Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3411-3425.doi: 10.3864/j.issn.0578-1752.2022.17.012

• HORTICULTURE • Previous Articles     Next Articles

Screening and Application of Universal SSR Molecular Marker Primers in Actinidia

HU GuangMing1,2(),ZHANG Qiong1,HAN Fei1,LI DaWei1,LI ZuoZhou1,WANG Zhi1,ZHAO TingTing1,TIAN Hua1,LIU XiaoLi1,ZHONG CaiHong1()   

  1. 1Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074
    2University of Chinese Academy of Sciences, Beijing 100049
  • Received:2021-11-30 Accepted:2022-02-21 Online:2022-09-01 Published:2022-09-07
  • Contact: CaiHong ZHONG E-mail:wangyi_guangming@163.com;zhongch@wbgcas.cn

Abstract:

【Objective】 Based on the whole genome data of kiwifruit, a batch of SSR primers with high polymorphism and strong universality were developed and screened to lay a foundation for genetic diversity analysis and variety identification of kiwifruit germplasm resources. 【Method】 Based on the whole genome sequence of Hongyang kiwifruit, 435 pairs of SSR primers were designed and synthesized, and the allelic variation was detected by fluorescence labeled capillary electrophoresis. Firstly, five kiwifruit germplasm resources with large genetic differences were used to screen the effectiveness of primers. Secondly, 16 kiwifruit germplasm resources from 9 species or hybrid combinations were selected for primer re-screening. Finally, 225 germplasm resources belonging to 51 types of Actinidia in the National Actinidia Germplasm Repository were analyzed by core primers.【Result】 From 435 pairs of primers, 216 pairs of valid primers were initially screened, and 67 pairs of primers distributed on 29 chromosomes were identified as the final core primers after re-screening. Using 67 SSR markers, a total of 842 observed alleles (Na) were detected with 6-18 alleles (mean = 12.57) per locus; the effective number of allele (Ne) ranged from 3.27 (A-Geo-149) to 13.84 (A-Geo-407) with an average of 8.18; the observed heterozygosity (Ho) ranged from 0.60 (A-Geo-073) to 0.93 (A-Geo-158) with an average of 0.77; the expected heterozygosity (He) ranged from 0.72 (A-Geo-149) to 0.92 (A-Geo-101 and A-Geo-158) with an average of 0.85; the polymorphism information content (PIC) ranged from 0.67 (A-Geo-149) to 0.92 (A-Geo-158) with an average of 0.84; the Shannon diversity index (I) range was 1.47 (A-Geo-149) to 2.73 (A-Geo-101) with an average of 2.22. The above results indicated that the polymorphism of primers was very high, so it is suitable for the analysis of genetic relationship and genetic diversity of kiwifruit germplasm resources. The clustering results of 225 germplasm resources could clearly reveal the genetic relationship of Actinidia.【Conclusion】 The selected SSR primers were stable, reliable, polymorphic and universal, which could be used as core primers for germplasm resources identification, fingerprint construction, core germplasm mining and genetic diversity analysis of Actinidia.

Key words: kiwifruit, SSR, primers, genome, genetic diversity

Table 1

16 germplasm materials used for primer screening"

序号 Order 种质名称或代号 Name or code 物种或杂交后代 Species or hybrid offspring
1 磨山雄2号 Moshan NO.2♂ 中华猕猴桃 A. chinensis var. chinensis
2 红阳 Hongyang 中华猕猴桃 A. chinensis var. chinensis
3 金农 Jinnong 中华猕猴桃 A. chinensis var. chinensis
4 东红 Donghong 中华猕猴桃 A. chinensis var. chinensis
5 桂海4号 Guihai NO.4 中华猕猴桃 A. chinensis var. chinensis
6 金怡 Jinyi 中华猕猴桃 A. chinensis var. chinensis
7 徐香 Xuxiang 美味猕猴桃 A. chinensis var. deliciosa
8 山梨RE63104 Shanli RE63104 山梨猕猴桃 A. rufa
9 毛花6113 Maohua 6113 毛花猕猴桃 A. eriantha
10 中科猕枣雄1号 Mizao NO.1♂ 软枣猕猴桃 A. arguta
11 大籽6215 Dazi 6215 大籽猕猴桃 A. macrosperma var. macrosperma
12 异色8511 Yise 8511 异色猕猴桃 A. callosa var. discolor
13 满天红2号 Mantianhong NO.2 毛花猕猴桃×中华猕猴桃A. eriantha×A. chinensis
14 B35-43 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis
15 B36-411 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis
16 B35-71 山梨猕猴桃×中华猕猴桃 A. rufa×A. chinensis

Table 2

Germplasm materials used for phylogenetic analysis of Actinidia"

