Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2701-2712.doi: 10.3864/j.issn.0578-1752.2023.14.006

• PLANT PROTECTION • Previous Articles     Next Articles

Overexpressing NPR1 from Arabidopsis thaliana Enhanced Resistance to Fusarium Wilt and Powdery Mildew in Cucumis sativus

FENG XiangJun(), WANG HongYu(), YU Jing, CHI ChunYu, DING GuoHua()   

  1. School of Life Science & Technology, Harbin Normal University, Harbin 150025
  • Received:2023-04-17 Accepted:2023-05-17 Online:2023-07-21 Published:2023-07-21
  • Contact: DING GuoHua

Abstract:

【Background】Cucumber (Cucumis sativus) is susceptible to many diseases, especially Fusarium wilt and powdery mildew. Although chemical control is effective, it is limited due to high residue and difficult degradation. Breeding cucumber varieties with broad-spectrum and long-lasting disease resistance is the fundamental strategy to solve this problem. Nonexpressor of pathogenesis-related genes 1 (NPR1) is a key regulator in systemic acquired resistance (SAR), which is involved in regulating the expression of a variety of defense-related genes and affecting plant disease resistance.【Objective】Overexpression of AtNPR1 in cucumber was used to explore the resistance of transgenic cucumber to Fusarium wilt and powdery mildew, and to provide experimental basis for breeding cucumber varieties with stronger and more lasting disease resistance.【Method】The AtNPR1 of Arabidopsis thaliana was cloned, the AtNPR1 overexpression vector was constructed, and the cucumber was transformed by Agrobacterium-mediated method to obtain transgenic cucumber plants with overexpression of AtNPR1. The expression levels of related defense genes in transgenic plants were determined by real-time fluorescence quantitative PCR (qRT-PCR) method. Transgenic plants of T0 generation were selected for resistance identification of Fusarium wilt, and transgenic plants of T1 generation were selected for resistance identification of powdery mildew. After inoculation transgenic plants with Fusarium oxysporum f. sp. cucumerinum and Golovinomyces cichoracearum, the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were quantified.【Result】Eight transgenic plants of the T0 generation were successfully obtained, among which OE#4 and OE#5 exhibited high expression levels of AtNPR1, while OE#3 showed low expression levels. Analysis of the expression level of related defense genes in transgenic plants revealed that those plants overexpressing AtNPR1 exhibited stronger and faster expression of several defense genes. Furthermore, there was a positive correlation between the expression levels of defense genes and AtNPR1 in transgenic plants. Among them, the expression levels of PR1, PR4 and WRKY70 were significantly up-regulated. The results of disease resistance identification of transgenic plants showed that the transgenic plants exhibited more significant resistance, slower onset, mild symptoms, and significantly lower lesion area than wild type (WT) plants when subjected to the stress of Fusarium wilt and powdery mildew. The transgenic T0 plants OE#4 and OE#5 exhibited no discernible lesions 3 days post-inoculation with F. oxysporum f. sp. cucumerinum, but displayed gray-brown lesions after 7 days without any signs of wilting. Conversely, the WT plants showed gray-brown lesions and slight wilting at 3 d post-inoculation, followed by severe leaf wilting at 7 d. After 7 days of inoculation with G. cichoracearum, both T1 generation plants OE#2 and OE#7 as well as wild type (WT) plants exhibited lesions. However, the lesion area in OE#2 and OE#7 was significantly smaller than that in WT. After 15 days of inoculation, chlorosis appeared on the leaves of WT plants while the transgenic plants remained mildly affected. Compared with WT plants, transgenic plants exhibited lower MDA content and maintained higher levels of SOD, POD and CAT activities after inoculation. Additionally, the accumulation of ROS was less.【Conclusion】Overexpression of AtNPR1 in cucumber enhances its resistance against Fusarium wilt and powdery mildew.

