Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3822-3830.doi: 10.3864/j.issn.0578-1752.2022.19.011

• HORTICULTURE • Previous Articles     Next Articles

Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities

MA YuQuan(),WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi(),WANG HaiBo()   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture and Rural Affairs/Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits of Liaoning Province, Xingcheng 125100, Liaoning
  • Received:2021-01-04 Accepted:2022-05-17 Online:2022-10-01 Published:2022-10-10
  • Contact: FengZhi LIU,HaiBo WANG E-mail:myq98700@163.com;liufengzhi6699@126.com;haibo8316@163.com

Abstract:

【Objective】 In order to screen high-efficiency grape rootstocks with different nutrients, the nutrient uptake and utilization efficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in 87-1 grape variety grafted with 12 rootstock varieties were studied, which was beneficial to provide a theoretical basis for the selection of rootstocks and the improvement of fertilizer utilization in grape production. 【Method】 From January 2020 to November 2021, the whole grape plants sampled from 87-1 grape variety grafted with 12 rootstock varieties at the key growth stages, such as germination stage, initial flowering stage, end bloom stage, seed development stage, veraison stage, maturation stage and deciduous stage, were carried out for two consecutive years, respectively. Based on mineral element content of N, P, K, Ca, and Mg in plants, the element accumulation per plant, dry matter production efficiency (DMPE), fruit production efficiency (FPE) and harvest index (HI) of each combination were calculated. And then, the differences between each indexes were analyzed, and the effects of different rootstocks on the absorption and utilization of nitrogen, phosphorus, potassium, calcium and magnesium were compared. 【Result】 The significant differences in the accumulation of N, P, K, Ca, and Mg per plant among different stock were found, 87-1/34EM of which had the highest accumulation of N, P, K, Ca, and Mg. Using DMPE and FPE as indicators, the biological and economic utilization efficiencies of nutrients (BUE and EUE) were evaluated. N and K of 87-1/420A combination had the highest DMPE, and 87-1/Beta and 87-1/101-14 combinations had higher DMPE of P and Ca. DMPE of Mg in 87-1/5BB combination performed better. The FPE of K was the best within 1103P rootstock, while the 101-14 rootstock had the highest FPE of N, P, Ca and Mg. The HI reflected the absorption and distribution of nutrients in the fruit. Under different rootstock treatments, the Beta rootstock had the highest HI of P and K, and the HI of N, while Ca and Mg was the highest within SO4, 5BB and Huapu No. 1 rootstock, respectively. 【Conclusion】 The grape absorptions of N, P, K, Ca, and Mg within different rootstocks were significantly different, and the absorption capacity and utilization efficiency showed inconsistency. Beta and 101-14 rootstocks had higher BUE and EUE of P and Ca. The BUE and EUE of K within 1103P rootstock was higher. 420A and 5BB rootstocks performed the best BUE in terms of N and Mg, respectively, while 101-14 rootstocks performed best EUE in terms of those. In addition, The Beta rootstocks promoted the distribution of P and K to fruits. SO4, 5BB and Huapu No. 1 rootstocks promoted the distribution of N, Ca and Mg to fruits, respectively.

Key words: grape rootstock, nitrogen, phosphorus, potassium, calcium, magnesium, absorption and utilization

Table 1

Effects of different rootstocks on nitrogen absorption and utilization of facility 87-1 grape variety"

砧穗组合
Rootstock-scion combination
单株元素累积量
Element accumulation
per plant (g)
干物质生产效率
Dry matter production efficiency (g∙g-1)
果实生产效率
Fruit production efficiency (g∙g-1)
收获指数
Harvest index
(%)
87-1/HPYH 16.14±0.86g 77.86±3.86e 135.64±6.77cd 22.37±1.84abc
87-1/Beta 16.75±0.83fg 89.66±4.28cd 157.78±7.54b 23.69±1.60ab
87-1/LOT 22.40±0.31b 80.66±1.27e 107.19±1.70e 23.99±2.86ab
87-1/101-14 20.35±0.02cd 99.86±2.91b 198.82±8.08a 19.09±1.14bcdef
87-1/5BB 17.30±0.96efg 93.46±0.88bc 132.50±3.76cd 21.08±0.87bcd
87-1/SO4 24.85±0.65a 79.76±2.14e 144.88±6.51bc 26.72±2.63a
87-1/34EM 26.29±1.66a 84.46±1.27de 103.96±4.20ef 20.52±4.48bcde
87-1/1103P 18.81±0.54de 84.16±2.38de 150.42±3.83b 15.14±2.49ef
87-1/225R 20.33±0.11cd 83.56±0.03de 92.50±0.18f 21.86±2.89abcd
87-1/420A 17.83±0.79ef 110.6±4.95a 135.70±6.25cd 16.80±3.66def
87-1/140R 21.57±0.13bc 92.66±5.62c 128.93±10.93d 17.17±1.41cdef
87-1/110R 17.81±0.26ef 83.16±2.27de 105.24±3.84ef 14.04±1.23f