物种或杂交后代
Species or hybrid offspring
数量
Number
代号
Code
物种或杂交后代
Species or hybrid offspring
数量
Number
代号
Code
软枣猕猴桃 21 A. arguta var. arguta 1-21 毛叶硬齿猕猴桃 2 A. callosa var. strigillosa 1-2
毛花猕猴桃 20 A. eriantha 1-20 葡萄叶猕猴桃 2 A. vitifolia 1-2
中华猕猴桃 20 A. chinensis var. chinensis 1-20 桃花猕猴桃 2 A. persicina 1-2
美味猕猴桃 15 A. chinensis var. deliciosa 1-15 小叶猕猴桃 2 A. lanceolata 1-2
大籽猕猴桃 13 A. macrosperma var. macrosperma 1-13 条叶猕猴桃 1 A. fortunati 1
狗枣猕猴桃 12 A. kolomikta 1-12 金花猕猴桃 1 A. chrysantha 1
京梨猕猴桃 11 A. callosa var. henryi 1-11 大花猕猴桃 1 A. grandiflora 1
长叶猕猴桃 10 A. hemsleyana 1-10 革叶猕猴桃 1 A. rubricaulis var. coriacea 1
对萼猕猴桃 7 A. valvata 1-7 湖北猕猴桃 1 A. hubeiensis 1
黑蕊猕猴桃 7 A. melanandra var. melanandra 1-7 花楸猕猴桃 1 A. sorbifolia 1
红茎猕猴桃 6 A. rubricaulis var. rubricaulis 1-6 滑叶猕猴桃 1 A. laevissima 1
山梨×中华 6 A. rufa×A. chinensis 1-6 漓江猕猴桃 1 A. lijiangensis 1
黄毛猕猴桃 5 A. fulvicoma var. fulvicoma 1-5 卵圆叶猕猴桃 1 A. indochinensis var. ovatifolia 1
临桂猕猴桃 5 A. linguiensis 1-5 梅叶猕猴桃 1 A. macrosperma var. mumoides 1
异色猕猴桃 5 A. callosa var. discolor 1-5 美味×(中华×毛花) 1 A. deliciosa×(chinensis×eriantha) 1
毛花×中华 4 A. eriantha×A.chinensis 1-4 融水猕猴桃 1 A. rongshuiensis 1
蒙自猕猴桃 4 A. henryi 1-4 肉叶猕猴桃 1 A. carnosifolia 1
粉毛猕猴桃 4 A. farinosa 1-4 网脉猕猴桃 1 A. cylindrica var. reticulata 1
簇花猕猴桃 3 A. fasciculoides var. fasciculoides 1-3 显脉猕猴桃 1 A. venosa 1
白背叶猕猴桃 3 A. hypoleuca 1-3 浙江猕猴桃 1 A. zhejiangensis 1
山梨猕猴桃 3 A. rufa 1-3 长果猕猴桃 1 A. longicarpa 1
陕西猕猴桃 3 A. arguta var. giraldii 1-3 长绒猕猴桃 1 A. latifolia var. mollis 1
硬齿猕猴桃 3 A. callosa var. callosa 1-3 中华×(毛花×中华) 1 A. chinensis×(eriantha×chinensis) 1
安息香猕猴桃 2 A. styracifolia 1-2 中华×美味 1 A. chinensis×A. deliciosa 1
葛枣猕猴桃 2 A. polygama 1-2 中越猕猴桃 1 A. indochinensis var. indochinensis 1
阔叶猕猴桃 2 A. latifolia var. latifolia 1-2

Fig. 1

Allele detection of 96 pairs of primers in 5 species (including variants) * indicate the species are used for primer effectiveness screening, and each lane is A-Geo001→A-Geo096, from the upper left corner to the lower right corner"

Fig. 2

Allele detection of 216 pairs of primers in 16 accessions"

Table 3

Basic information of 67 pairs of SSR core primers and genetic diversity in 16 accessions"