Key words: cucumber (Cucumis sativus), AtNPR1, Fusarium wilt, powdery mildew

Table 1

qPCR primers of downstream related genes"

引物名称Primer name 序列Sequence (5′-3′)
qPCR-CsPR1-F TGGAGAAATACGCAAAGGATGG
qPCR-CsPR1-R CAGGCGGATCATAGTTACAAGTCA
qPCR-CsPR2-F CCCTCATTCGTTGGGCATTT
qPCR-CsPR2-R CGGCGTCTTTGTTTGATTGTGA
qPCR-CsPR4-F ATACGGTTGGACTGCCTTCTGT
qPCR-CsPR4-R CGAAGCTCCCGTTTCAGTGTTAG
qPCR-CsPR5-F GGTGCGATGGAGACTTGAGA
qPCR-CsPR5-R ACTATAAGCAGCAGGGCAAACT
qPCR-CsWRKY70-F CAAGTCCAGCGACTGCAAGACA
qPCR-CsWRKY70-R TTGGAGGAGCCGAGCACTATGT
qPCR-CsLOX2-F AATCAAAGCAGCCTTAGCAACAGC
qPCR-CsLOX2-R CCTTGACAATGGTGGATGAAGTGA
qPCR-CsAOS-F AAAAGGATTTGGCTGCTTCTGG
qPCR-CsAOS-R CACGACCTAATTTGGAATCTACCG
qPCR-CsAPX1-F TTCGTCTTGCATGGCACTCTG
qPCR-CsAPX1-R TCCTTGATCGGCTCCAATAGC
qPCR-CsCAT2-F CTTTCTTGTGCCGATTTCCTTC
qPCR-CsCAT2-R AAATTGCCCTCCCTGGTGTA

Fig. 1

PCR identification and qRT-PCR expression determination of transgenic plants"

Fig. 2

Expression levels of defense genes in the downstream of transgenic plants"

Fig. 3

Phenotypes of T0 transgenic plants after inoculation with F. oxysporum f. sp. cucumerinum"

Fig. 4

Antioxidant enzyme activity and ROS content of T0 transgenic plants after inoculation with F. oxysporum f. sp. cucumerinum"

Fig. 5

Phenotype of T1 generation plants after inoculation with G. cichoracearum"

Fig. 6

Antioxidant enzyme activity and ROS content of T1 transgenic plants after inoculation with G. cichoracearum"

[1]
刘兴旺, 翟许玲, 张亚琦, 尹帅, 冯钟萱, 任华中. 黄瓜果实形态建成的遗传及分子基础研究进展. 园艺学报, 2020, 47(9): 1793-1809.
LIU X W, ZHAI X L, ZHANG Y Q, YIN S, FENG Z X, REN H Z. A review on genetic and molecular biology of fruit morphogenesis in cucumber. Acta Horticulturae Sinica, 2020, 47(9): 1793-1809. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0673
[2]
沈虹, 尤超, 张营营, 程芳梅, 郭世荣, 孙锦. 黄瓜白粉病综合防治研究进展. 黑龙江农业科学, 2017(8): 133-137.
SHEN H, YOU C, ZHANG Y Y, CHENG F M, GUO S R, SUN J. Advances in integrated control of cucumber powdery mildew. Heilongjiang Agricultural Sciences, 2017(8): 133-137. (in Chinese)
[3]
毛爱军, 张峰, 张丽蓉, 王永健. 黄瓜品系WIS2757对黄瓜枯萎病生理小种4和黑星病的抗性遗传与连锁分析. 中国农业科学, 2008, 41(10): 3382-3388. doi: 10.3864/j.issn.0578-1752.2008.10.062.

doi: 10.3864/j.issn.0578-1752.2008.10.062
MAO A J, ZHANG F, ZHANG L R, WANG Y J. Analysis on the inheritance of resistance to Fusarium wilt race 4 and cucumber scab and their linkage in cucumber WIS2757. Scientia Agricultura Sinica, 2008, 41(10): 3382-3388. doi: 10.3864/j.issn.0578-1752.2008.10.062. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2008.10.062
[4]
石延霞, 徐玉芳, 谢学文, 柴阿丽, 王微微, 李宝聚. 氟唑活化酯对黄瓜抗枯萎病的诱导作用. 中国农业科学, 2015, 48(19): 3848-3856. doi: 10.3864/j.issn.0578-1752.2015.19.007.