Table 2

Effects of different rootstocks on phosphorus absorption and utilization of facility 87-1 grape variety"

砧穗组合
Rootstock-scion combination
单株元素累积量
Element accumulation
per plant (g)
干物质生产效率
Dry matter production efficiency (g∙g-1)
果实生产效率
Fruit production efficiency (g∙g-1)
收获指数
Harvest index
(%)
87-1/HPYH 3.76±0.06d 283.49±4.33c 431.41±8.23cd 26.21±2.29bc
87-1/Beta 3.70±0.07d 327.06±5.43ab 516.86±17.93ab 33.01±1.35a
87-1/LOT 5.56±0.14b 274.60±6.27cd 340.45±6.88ef 21.37±3.56de
87-1/101-14 4.27±0.21cd 357.62±16.76a 543.41±50.08a 26.94±0.84bc
87-1/5BB 4.25±0.10cd 306.20±18.65bc 398.39±33.41de 22.29±4.49cd
87-1/SO4 5.64±0.26b 276.94±8.52cd 439.01±5.31cd 27.62±1.99b
87-1/34EM 7.15±0.35a 243.01±23.83d 263.45±38.72g 18.13±0.88def
87-1/1103P 5.40±0.26b 271.55±11.34cd 460.53±16.14bc 16.29±0.48f
87-1/225R 5.23±0.29b 285.55±9.50c 301.98±6.65fg 21.39±0.44de
87-1/420A 5.40±0.01b 280.83±0.37cd 300.28±8.47fg 18.31±1.27def
87-1/140R 6.57±0.15a 272.38±17.13cd 356.03±33.16ef 16.78±2.58ef
87-1/110R 4.47±0.66c 289.77±42.70bc 325.05±48.65f 14.55±1.09f

Table 3

Effects of different rootstocks on potassium absorption and utilization of facility 87-1 grape variety"

砧穗组合
Rootstock-scion combination
单株元素累积量
Element accumulation
per plant (g)
干物质生产效率
Dry matter production efficiency (g∙g-1)
果实生产效率
Fruit production efficiency (g∙g-1)
收获指数
Harvest index
(%)
87-1/HPYH 10.99±1.07g 99.61±10.58cd 159.92±18.70bc 50.40±2.52ab
87-1/Beta 12.58±1.22fg 97.46±9.08cd 158.74±14.03bc 51.32±0.11a
87-1/LOT 16.57±0.72bc 93.40±7.15d 116.34±12.13de 49.29±1.12ab
87-1/101-14 15.69±0.32bcd 99.52±2.94cd 166.92±7.29bc 39.33±0.49de
87-1/5BB 11.95±0.26fg 108.93±7.33bcd 141.61±13.58cde 43.55±1.49cd
87-1/SO4 17.15±1.18ab 101.14±9.72cd 176.59±19.69b 49.02±2.09ab
87-1/34EM 19.18±2.15a 98.70±16.99cd 113.45±23.29e 39.88±0.66de
87-1/1103P 11.51±0.30g 129.87±4.04a 224.09±7.86a 39.03±0.57de
87-1/225R 13.84±0.64def 109.17±12.02bcd 115.74±16.35de 45.30±3.72bc
87-1/420A 12.81±0.53efg 123.49±1.03ab 141.54±1.69cde 36.84±1.03e
87-1/140R 14.88±0.83cde 114.01±6.50abc 144.75±8.47cd 35.17±2.75e
87-1/110R 12.97±0.53efg 101.61±4.64cd 116.53±6.40de 28.55±5.82f