位点
Locus
染色体位置
Chromosome
重复基序
Repeat sequence
正向引物序列
Forward primer sequence
反向引物序列
Reverse primer sequence
退火温度
F/R annealing temperature (℃)
产物大小
Fragment size
(bp)
等位
基因数
Na
有效等位基因数
Ne
观测杂
合度
Ho
期望杂
合度
He
多态信
息含量
PIC
Shannon’s
信息指数
I
A-Geo011 1 AC CCACTTTATGAGGGGAAACACAAG CCATTAAAGTCACTGTCCCAAAGG 63.00/63.00 122-162 11 6.44 0.79 0.87 0.85 2.19
A-Geo013 1 TC CTTTCCTCTCGTTCTTCGTATGGA GTGGTTCTTGGTTTCAAGATTTGG 63.01/63.01 109-157 14 7.76 0.77 0.83 0.82 2.19
A-Geo014 1 TC TGGTTAGTGCCTTCTTGTGTTGAA TAATTTGGGGGCTTGAATGTATTG 63.06/63.01 130-186 17 13.12 0.77 0.90 0.90 2.59
A-Geo018 10 CT GCCTTTAGAAGAAAAAGGCGGATA AAGATAAAGAAAAGGCGTGGAAGC 63.01/63.12 144-178 14 9.45 0.9 0.91 0.90 2.51
A-Geo029 10 TCTATA ACCGGTTGATTGTCTCTTCCATTA TTTTTACTTCGAGAGCAGGGTTTG 63.01/62.93 150-192 11 7.13 0.69 0.83 0.82 2.07
A-Geo038 11 TG CCGATACCTCCAATTAGTGCAAAC AAGAATGGGCAGAGAACTCAAGTG 62.94/63.12 141-185 12 8.52 0.76 0.81 0.80 2.07
A-Geo042 11 AG CACTTTTCATCCAAGTTTGTGCAG TAAACGCTTTTTCGAGAACTCAGG 63.06/63.04 133-173 15 7.53 0.83 0.87 0.86 2.38
A-Geo049 12 AG CAGAGGTTCTGCTATTCTTGCCAT TGTTAGGCTTCTTCCACTTCCTTG 63.04/63.02 128-176 17 9.80 0.83 0.90 0.89 2.53
A-Geo054 12 TC AAAAACCTCACCTCAAACATCATCA ATCTTCACCAGGACAAAGCTCAAC 63.02/63.03 113-167 18 11.98 0.86 0.91 0.91 2.65
A-Geo068 13 TC CCACTCAAATTTTGGAAACCATTC AATTGGAGGGATCAGATTATGCAA 62.80/62.90 107-129 7 4.84 0.65 0.81 0.78 1.78
A-Geo073 13 AGA AACTAGCTGGGATGCAAGGGTT GAGGGATATTACAAGCTTGACCAGG 63.33/63.30 109-127 8 4.40 0.60 0.80 0.77 1.81
A-Geo083 14 TC CCGTCTCCTTCCTTACAAAACCTT CGCACCTGTACAATGACAAAAGAC 62.99/62.97 116-148 10 6.39 0.66 0.75 0.73 1.78
A-Geo096 15 TGTA AAATGCTTATACATTGGGTGGTGG ATCTCACCACTTCTTCGATACCCA 63.03/63.22 130-162 12 5.73 0.7 0.76 0.73 1.88
A-Geo101 15 GA ACTAGAGACCAATGACCGACCAAC CCAACAACCAATAAAGCAACCAAT 62.81/63.13 119-163 18 12.63 0.83 0.92 0.91 2.73
A-Geo117 16 GGA ATAGCCCAAAAGGACAGGTGTGTA CATCCTAAAGTGTTCCAAACCCAC 63.03/62.91 106-166 9 6.32 0.74 0.85 0.83 2.06
A-Geo120 16 AAATCC TTGAAAAATACAAACCATCCCACC GTTCTCACTCCTCTTGGACCGAT 63.01/63.10 141-183 11 6.84 0.74 0.82 0.8 2.03
A-Geo131 17 TC TGCTACGGATCAGTACCTTGATGA CGAAGAAAGGCAGCTTAAATTCAGT 63.05/63.23 133-169 9 5.50 0.76 0.81 0.78 1.87
A-Geo141 18 GA TTTTGTGCATTCTTACTCTGCATCA TAAACACCATGATCAACGCCTATG 63.08/63.06 160-188 12 9.18 0.79 0.86 0.85 2.27
A-Geo142 18 CT TCCAAAACCACCTACACAACTCCT GATGAATAGGCGACAGCAAATACC 63.12/63.05 127-159 16 12.49 0.82 0.91 0.90 2.60
A-Geo148 18 GAT TGAGTCAAATGGGGAAATCTCCTA AGTACGATGATTGTGTGCACGAGT 63.08/63.10 114-162 15 6.96 0.78 0.87 0.86 2.39
A-Geo149 18 TGTT ATTGGTGCTTCGAATTTTTGTTGT TTCAAAAACTTCTGCCGAGAAAAC 62.95/62.93 125-145 6 3.27 0.61 0.72 0.67 1.47
A-Geo154 19 GA ATTCAAACCCAAATAAAACACCCC TCCTCGAGTATCTCGCTGCC 63.08/62.91 131-163 11 8.17 0.65 0.86 0.85 2.17