doi: 10.3864/j.issn.0578-1752.2015.19.007
SHI Y X, XU Y F, XIE X W, CHAI A L, WANG W W, LI B J. Effects of FBT on induction of systemic resistance in cucumber against cucumber Fusarium wilt caused by Fusarium oxysporum f. sp.cucumerinum Owen. Scientia Agricultura Sinica, 2015, 48(19): 3848-3856. doi: 10.3864/j.issn.0578-1752.2015.19.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.19.007
[5]
许敏, 王戎杰, 王丽萍, 王美琴. 10种杀菌剂防治黄瓜白粉病田间药效试验. 山西农业科学, 2022, 50(7): 1050-1055.
XU M, WANG R J, WANG L P, WANG M Q. Field efficacy trials of 10 fungicides for controlling cucumber powdery mildew. Journal of Shanxi Agricultural Sciences, 2022, 50(7): 1050-1055. (in Chinese)
[6]
王海利, 张晓慷, 王滢秀, 韩金涛, 张新刚. 黄瓜白粉病拮抗细菌的筛选鉴定及其生防效果. 江苏农业科学, 2019, 47(24): 64-66, 69.
WANG H L, ZHANG X K, WANG Y X, HAN J T, ZHANG X G. Screening and identification of antagonistic bacteria against cucumber powdery mildew and its biocontrol effect. Jiangsu Agricultural Sciences, 2019, 47(24): 64-66, 69. (in Chinese)
[7]
蒲子婧, 张艳菊, 刘东, 代丽婷, 王文博. 黄瓜枯萎病生物防治策略研究进展. 中国蔬菜, 2011(6): 9-14.
PU Z J, ZHANG Y J, LIU D, DAI L T, WANG W B. Research progress in biological control strategies for cucumber wilt. China Vegetables, 2011(6): 9-14. (in Chinese)
[8]
GAFFNEY T, FRIEDRICH L, VERNOOIJ B, NEGROTTO D, NYE G, UKNES S, WARD E, KESSMANN H, RYALS J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 1993, 261(5122): 754-756.

doi: 10.1126/science.261.5122.754 pmid: 17757215
[9]
闫晓寒, 王向尧, 刘培源, 姬朝光, 王丽, 刘雪晴, 李晓瑞, 严汉池. NPR1结构与功能的研究进展. 江苏农业科学, 2021, 49(3): 46-52.
YAN X H, WANG X Y, LIU P Y, JI C G, WANG L, LIU X Q, LI X R, YAN H C. Research progress on structure and function of NPR1. Jiangsu Agricultural Sciences, 2021, 49(3): 46-52. (in Chinese)
[10]
CAO H, BOWLING S A, GORDON A S, DONG X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell, 1994, 6(11): 1583-1592.

doi: 10.2307/3869945
[11]
WU Y, ZHANG D, CHU J Y, BOYLE P, WANG Y, BRINDLE I D, DE LUCA V, DESPRÉS C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports, 2012, 1(6): 639-647.

doi: 10.1016/j.celrep.2012.05.008
[12]
FU Z Q, YAN S, SALEH A, WANG W, RUBLE J, OKA N, MOHAN R, SPOEL S H, TADA Y, ZHENG N, DONG X. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486(7402): 228-232.