Table 4

Effects of different rootstocks on calcium absorption and utilization of facility 87-1 grape variety"

砧穗组合
Rootstock-scion combination
单株元素累积量
Element accumulation
per plant (g)
干物质生产效率
Dry matter production
efficiency (g∙g-1)
果实生产效率
Fruit production efficiency (g∙g-1)
收获指数
Harvest index
(%)
87-1/HPYH 13.94±0.05e 76.48±0.18bc 117.35±0.85bc 11.37±2.84ab
87-1/Beta 13.96±0.36e 86.85±2.50a 140.13±4.80a 11.41±2.60ab
87-1/LOT 21.89±0.37bc 68.68±1.27cde 82.96±2.16de 6.63±0.40b
87-1/101-14 20.24±0.74cd 81.10±1.05ab 143.85±1.11a 10.71±0.41ab
87-1/5BB 18.62±0.72d 71.19±0.05cde 93.59±2.11d 13.65±3.30a
87-1/SO4 23.15±1.14b 72.86±1.26bcde 124.64±0.24b 10.09±0.87ab
87-1/34EM 28.36±2.00a 59.21±5.18f 61.73±7.17f 8.76±0.90ab
87-1/1103P 21.88±0.37bc 65.14±1.39def 106.33±3.41c 8.08±0.26ab
87-1/225R 20.39±1.14cd 73.35±7.88bcd 77.43±10.44e 11.16±0.96ab
87-1/420A 21.49±0.42bc 72.46±4.47bcde 82.02±7.77de 10.76±5.20ab
87-1/140R 23.65±0.69b 69.63±2.65cde 83.43±6.54de 10.50±4.15ab
87-1/110R 20.29±2.82cd 64.30±8.70ef 73.71±9.53ef 7.18±3.05b

Table 5

Effects of different rootstocks on magnesium absorption and utilization of facility 87-1 grape variety"