A-Geo156 19 AG AAAATGAGCACCCAACTGAATCAT GTCAACACCAGATCTGAGGTCCTT 63.03/63.01 110-164 13 8.00 0.78 0.85 0.84 2.24
位点
Locus
染色体位置
Chromosome
重复基序
Repeat sequence
正向引物序列
Forward primer sequence
反向引物序列
Reverse primer sequence
退火温度
F/R annealing temperature (℃)
产物大小
Fragment size
(bp)
等位
基因数
Na
有效等位基因数
Ne
观测杂
合度
Ho
期望杂
合度
He
多态信
息含量
PIC
Shannon’s
信息指数
I
A-Geo158 19 GA GGCTCTACACAGCTTGATCTCCAT AAATCAAAAGCATGGAAACCTTCA 63.15/63.02 134-166 16 12.25 0.93 0.92 0.92 2.66
A-Geo167 2 TC TCTGCAGAGACTGATCCAACAAAC TTCGCTACAAGAGTGCTCAAAGTG 62.94/63.08 90-112 12 6.06 0.80 0.82 0.80 2.10
A-Geo188 20 GA CCACTCAACACCAAATTACAACCA GCTGGTCTTGCTTGTCTTTCTCTC 63.04/63.04 137-181 15 10.8 0.80 0.89 0.88 2.45
A-Geo194 20 TGTA CAGGGAAGAACAGGTTGTTTATGG CGGCATAAGAATTTGAGATGAAGC 63.00/63.24 139-187 13 9.66 0.78 0.87 0.86 2.32
A-Geo198 21 TC GGCTGTGAAAATGGTTTCGATAAG GAATGTTTAGCCTGCAACTGTGTG 63.03/63.09 129-167 17 11.45 0.74 0.90 0.89 2.55
A-Geo210 21 CACCTC ATGAACGGGGTAATCTAGCACTCA TCATGAGATTTCCGATCTACCAAAA 63.13/63.01 151-175 6 4.17 0.62 0.80 0.77 1.71
A-Geo218 22 CT AACTCCATTTCGTGTGTGCTTGTA GAAATAAGCCCTGAGGTCCTGAAT 62.97/62.99 155-181 11 8.34 0.70 0.85 0.83 2.15
A-Geo219 22 TC TGTTAAGGCCTTGCATTAGTCACA CACTAGAGAAGGAGGTGAACCCAA 62.97/62.99 129-179 12 6.16 0.73 0.82 0.80 2.06
A-Geo227 23 AG CATAGCCTCTTAGCAACCACAGGT CCTCTCTTTGCTCCAACTCAACTC 62.95/62.91 160-190 12 8.98 0.85 0.87 0.86 2.29
A-Geo229 23 CT CTTTGATCGTCTCAGACCCACTTT ATTCAGGTGTGAAAAATTGAGGGA 63.01/63.00 146-200 17 11.05 0.80 0.86 0.85 2.40
A-Geo238 23 GAT CACTTGTGCTCACAACTTGGTAGG TGAAGGGTTCTAAAAGCATGGAAA 63.18/63.11 120-168 12 7.91 0.72 0.80 0.78 2.03
A-Geo249 24 AG GACTCTTTGCAAACAACAAGCTCA GGATTCAAAAGAGGTGTCAGTCTCA 62.97/63.01 154-182 13 9.18 0.85 0.89 0.88 2.38
A-Geo257 25 GA GTTGTCAGCGAAAACAATCACATC ATCACCAAACCGAAAACGATTCTA 62.97/62.92 111-147 15 9.03 0.81 0.88 0.86 2.37
A-Geo266 25 TC CTCCAGTGGGTTTCTCCTATCTGA GCACTAACATCAACACGAACCTTG 62.98/62.97 124-156 12 7.88 0.77 0.86 0.84 2.21
A-Geo275 26 GA GGAATTAAAGGGATTGGATGAAGG TTACACTTCTTAACTTGGCGCCTC 62.96/62.96 105-131 11 7.23 0.73 0.86 0.84 2.17
A-Geo290 27 GA AACTTACCTGATTACCCACAGCCA ACCATGAATCTTCCCCCTGTATTT 63.03/62.97 92-134 13 8.65 0.78 0.83 0.82 2.19
A-Geo293 27 TC GCTCTCAGGTTATTCACTAGCCCA ATGGGTTTCTGGGATAAGCATTTT 63.04/63.00 146-170 12 7.69 0.81 0.86 0.85 2.20
A-Geo302 28 TC ATCGCGATCTCTGCTAATTCAAAG CTCAACATCGAGACCTTCTCACAA 63.05/62.92 113-161 15 10.12 0.81 0.9 0.89 2.51
A-Geo303 28 GA TACCAATGAGCGCATAGTTCTCAA TCCCTCAATCACAAGCCTAGTAGC 63.07/63.04 152-176 10 6.73 0.78 0.83 0.82 2.05
A-Geo305 28 CT TAATCGTCATCTTCTCTTCCTCCG CTCTCTCCTCTTGTTTGAAGTGGC 63.00/62.91 128-160 11 7.35 0.77 0.82 0.81 2.08
A-Geo307 28 GA TTCACGGTGTTAAAGGGTCTTCAT CAAAAACCCCTAGACTCAGCTTCA 63.02/63.02 96-122 13 8.69 0.89 0.87 0.85 2.23
A-Geo311 28 AC TGTTTTCTCCGAAATCAAACGAAT TTTTGCTTCCAAGTTCAAGAAAGG 63.02/62.92 131-159 12 5.83 0.63 0.80 0.77 1.95