doi: 10.1038/nature11162
[13]
CAO H, LI X, DONG X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6531-6536.
[14]
刘琳琳, 甄军波, 刘迪, 欧阳艳飞, 迟吉娜. NPR1调控植物抗病机制及功能研究进展. 中国棉花, 2020, 47(7): 1-6, 19.
LIU L L, ZHEN J B, LIU D, OUYANG Y F, CHI J N. Advances of the mechanism and function of disease resistance regulated by NPR1 in plants. China Cotton, 2020, 47(7): 1-6, 19. (in Chinese)
[15]
MAKANDAR R, ESSIG J S, SCHAPAUGH M A, TRICK H N, SHAH J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 2006, 19(2): 123-129.

doi: 10.1094/MPMI-19-0123
[16]
POTLAKAYALA S D, DELONG C, SHARPE A, FOBERT P R. Conservation of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 function between Arabidopsis thaliana and Brassica napus. Physiological and Molecular Plant Pathology, 2007, 71(4/6): 174-183.

doi: 10.1016/j.pmpp.2008.01.003
[17]
WALLY O, JAYARAJ J, PUNJA Z K. Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta, 2009, 231(1): 131-141.

doi: 10.1007/s00425-009-1031-2
[18]
LE HENANFF G, FARINE S, KIEFFER-MAZET F, MICLOT A S, HEITZ T, MESTRE P, BERTSCH C, CHONG J. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta, 2011, 234(2): 405-417.

doi: 10.1007/s00425-011-1412-1
[19]
刘旭, 张诺, 徐林, 孙卓楠, 张宝俊. 谷子NPR1基因特征及响应禾生指梗霉侵染的表达分析. 山西农业科学, 2022, 50(9): 1233-1239.
LIU X, ZHANG N, XU L, SUN Z N, ZHANG B J. Characteristics of NPR1 gene in foxtail millet and expression analysis in response to Sclerospora graminicola infection. Journal of Shanxi Agricultural Sciences, 2022, 50(9): 1233-1239. (in Chinese)
[20]
曲东, 燕飞, 刘欣瑞, 彭雪, 张羽, 秦公伟. 猕猴桃AcNPR1基因克隆及抗病响应表达分析. 西北农业学报, 2022, 31(6): 718-728.
QU D, YAN F, LIU X R, PENG X, ZHANG Y, QIN G W. Cloning of AcNPR1 gene in kiwifruit and expression analysis of disease resistance response. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(6): 718-728. (in Chinese)
[21]
陈培雯, 张立, 陈学进, 李新峥, 李庆飞. 中国南瓜CmNPR1基因的克隆和表达分析. 西北植物学报, 2021, 41(12): 2038-2045.
CHEN P W, ZHANG L, CHEN X J, LI X Z, LI Q F. Cloning and expression analysis of CmNPR1 gene in Cucurbita moschata. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(12): 2038-2045. (in Chinese)
[22]
刘缙, 田花丽, 王亚红, 郭蔼光. 黄瓜转新型抗菌蛋白基因GNK2-1及其抗枯萎病的研究. 植物学报, 2010, 45(4): 411-418.
LIU J, TIAN H L, WANG Y H, GUO A G. Overexpression of a novel antifungal protein gene GNK2-1results in elevated resistance of transgenic cucumber to Fusarium oxysporum. Chinese Bulletin of Botany, 2010, 45(4): 411-418. (in Chinese)
[23]
周红梅, 毛爱军, 张丽蓉, 张峰, 王永健, 杨文才. 黄瓜枯萎病接种方法及抗性遗传的研究. 华北农学报, 2010, 25(4): 186-190.

doi: 10.7668/hbnxb.2010.04.039
ZHOU H M, MAO A J, ZHANG L R, ZHANG F, WANG Y J, YANG W C. Research on inoculation method and the inheritance of resistance to Fusarium oxysporum f. sp.cucumerinum on cucumber. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 186-190. (in Chinese)
[24]
SCHINDELIN J, RUEDEN C T, HINER M C, ELICEIRI K W. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 2015, 82(7/8): 518-529.