砧穗组合
Rootstock-scion combination
单株元素累积量
Element accumulation
per plant (g)
干物质生产效率
Dry matter production efficiency (g∙g-1)
果实生产效率
Fruit production efficiency (g∙g-1)
收获指数
Harvest index
(%)
87-1/HPYH 1.83±0.01g 605.09±15.75b 984.21±43.17b 16.91±1.52a
87-1/Beta 2.32±0.03f 523.09±9.11cd 842.75±21.10c 13.59±0.53bcd
87-1/LOT 3.02±0.03d 499.50±2.94de 608.37±2.82fg 10.61±0.95ef
87-1/101-14 3.08±0.19cd 583.60±8.06b 1099.62±12.16a 12.16±0.07cdef
87-1/5BB 1.91±0.13g 688.38±52.09a 901.45±72.91bc 15.97±1.68ab
87-1/SO4 3.09±0.16cd 502.62±21.51d 813.67±27.25cd 16.00±0.91ab
87-1/34EM 3.86±0.22a 445.78±33.26ef 480.51±44.14h 11.46±0.81cdef
87-1/1103P 3.34±0.08bc 432.74±10.87f 723.12±19.84de 14.08±0.97bc
87-1/225R 2.87±0.06de 504.98±1.74d 524.60±11.19gh 11.23±1.01def
87-1/420A 2.71±0.04e 578.87±3.86b 660.14±15.17ef 13.40±0.37bcde
87-1/140R 3.40±0.29b 513.14±52.23cd 642.18±60.98ef 10.75±0.04ef
87-1/110R 2.58±0.05ef 566.24±14.35bc 651.40±50.67ef 10.37±3.15f
[1] 韩晓, 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 不同砧木对“87-1”葡萄叶片质量及净光合速率的影响. 中国南方果树, 2017(3): 143-147.
HAN X, WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z. Effects of different rootstocks on the leaf quality and net photosynthetic rate of 87-1 grape. South China Fruits, 2017(3): 143-147. (in Chinese)
[2] BRUNETTO G, MELO G W B D, TOSELLI M, QUARTIERI M, TAGLIAVINI M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura, 2015, 37(4): 1089-1104.
doi: 10.1590/0100-2945-103/15
[3] 陆景陵. 植物营养学. 上册. 北京: 中国农业大学出版社, 1994.
LU J L. Plant Nutrition (I). Beijing: China Agricultural University Press, 2007. (in Chinese)
[4] 马蕾. 红地球葡萄需肥规律与化肥减施研究[D]. 银川: 宁夏大学, 2018.
MA L. Study on fertilizer requirement of Red Globe grape and reduced application of chemical fertilizer[D]. Yinchuan: Ningxia University, 2018. (in Chinese)
[5] 郑秋玲, 张超杰, 刘万好, 王婷, 刘珅坤, 唐美玲. 不同砧木对“赤霞珠”葡萄生长及贮藏营养的影响. 中国南方果树, 2014, 43(6): 102-104.
ZHENG Q L, ZHANG C J, LIU W H, WANG T, LIU K K, TANG M L. Effects of different rootstocks on the growth and storage nutrition of Cabernet Sauvignon grape. South China Fruits, 2014, 43(6): 102-104. (in Chinese)
[6] KRPES C. Stilbenes-important constituents of grapevine and their effect on resistance to grey mould. Vinohrad, Bratislava, 1993, 31(2): 21-22.
[7] REYNOLDS A G, WARDLE D A. Rootstocks impact vine performance and fruit composition of grapes in British Columbia. HortTechnology, 2001, 11(3): 419-427.
doi: 10.21273/HORTTECH.11.3.419
[8] MELNYK C W, MEYEROWITZ E M. Plant grafting. Current Biology, 2015, 25(5): 183-188.
doi: 10.1016/j.cub.2015.01.029 pmid: 25734263
[9] KOCSIS L, LEHOCZKY É. The significance of yield production and sugar content of the grapejuice with macronutrients in grape rootstock- scion combinations on dry climatic condition. Communications in Soil Science and Plant Analysis, 2002, 33(15/16/17/18): 3159-3166. doi: 10.1081/CSS-120014696.
doi: 10.1081/CSS-120014696
[10] 孙行杰, 张禹, 刘万好, 张超杰, 唐美玲, 郑秋玲. 不同砧木对夏黑果实及树体贮藏营养的影响. 中国南方果树, 2016, 45(3): 135-137. doi: 10.13938/j.issn.1007-1431.20150670.
doi: 10.13938/j.issn.1007-1431.20150670
SUN X J, ZHANG Y, LIU W H, ZHANG C J, TANG M L, ZHENG Q L. Effects of different rootstocks on the storage nutrients of Summer Black fruits and trees. South China Fruits, 2016, 45(3): 135-137. doi: 10.13938/j.issn.1007-1431.20150670. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20150670
[11] 秦嗣军, 王铭, 郭太君, 贺红霞, 王喜荣. 双优山葡萄叶柄内矿质营养动态变化的研究. 吉林农业大学学报, 2001(4): 47-50.