A-Geo316 29 AG CAAATTGCACCCAAGTACAATCAA ATGTGGTCCTGAAAATGTCCAACT 63.06/63.01 120-138 9 6.82 0.86 0.86 0.84 2.09
位点
Locus
染色体位置
Chromosome
重复基序
Repeat sequence
正向引物序列
Forward primer sequence
反向引物序列
Reverse primer sequence
退火温度
F/R annealing temperature (℃)
产物大小
Fragment size
(bp)
等位
基因数
Na
有效等位基因数
Ne
观测杂
合度
Ho
期望杂
合度
He
多态信
息含量
PIC
Shannon’s
信息指数
I
A-Geo323 29 GT GAAATTCACAAAACTCATTTCGGC GCCTACCACACATCACCACAATAA 63.03/63.07 121-147 9 4.16 0.72 0.8 0.77 1.85
A-Geo335 3 AG GTAAAGATTTTGGCATTGCTGACC GACCAAAAGAGTCATCCTGACGTT 63.05/62.91 119-157 16 9.85 0.86 0.91 0.90 2.60
A-Geo341 3 AG AATCATGGAAGGGGCTAGAGAATC CAATCAAGTGCTTGTGTAGTTGGG 62.98/62.96 146-178 14 9.13 0.8 0.89 0.88 2.44
A-Geo344 3 GTGA CGAGAATGATGGAGAGAAGAGAGC CGGAGTATCACAGAGCCCTAGAAA 63.00/63.02 117-169 15 10.12 0.77 0.86 0.85 2.36
A-Geo350 4 AG AGATAGGGCATACCGTCTTCTTCC ACACAATAAGCCCTAACTCCCCTC 63.00/62.90 132-170 14 7.02 0.71 0.85 0.83 2.22
A-Geo361 5 AG CGCTCATTTTCTTGGGTTAATGAC AAAGTGGTGGGAGTCCAATTTGT 63.03/63.00 137-171 10 7.18 0.67 0.81 0.79 1.98
A-Geo362 5 GA TATATCCCCTCCGTATACCAACCC GGAGGCTATTATGTTGGCTAGGCT 63.08/63.03 82-118 12 9.45 0.74 0.88 0.87 2.32
A-Geo365 5 CT TCATCAACGAAACAAAAGCCCTAT GTTAGGTTTTTGCACAAAGCAGAGA 63.03/62.97 119-147 12 8.68 0.87 0.85 0.84 2.22
A-Geo369 5 CT GAAGACACCATGGATCAGATACCC GTAACATCCACAAGTTGGGAAAGC 62.99/63.04 153-179 11 6.25 0.75 0.84 0.82 2.09
A-Geo377 6 AG ATCGAAGCCATTACATAGCCGTTA AAGATGATTGCGAGGAGAGAAATG 62.96/63.01 150-176 13 8.22 0.81 0.88 0.87 2.33
A-Geo388 6 CAG TTGCATATTAGTGTCGATGCTCGT TTCTCAATGCAGTAGAAGCCACAG 62.99/62.96 105-129 9 6.31 0.79 0.85 0.84 2.05
A-Geo393 7 GA TCCTGTAATTAGTGGGACCCTTCA CCAAAGATTCTTCAGTTCACGCTT 62.99/63.03 139-183 18 10.78 0.82 0.88 0.87 2.51
A-Geo397 7 CT AATGGGTCCCACAACTGTTTTCTA GATGATCCTCCATAGGGATCTGTG 62.91/63.08 152-186 16 11.04 0.79 0.91 0.90 2.59
A-Geo401 7 TG CTCATCTTCCTCACCCTCCTCATA TTACACATCACCCACAATTGAACC 62.97/62.93 98-134 13 7.95 0.79 0.87 0.86 2.29
A-Geo403 7 TGA AAGCGTGACAAACGGATCTCTAAC GAAAGGTCAACACCTGGCTGTAGT 62.95/62.94 160-178 8 4.97 0.64 0.82 0.79 1.87
A-Geo407 8 TC ACCCAACAGAAAGAACACCATCAT TCAATCTGCAAATTTCTGGGTTTT 63.01/63.02 88-132 17 13.84 0.82 0.88 0.88 2.54
A-Geo415 8 GA ATAATCAGGGAAAACGGATCGAAT AGCAACAATTGGACAAGAAATGGT 62.99/63.04 151-179 13 7.64 0.76 0.88 0.87 2.37
A-Geo417 8 TCA CTTCTTGGCAATGTACTCATGTGG TTCATGGAAAAAGCTCAAAGAAGG 62.95/62.91 124-160 11 8.03 0.81 0.89 0.88 2.31
A-Geo418 8 CAT TCGGGTGATGTTTTCTCCACTATT AGATCAATTTCTCGACGATTCAGC 63.01/63.03 159-177 10 5.02 0.82 0.79 0.77 1.89
A-Geo426 9 AG TTTCTTTTTGAACAGATTCATCCCA ATTTGAGGTGAAGGATTGCACATT 63.00/63.03 80-112 14 10.29 0.89 0.91 0.90 2.52
A-Geo427 9 AC CTTATTCCTCCCTTCGCTTTGAAT CACGTAGATCCGTCAACCTTAACC 62.99/63.03 148-174 12 7.50 0.77 0.85 0.83 2.18
平均 Average 12.57 8.18 0.77 0.85 0.84 2.22