doi: 10.1002/mrd.22489
[25]
李小方, 张志良. 植物生理学实验指导. 5版. 北京: 高等教育出版社, 2016: 320-322.
LI X F, ZHANG Z L. Experimental Instruction of Plant Physiology. 5th ed. Beijing: Higher Education Press, 2016: 320-322. (in Chinese)
[26]
贾忠明, 刘峰, 慕卫, 魏光, 刘彦良. 黄瓜白粉病菌接种及对杀菌剂敏感性测定方法. 植物保护学报, 2006, 33(1): 99-103.
JIA Z M, LIU F, MU W, WEI G, LIU Y L. Study on the inoculation and fungicide sensitivity assay method of Sphaerotheca fuliginea on cucumber. Journal of Plant Protection, 2006, 33(1): 99-103. (in Chinese)
[27]
黄瓜主要病害抗病性鉴定技术规程第2部分: 黄瓜抗白粉病鉴定技术规程: NY/T 1857. 2-2010. 北京: 中国农业出版社, 2010: 3-4.
Cucumber main disease resistance identification technical regulations- Part 2: Cucumber powdery mildew resistance identification technical regulations: NY/T 1857. 2-2010. Beijing: China Agriculture Press, 2010: 3-4. (in Chinese)
[28]
INTANA W, WONGLOM P, SUWANNARACH N, SUNPAPAO A. Trichoderma asperelloides PSU-P1 induced expression of pathogenesis- related protein genes against gummy stem blight of muskmelon (Cucumis melo) in field evaluation. Journal of Fungi, 2022, 8(2): 156.

doi: 10.3390/jof8020156
[29]
栗小英, 高琳, 张艳俊, 王海燕, 刘大群. 叶锈菌及信号分子诱导小麦TcLr35中β-1,3-葡聚糖酶基因的表达分析. 中国农业科学, 2014, 47(14): 2774-2783. doi: 10.3864/j.issn.0578-1752.2014.14.008.

doi: 10.3864/j.issn.0578-1752.2014.14.008
LI X Y, GAO L, ZHANG Y J, WANG H Y, LIU D Q. Expression and analysis of β-1, 3-glucanase gene in wheat TcLr35 induced by wheat leaf rust pathogen and signal molecule. Scientia Agricultura Sinica, 2014, 47(14): 2774-2783. doi: 10.3864/j.issn.0578-1752.2014.14.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.14.008
[30]
DUTT M, BARTHE G, IREY M, GROSSER J. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE, 2015, 10(9): e0137134.

doi: 10.1371/journal.pone.0137134
[31]
任秋红, 黄军艳, 毛晗, 田保明, 刘胜毅. 甘蓝型油菜LOX2基因在MeJA、BTH和核盘菌诱导下的表达. 河南农业科学, 2010, 39(7): 22-25.

doi: 10.3969/j.issn.1004-3268.2010.07.006
REN Q H, HUANG J Y, MAO H, TIAN B M, LIU S Y. Brassica napus LOX2 gene expression induced by methyl jasmonate (MeJA), benzothiadiazole (BTH), and Sclerotinia sclerotiorum. Journal of Henan Agricultural Sciences, 2010, 39(7): 22-25. (in Chinese)
[32]
解军辉, 寇艳君, 沈祥陵, 邱结华. 水稻茉莉酸合成基因OsAOS1在稻瘟病抗性中的功能分析. 分子植物育种, 2022, 20(20): 6631-6637.
XIE J H, KOU Y J, SHEN X L, QIU J H. Functional analysis of rice jasmonic acid synthesis gene OsAOS1 in rice blast resistance. Molecular Plant Breeding, 2022, 20(20): 6631-6637. (in Chinese)
[33]
LIN W C, LU C F, WU J W, CHENG M L, LIN Y M, YANG N S, BLACK L, GREEN S K, WANG J F, CHENG C P. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Research, 2004, 13(6): 567-581.

doi: 10.1007/s11248-004-2375-9
[34]
KUMAR V, JOSHI S G, BELL A A, RATHORE K S. Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Research, 2013, 22(2): 359-368.