QIN S J, WANG M, GUO T J, HE H X, WANG X R. The research on the dynamic variations of the mineral elements in the leafstalks of Shuangyou Vitis amurensis rupr. Journal of Jilin Agricultural University, 2001(4): 47-50. (in Chinese)
[12] CICCARESE A, STELLACCI A M, GENTILESCO G, RUBINO P. Effectiveness of pre- and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biology and Technology, 2013, 75: 135-141.
doi: 10.1016/j.postharvbio.2012.08.010
[13] 管雪强, 杨阳, 王恒振, 郭成士, 关军锋. 喷钙对红地球葡萄果实钙、果胶含量和品质的影响. 植物营养与肥料学报, 2014, 20(1): 179-185.
GUAN X Q, YANG Y, WANG H Z, GUO C S, GUAN J F. Effect of spraying calcium on contents of calcium and pectin and fruit quality of Red Globe grape (Vitis vinifera L.). Journal of Plant Nutrition and Fertilizers, 2014, 20(1): 179-185. (in Chinese)
[14] 骆萌, 伍国红, 许文平, 骆强伟, 娄玉穗, 孙锋, 王世平. 新疆吐鲁番地区‘无核白’葡萄水分和矿质元素周年吸收规律研究. 园艺学报, 2017, 44(10): 1849-1860. doi: 10.16420/j.issn.0513-353x.2016-0875.
doi: 10.16420/j.issn.0513-353x.2016-0875
LUO M, WU G H, XU W P, LUO Q W, LOU Y S, SUN F, WANG S P. Water and mineral elements uptake patterns of Thompson seedless’ grapevine in Turpan, Xinjiang. Acta Horticulturae Sinica, 2017, 44(10): 1849-1860. doi: 10.16420/j.issn.0513-353x.2016-0875. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0875
[15] BALIHAR V, FAGERIA N, HE Z. Nutrient utilization efficiency of crops. Communications in Soil Science and Plant Analysis, 2001, 32: 921-950.
doi: 10.1081/CSS-100104098
[16] EHDAIE B, SHAKIBA M R, WAINES J G. Sowing date and nitrogen input influence nitrogen-use efficiency in spring bread and durum wheat genotypes. Journal of Plant Nutrition, 2001, 24(6): 899-919. doi: 10.1081/PLN-100103781.
doi: 10.1081/PLN-100103781
[17] 马爱红, 孙秀波, 刘长江, 袁军伟, 韩斌, 郭紫娟, 赵胜建. 葡萄多抗砧木的选择与利用. 河北农业科学, 2011, 15(8): 22-25. doi: 10.3969/j.issn.1088-1631.2011.08.007.
doi: 10.3969/j.issn.1088-1631.2011.08.007
MA A H, SUN X B, LIU C J, YUAN J W, HAN B, GUO Z J, ZHAO S J. Selection and utilization of grape rootstocks with multiple resistance. Journal of Hebei Agricultural Sciences, 2011, 15(8): 22-25. doi: 10.3969/j.issn.1088-1631.2011.08.007. (in Chinese)
doi: 10.3969/j.issn.1088-1631.2011.08.007
[18] 马玉坤, 贾永芳, 马静芳. 砧木对红地球葡萄生长和果实品质的影响. 湖北农业科学, 2010, 49(1): 101-104. doi: 10.3969/j.issn.0439-8114.2010.01.032.
doi: 10.3969/j.issn.0439-8114.2010.01.032
MA Y K, JIA Y F, MA J F. Effects of rootstock on growth and fruit quality of red globe grapevines. Hubei Agricultural Sciences, 2010, 49(1): 101-104. doi: 10.3969/j.issn.0439-8114.2010.01.032. (in Chinese)
doi: 10.3969/j.issn.0439-8114.2010.01.032
[19] 王晓芳, 翟衡, 杜远鹏, 厉恩茂, 相昆, 魏树伟. 葡萄不同砧穗组合的营养特征分析. 中外葡萄与葡萄酒, 2007(1): 15-18.
WANG X F, ZHAI H, DU Y P, LI E M, XIANG K, WEI S W. Analysis on nutritional characteristics of different scion/rootstock combinations in grapevine. Sino-Overseas Grapevine & Wine, 2007(1): 15-18. (in Chinese)
[20] WHITE P J, HAMMOND J P, KING G J, BOWEN H C, HAYDEN R M, MEACHAM M C, SPRACKLEN W P, BROADLEY M R. Genetic analysis of potassium use efficiency in Brassica oleracea. Annals of Botany, 2009, 105(7): 1199-1210. doi: 10.1093/aob/mcp253.
doi: 10.1093/aob/mcp253
[21] 陈波浪, 盛建东, 蒋平安, 侯静. 不同棉花品种钾素吸收利用差异的比较. 植物营养与肥料学报, 2009, 15(5): 1154-1159.
CHEN B L, SHENG J D, JIANG P G, HOU J. Comparison of potassium absorption and utilization for different cotton varieties. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1154-1159. (in Chinese)
[22] KANAMPIU F K, RAUN W R, JOHNSON G V. Effect of nitrogen rate on plant nitrogen loss in winter wheat varieties. Journal of Plant Nutrition, 1997, 20(2/3): 389-404.