Fig. 3

Cluster analysis, fingerprint construction, partial capillary electrophoresis results of 16 germplasm, location map of 67 SSR loci A: Cluster analysis; B: Fingerprint constructed based on two molecular markers; C: Capillary electrophoresis results of primer A-Geo393; D: location map of 67 SSR loci"

Fig. 4

Dendrogram of 225 accessions of Actinidia germplasm with 40 SSR markers"

[1] 黄宏文.猕猴桃属分类、 资源、驯化、栽培. 北京: 科学出版社, 2013.
HUANG H W. Actinidia Taxonomy Germplasm Domestication Cultivation. Beijing: Science Press, 2013. (in Chinese)
[2] 张婷婷, 贾敏, 蒋益萍, 青梅, 辛海量. 猕猴桃属植物化学成分及药理作用研究概述. 时珍国医国药, 2019, 30(9): 2229-2232.
ZHANG T T, JIA M, JIANG Y P, QING M, XIN H L. Review on chemical constituents and pharmacological effects of Actinidia. Lishizhen Medicine and Materia Medica Research, 2019, 30(9): 2229-2232. (in Chinese)
[3] BAI D F, LI Z, HU C G, ZHANG Y J, MUHAMMAD A, ZHONG Y P, FANG J B. Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress. Scientia Horticulturae, 2021, 281(4): 109994.
doi: 10.1016/j.scienta.2021.109994
[4] LI D W, LIU Y F, LI X W, RAO J Y, YAO X H, ZHONG C H. Genetic diversity in kiwifruit polyploid complexes: Insights into cultivar evaluation, conservation, and utilization. Tree Genetics & Genomes, 2014, 10(5): 1451-1463. doi: 10.1007/s11295-014-0773-6.
doi: 10.1007/s11295-014-0773-6
[5] 赵成日. 中韩野生软枣猕猴桃种质资源遗传多样性分析. 果树学报, 2018, 35(9): 1043-1051. doi: 10.13925/j.cnki.gsxb.20180121.
doi: 10.13925/j.cnki.gsxb.20180121
ZHAO C R. The genetic diversity of wild Actinidia arguta germplasm resources from China and South Korea. Journal of Fruit Science, 2018, 35(9): 1043-1051. doi: 10.13925/j.cnki.gsxb.20180121. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20180121
[6] 张安世, 司清亮, 齐秀娟, 张中海. 猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建. 江苏农业学报, 2018, 34(1): 138-144. doi: 10.3969/j.issn.1000-4440.2018.01.020.
doi: 10.3969/j.issn.1000-4440.2018.01.020
ZHANG A S, SI Q L, QI X J, ZHANG Z H. Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 138-144. doi: 10.3969/j.issn.1000-4440.2018.01.020. (in Chinese)
doi: 10.3969/j.issn.1000-4440.2018.01.020
[7] CHO K H, KWACK Y B, PARK S J, KIM S H, LEE H C, CHUNG K H, JUN J H. Sequence-characterized amplified region markers and multiplex-polymerase chain reaction assays for kiwifruit cultivar identification. Horticulture, Environment, and Biotechnology, 2020, 61(2): 395-406. doi: 10.1007/s13580-020-00227-9.
doi: 10.1007/s13580-020-00227-9
[8] 王悦星, 周婉莹, 张文慧, 吴婉婉, 张晓娟, 于月华. 利用SCoT分子标记分析85个猕猴桃品种(系)及野生近缘种的遗传结构. 果树学报, 2021, 38(7): 1044-1054. doi: 10.13925/j.cnki.gsxb.20200563.
doi: 10.13925/j.cnki.gsxb.20200563
WANG Y X, ZHOU W Y, ZHANG W H, WU W W, ZHANG X J, YU Y H. Genetic structure analysis of 85 kiwifruit varieties(lines) and wild relatives by SCoT molecular markers. Journal of Fruit Science, 2021, 38(7): 1044-1054. doi: 10.13925/j.cnki.gsxb.20200563. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20200563
[9] 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019, 52(15): 2567-2585.
WANG Y L, HUANG B Y, WANG S Y, DU P, QI F Y, FANG Y J, SUN Z Q, ZHENG Z, DONG W Z, ZHANG X Y. Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Scientia Agricultura Sinica, 2019, 52(15): 2567-2585. (in Chinese)
[10] LI Y C, KOROL A B, FAHIMA T, BEILES A, NEVO E. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 2002, 11(12): 2453-2465. doi: 10.1046/ j.1365-294x.2002.01643.x.
doi: 10.1046/ j.1365-294x.2002.01643.x
[11] KASHI Y, KING D G. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 2006, 22(5): 253-259. doi: 10.1016/j.tig.2006.03.005.
doi: 10.1016/j.tig.2006.03.005
[12] VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 2005, 23(1): 48-55. doi: 10.1016/j.tibtech.2004.11. 005.
doi: 10.1016/j.tibtech.2004.11. 005
[13] WEISING K, FUNG R W M, KEELING D J, ATKINSON R G, GARDNER R C. Characterisation of microsatellites from Actinidia chinensis. Molecular Breeding, 1996, 2(2): 117-131. doi: 10.1007/ BF00441427.
doi: 10.1007/ BF00441427
[14] HUANG W G, CIPRIANI G, MORGANTE M, TESTOLIN R. Microsatellite DNA in Actinidia chinensis: Isolation, characterisation, and homology in related species. Theoretical and Applied Genetics, 1998, 97(8): 1269-1278. doi: 10.1007/s001220051019.
doi: 10.1007/s001220051019
[15] KWON S J, LEE G A, KWACK Y B, LEE H S, MA K H. Development of 34 new microsatellite markers from Actinidia arguta: Intra- and interspecies genetic analysis. Plant Breeding & Biotechnology, 2013, 1(2): 137-147.
[16] LIU C Y, ZHANG Q, YAO X H, ZHONG C H, YAN C L, HUANG H W. Characterization of genome-wide simple sequence repeats and application in interspecific genetic map integration in kiwifruit. Tree Genetics & Genomes, 2016, 12(2): 21. doi: 10.1007/s11295-016- 0982-2.
doi: 10.1007/s11295-016- 0982-2
[17] 廖娇, 黄春辉, 辜青青, 曲雪艳, 徐小彪. 猕猴桃EST-SSR引物筛选及通用性分析. 果树学报, 2011, 28(6): 1111-1116. doi: 10.13925/j. cnki.gsxb.2011.06.039.
doi: 10.13925/j. cnki.gsxb.2011.06.039
LIAO J, HUANG C H, GU Q Q, QU X Y, XU X B. Mining and transferability analysis of EST-SSR primers in kiwifruit (Actinidia spp.). Journal of Fruit Science, 2011, 28(6): 1111-1116. doi: 10.13925/ j.cnki.gsxb.2011.06.039. (in Chinese)