doi: 10.1007/s11248-012-9652-9
[35]
秦智伟, 王奕童, 刘东, 辛明, 周秀艳. 黄瓜CsCBS克隆及其对霜霉病和棒孢叶斑病抗性功能的初步验证. 东北农业大学学报, 2018, 49(2): 39-47.
QIN Z W, WANG Y T, LIU D, XIN M, ZHOU X Y. CsCBS cloning of cucumber and preliminary verification of resistance to downy mildew and leaf spot disease. Journal of Northeast Agricultural University, 2018, 49(2): 39-47. (in Chinese)
[36]
朱金成, 刘戈辉, 张鹏飞, 郭文婷, 张薇. 转GhB301基因棉花抗枯萎病机理研究. 西北农业学报, 2022, 31(7): 846-853.
ZHU J C, LIU G H, ZHANG P F, GUO W T, ZHANG W. Resistance function of transgenic cotton with GhB301gene to Fusarium wilt. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(7): 846-853. (in Chinese)
[37]
沙仁和, 兰黎明, 王三红, 罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理. 中国农业科学, 2021, 54(24): 5220-5229. doi: 10.3864/j.issn.0578-1752.2021.24.005.

doi: 10.3864/j.issn.0578-1752.2021.24.005
SHA R H, LAN L M, WANG S H, LUO C G. The resistance mechanism of apple transcription factor MdWRKY40b to powdery mildew. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229. doi: 10.3864/j.issn.0578-1752.2021.24.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.24.005
[38]
PENG M, KUC J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 1992, 82(6): 696-699.

doi: 10.1094/Phyto-82-696
[39]
LUAN Q Q, CHEN C H, LIU M, LI Q, WANG L, REN Z H. CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Science, 2019, 279: 59-69.

doi: 10.1016/j.plantsci.2018.11.002
[40]
马艳玲, 吴凤芝, 刘守伟. 抗感枯萎病黄瓜品种的病理组织结构学研究. 植物保护, 2008, 34(1): 81-84.
MA Y L, WU F Z, LIU S W. Pathologic structures of cucumber cultivars with different resistance to Fusarium oxysporum. Plant Protection, 2008, 34(1): 81-84. (in Chinese)
[41]
董毅敏, 徐建华, 郭季芳. 抗病和感病黄瓜品种感染白粉病菌后几种酶活性的变化. 植物学报, 1990, 32(2): 160-164.
DONG Y M, XU J H, GUO J F. The changes of some enzymes activities from cucumber leaves after inoculation with cucumber powdery mildew. Acta Botanica Sinica, 1990, 32(2): 160-164. (in Chinese)
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[3] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[4] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[5] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[6] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[7] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[8] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[9] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[10] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
[11] ChanJing FENG,GuangZheng SUN,Yang WANG,Qing MA. Functional Analysis of Gene ShARPC5 Involved in Tomato Resistance to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 65-73.
[12] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
[13] HAO JunJie, LI Lei, WANG Bo, QIN YuHong, CUI Jian, WANG Ying, WANG PeiSheng, JIANG ZhiXun, SUN JiLu, WANG ZhenQing, YUE Huan, ZHANG ShouCai . Fine Mapping and Analysis Candidate Gene to Powdery Mildew in Cucumber (Cucumis sativus L.) [J]. Scientia Agricultura Sinica, 2018, 51(17): 3427-3434.
[14] WANG Yu-hai, HE Fang, BAO Yin-guang, MING Dong-feng, DONG Lei, HAN Qing-dian, LI Ying-ying, WANG Hong-gang. Development and Genetic Analysis of a Novel Wheat-Aegilops Germplasm TA002 Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2016, 49(3): 418-428.
[15] HAN Jin-huan, WANG Li-xia, GAO Hong-bo, Lü Gui-yun. Cloning and Expression Analysis of Fusarium Wilt Resistance- Related Gene ClMYB Transcription Factor from Citrullus lanatus [J]. Scientia Agricultura Sinica, 2016, 49(17): 3359-3369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!