doi: 10.1080/01904169709365259
[23] 卢晓佩, 姜存仓, 董肖昌, 吴秀文, 闫磊. 硼利用效率不同的柑橘砧木光合性能差异研究. 植物营养与肥料学报, 2017, 23(2): 476-483.
LU X P, JIANG C C, DONG X C, WU X W, YAN L. Leaf photosynthetic characteristics of citrus rootstocks with different boron efficiency. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 476-483. (in Chinese)
[24] RUIZ J M, RIVERO R M, CERVILLA L M, CASTELLANO R, ROMERO L. Grafting to improve nitrogen-use efficiency traits in tobacco plants. Journal of the Science of Food and Agriculture, 2006, 86(6): 1014-1021.
doi: 10.1002/jsfa.2450
[25] 季萌萌, 彭玲, 文炤, 姜翰, 葛顺峰, 姜远茂. 供磷水平对苹果砧木氮、磷吸收和利用特性的影响. 植物营养与肥料学报, 2015, 21(4): 1016-1021.
JI M M, PENG L, WEN Z, JIANG H, GE S F, JIANG Y M. Nitrogen and phosphorus absorption and utilization characteristics of apple rootstocks under different phosphorus levels. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 1016-1021. (in Chinese)
[26] 许全宝. 不同黄瓜砧木氮素利用效率评价及砧木嫁接对黄瓜幼苗的影响[D]. 武汉: 华中农业大学, 2011.
XU Q B. Evaluation of nitrogen utilization efficiency of different rootstocks and effect of grafting on cucumber seedlings[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[27] 刘娜. 西瓜氮素养分高效吸收利用的机制研究[D]. 杭州: 浙江大学, 2013.
LIU N. Mechanism of high nitrogen absorption and utilization efficiency in watermelon[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[28] 丁玉川, 陈明昌, 程滨, 李丽君, 李典友. 不同大豆品种磷吸收利用特性比较研究. 西北植物学报, 2005(9): 1791-1797.
DING Y C, CHEN M C, CHENG B, LI L J, LI D Y. Phosphorous uptakes and uses of different soybean varieties. Acta Botanica Boreali-Occidentalia Sinica, 2005(9): 1791-1797. (in Chinese)
[29] 常聪. 五种不同基因型苹果砧木钾吸收利用效率差异研究[D]. 杨凌: 西北农林科技大学, 2014.
CHANG C. Differences in the efficiency of potassium (k) uptake and use in five apple rootstock genotypes[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[30] CHEN X Y, KIM J Y. Transport of macromolecules through plasmodesmata and the phloem. Physiologia Plantarum, 2006, 126(4): 560-571.
doi: 10.1111/j.1399-3054.2006.00630.x
[31] KEHR J, BUHTZ A. Long distance transport and movement of RNA through the phloem. Journal of Experimental Botany, 2007, 59(1): 85-92. doi: 10.1093/jxb/erm176.
doi: 10.1093/jxb/erm176
[32] 吴伟民, 王西成, 王庆莲, 蔡伟建, 赵密珍. 砧木对夏黑葡萄营养生长、果实品质及矿质元素含量的影响. 中外葡萄与葡萄酒, 2014(5): 14-17, 21.
WU W M, WANG X C, WANG Q L, CAI W J, ZHAO M Z. Effects of different rootstocks on vegetative growth, fruit quality and mineral element contents of Summer Black grapevine. Sino-Overseas Grapevine & Wine, 2014(5): 14-17, 21. (in Chinese)
[33] CLARK R B, DUNCAN R R. Improvement of plant mineral nutrition through breeding. Field Crops Research, 1991, 27(3): 219-240.
doi: 10.1016/0378-4290(91)90063-2
[34] 和雅妮, 奚晓军, 查倩, 殷向静, 蒋爱丽. 葡萄果实矿质元素与品质的相关性及通径分析. 江苏农业科学, 2022, 50(2): 154-160.
HE N Y, XI X J, CHA Q, YIN X J, JIANG A L. Correlation and path analysis of mineral elements and berry quality of grape. Jiangsu Agricultural Sciences, 2022, 50(2): 154-160. (in Chinese)
[35] MASSAI R, REMORINI D, TATTINI M. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant and Soil, 2004, 259(1/2): 153-162.
doi: 10.1023/B:PLSO.0000020954.71828.13
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[10] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[11] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[12] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[13] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[14] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[15] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!