAN S Z, NING T Y, ZHAO H X, WANG B W, LI N, HAN H F, LI Z J, CHI S Y. Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain. PLoS ONE, 2012, 7(12): e51206.

doi: 10.1371/journal.pone.0051206
[34]
CUI Z L, CHEN X P, ZHANG F S. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 2013, 105(5): 1411-1416.

doi: 10.2134/agronj2012.0398
[35]
巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296.
JU X T, GU B J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese)
[36]
赵允格, 邵明安, 张兴昌. 成垄压实施肥对氮素运移及氮肥利用率的影响. 应用生态学报, 2004, 15(1): 68-72.
ZHAO Y G, SHAO M A, ZHANG X C. Impact of localized compaction and ridge fertilization on field nitrate transport and nitrate use efficiency. Chinese Journal of Applied Ecology, 2004, 15(1): 68-72. (in Chinese)
[37]
MORELL F J, LAMPURLANÉS J, ÁLVARO-FUENTES J, CANTERO- MARTÍNEZ C. Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil and Tillage Research, 2011, 117: 76-84.

doi: 10.1016/j.still.2011.09.002
[1] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[2] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[3] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[9] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[10] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[11] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[12] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[13] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[14] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[15] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!