doi: 10.13925/j. cnki.gsxb.2011.06.039
[18] MAN Y, WANG Y, ZHANG L, LI Z, QIN R, JIANG Z, SUN X, LIU C. Development of microsatellite markers in Actinidia arguta (Actinidiaceae) based on the NCBI data platform. American Journal of Botany, 2011, 98(11): e310-e315. doi: 10.3732/ajb.1100182.
doi: 10.3732/ajb
[19] SUN H Y, WANG J H, CHEN L, XU J, LI Y D. Development and validation of polymorphic EST-SSR markers for genetic diversity analysis in Actinidia arguta. Fruits, 2019, 74(1): 25-37.
doi: 10.17660/th2019/74.1.4
[20] KORKOVELOS A E, MAVROMATIS A G, HUANG W G, HAGIDIMITRIOU M, GIAKOUNDIS A, GOULAS C K. Effectiveness of SSR molecular markers in evaluating the phylogenetic relationships among eight Actinidia species. Scientia Horticulturae, 2008, 116(3): 305-310.
doi: 10.1016/j.scienta.2008.01.011
[21] 汤佳乐, 吴寒, 郎彬彬, 曲雪艳, 黄春辉, 徐小彪. 野生毛花猕猴桃叶片和果实AsA含量的SSR标记关联分析. 园艺学报, 2014, 41(5): 833-840. doi: 10.16420/j.issn.0513-353x.2014.05.008.
doi: 10.16420/j.issn.0513-353x.2014.05.008
TANG J L, WU H, LANG B B, QU X Y, HUANG C H, XU X B. Association analysis on leaf and fruit AsA content and SSR markers of wild Actinidia eriantha. Acta Horticulturae Sinica, 2014, 41(5): 833-840. doi: 10.16420/j.issn.0513-353x.2014.05.008. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014.05.008
[22] LAI J J, LI Z Z, MAN Y P, LEI R, WANG Y C. Genetic diversity of five wild Actinidia arguta populations native to China as revealed by SSR markers. Scientia Horticulturae, 2015, 191: 101-107.
doi: 10.1016/j.scienta.2015.05.004
[23] 王丹丹, 张彦文. 软枣猕猴桃栽培品种DNA指纹图谱的构建及遗传多样性分析. 东北师大学报(自然科学版), 2017, 49(3): 104-111. doi: 10.16163/j.cnki.22-1123/n.2017.03.022.
doi: 10.16163/j.cnki.22-1123/n.2017.03.022
WANG D D, ZHANG Y W. Establishment of DNA fingerprinting and analysis of genetic diversity among Actinidia arguta cultivars. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(3): 104-111. doi: 10.16163/j.cnki.22-1123/n.2017.03.022. (in Chinese)
doi: 10.16163/j.cnki.22-1123/n.2017.03.022
[24] WANG Y C, LIAO L, LI Z Z. Genetic differentiation of Actinidia chinensis and analysis of gene flow barriers in the Qinling Mountains, the species’ northern distribution boundary. Genetic Resources and Crop Evolution, 2018, 65(3): 881-895. doi: 10.1007/s10722-017-0578-1.
doi: 10.1007/s10722-017-0578-1
[25] LIAO G L, LI Z Y, HUANG C H, ZHONG M, TAO J J, QU X Y, CHEN L, XU X B. Genetic diversity of inner quality and SSR association analysis of wild kiwifruit (Actinidia eriantha). Scientia Horticulturae, 2019, 248: 241-247.
doi: 10.1016/j.scienta.2019.01.021
[26] FRASER L G, TSANG G K, DATSON P M, DE SILVA H N, HARVEY C F, GILL G P, CROWHURST R N, MCNEILAGE M A. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics, 2009, 10: 102. doi: 10.1186/1471-2164-10-102.
doi: 10.1186/1471-2164-10-102
[27] 廖光联, 刘青, 贾东峰, 黄春辉, 钟敏, 徐小彪. 基于CiteSpace的猕猴桃研究热点与趋势分析. 中国果树, 2020(3): 116-120. doi: 10.16626/j.cnki.issn1000-8047.2020.03.030.
doi: 10.16626/j.cnki.issn1000-8047.2020.03.030
LIAO G L, LIU Q, JIA D F, HUANG C H, ZHONG M, XU X B. Research focus and development process of kiwifruit based on CiteSpace. China Fruits, 2020(3): 116-120. doi: 10.16626/j.cnki.issn1000-8047.2020.03.030. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2020.03.030
[28] 钟彩虹, 黄文俊, 李大卫, 张琼, 李黎. 世界猕猴桃产业发展及鲜果贸易动态分析. 中国果树, 2021(7): 101-108. doi: 10.16626/j.cnki. issn1000-8047.2021.07.025.
doi: 10.16626/j.cnki. issn1000-8047.2021.07.025
ZHONG C H, HUANG W J, LI D W, ZHANG Q, LI L. Dynamic analysis of global kiwifruit industry development and fresh fruit trade. China Fruits, 2021(7): 101-108. doi: 10.16626/j.cnki.issn1000-8047. 2021.07.025. (in Chinese)
doi: 10.16626/j.cnki. issn1000-8047.2021.07.025
[29] 姜志强, 贾东峰, 廖光联, 钟敏, 黄春辉, 陶俊杰, 徐小彪. 中国育成的猕猴桃品种(系)及其系谱分析. 中国南方果树, 2019, 48(6): 142-148. doi: 10.13938/j.issn.1007-1431.20190375.
doi: 10.13938/j.issn.1007-1431.20190375
JIANG Z Q, JIA D F, LIAO G L, ZHONG M, HUANG C H, TAO J J, XU X B. Kiwifruit varieties (lines) bred in China and their pedigree analysis. South China Fruits, 2019, 48(6): 142-148. doi: 10.13938/j. issn.1007-1431.20190375. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20190375
[30] 张海晶, 温雯, 杨扬, 堵苑苑, 马海鸥, 陈红. 我国猕猴桃植物新品种权保护现状与分析. 北方园艺, 2019(18): 140-145.
ZHANG H J, WEN W, YANG Y, DU Y Y, MA H O, CHEN H. Current situation and analysis of new plant variety right protection of kiwifruit in China. Northern Horticulture, 2019(18): 140-145. (in Chinese)
[31] GUO R, LANDIS J B, MOORE M J, P, JIAN S G, YAO X H, WANG H C. Development and application of transcriptome-derived microsatellites in Actinidia eriantha (Actinidiaceae). Frontiers in Plant Science, 2017, 8: 1383. doi: 10.3389/fpls.2017.01383.
doi: 10.3389/fpls.2017.01383
[32] 刘春燕. 猕猴桃种间高密度遗传图谱的构建及果实性状QTLs定位[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2016.
LIU C Y. Construction of high-density interspecific genetic maps and identification of QTLS for fruits in kiwifruit[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2016. (in Chinese)
[33] MEIRMANS P G. Genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Molecular Ecology Resources, 2020, 20(4): 1126-1131. doi: 10.1111/1755-0998.13145.
doi: 10.1111/1755-0998.13145
[34] HUANG K, DUNN D W, RITLAND K, LI B G. POLYGENE: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods in Ecology and Evolution, 2020, 11(3): 448-456.
doi: 10.1111/2041-210X.13338
[35] PARADIS E, SCHLIEP K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2018, 35(3): 526-528. doi: 10.1093/bioinformatics/bty633.
doi: 10.1093/bioinformatics/bty633
[36] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 2021, 49(W1): W293-W296. doi: 10.1093/nar/gkab301.
doi: 10.1093/nar/gkab301
[37] 寇帅, 李政, 李先源, 眭顺照, 李名扬, 李志能. 蕙兰SSR引物开发及渝贵川地区兰属遗传多样性研究. 植物遗传资源学报, 2021, 22(2): 338-348. doi: 10.13430/j.cnki.pngr.20200812001.
doi: 10.13430/j.cnki.pngr.20200812001
KOU S, LI Z, LI X Y, SUI S Z, LI M Y, LI Z N. Development of SSR primers in Cymbidium faberi Rolfe and study on genetic diversity of Cymbidium sw. in Chongqing-Guizhou-Sichuan region. Journal of Plant Genetic Resources, 2021, 22(2): 338-348. doi: 10.13430/j.cnki. jpgr.20200812001. (in Chinese)
doi: 10.13430/j.cnki.pngr.20200812001
[38] 张田, 李作洲, 刘亚令, 姜正旺, 黄宏文. 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑. 生物多样性, 2007, 15(1): 1-22.
doi: 10.1360/biodiv.060277
ZHANG T, LI Z Z, LIU Y L, JIANG Z W, HUANG H W. Genetic diversity, gene introgression and homoplasy in sympatric populations of the genus Actinidia as revealed by chloroplast microsatellite markers. Biodiversity Science, 2007, 15(1): 1-22. (in Chinese)
doi: 10.1360/biodiv.060277
[39] YUE J Y, LIU J C, TANG W, WU Y Q, TANG X F, LI W, YANG Y, WANG L H, HUANG S X, FANG C B, ZHAO K, FEI Z J, LIU Y S, ZHENG Y. Kiwifruit Genome Database (KGD): A comprehensive resource for kiwifruit genomics. Horticulture Research, 2020, 7: 117. doi: 10.1038/s41438-020-0338-9.
doi: 10.1038/s41438-020-0338-9
[40] 陈昌龙, 董岩, 田宇, 石妙涵, 葛秀秀, 谢华. 芹菜转录组数据SSR标记的开发及其遗传多样性分析. 农业生物技术学报, 2020, 28(4): 616-628.
CHEN C L, DONG Y, TIAN Y, SHI M H, GE X X, XIE H. Transcriptomic SSR marker development and genetic diversity analysis in celery(Apium graveolens). Journal of Agricultural Biotechnology, 2020, 28(4): 616-628. (in Chinese)
[41] 李作洲. 猕猴桃属植物的分子系统学研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2006.
LI Z Z. Molecular phylogeny of the genus Actinidia based on nuclear DNA genetic markers and cytoplasm DNA sequence analysis[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2006. (in Chinese)
[42] LI J Q, LI X W, SOEJARTO D D. Actinidiaceae//WU Z Y, RAVEN P H, HONG D Y. Flora of China. Vol.12. Beijing: Science Press. & St. Louis, Missouri: Missouri Botanical Gardens, 2007: 334-360.
[43] TESTOLIN R, FERGUSON A R. Isozyme Polymorphism in the Genus Actinidia and the origin of the kiwifruit genome. Systematic Botany, 1997, 22(4): 685.
doi: 10.2307/2419435
[44] CIPRIANI G, TESTOLIN R, GARDNER R. Restriction-site variation of PCR-amplified chloroplast DNA regions and its implication for the evolution and taxonomy of Actinidia. Theoretical and Applied Genetics, 1998, 96(3/4): 389-396. doi: 10.1007/s001220050754.
doi: 10.1007/s001220050754
[45] HUANG H W, LI Z Z, LI J Q, KUBISIAK T L, LAYNE D R. Phylogenetic relationships in Actinidia as revealed by RAPD analysis. Journal of the American Society for Horticultural Science, 2002, 127(5): 759-766.
doi: 10.21273/JASHS.127.5.759
[46] LI Z Z, HUANG H W, JIANG Z W, LI J Q, KUBISIAK T L. Phylogenetic relationships in Actinidia as revealed by RAPDs and PCR-RFLPs of mtDNA. Acta Horticulturae, 2003, 610: 387-396.
[47] CHAT J, JÁUREGUI B, PETIT R J, NADOT S. Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their maternal and paternal phylogenies. American Journal of Botany, 2004, 91(5): 736-747. doi: 10.3732/ajb.91.5.736.
doi: 10.3732/ajb.91.5.736
[48] 包维红. 基于叶绿体基因组的猕猴桃科分子系统学研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园), 2018.
BAO W H. Phylogenetic Study of Actinidiaceae based on chloroplast genomes[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences), 2018. (in Chinese)
[49] LIU Y F, LI D W, ZHANG Q, SONG C, ZHONG C H, ZHANG X D, WANG Y, YAO X H, WANG Z P, ZENG S H, WANG Y, GUO Y T, WANG S B, LI X W, LI L, LIU C Y, MCCANN H C, HE W M, NIU Y, CHEN M, DU L W, GONG J J, DATSON P M, HILARIO E, HUANG H W. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. The New Phytologist, 2017, 215(2): 877-890. doi: 10.1111/nph.14607.
doi: 10.1111/nph.14607
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[5] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[6] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[7] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[8] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[9] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[10] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[11] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[14] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[15] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!