Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2562-2571.doi: 10.3864/j.issn.0578-1752.2022.13.007

• PLANT PROTECTION • Previous Articles     Next Articles

Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance

YIN Fei(),LI ZhenYu,SAMINA Shabbir,LIN QingSheng()   

  1. Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640
  • Received:2021-12-01 Accepted:2022-02-03 Online:2022-07-01 Published:2022-07-08
  • Contact: QingSheng LIN E-mail:feier0808@163.com;linqs8066@126.com

Abstract:

【Objective】The Plutella xylostella is a global pest of cruciferous plants. The objective of this study is to identify the key cytochrome P450 genes involved in chlorantraniliprole metabolic regulation in P. xylostella, and to provide a basis for understanding the resistance mechanism concerning chlorantraniliprole in different resistance levels of P. xylostella.【Method】The resistance of the 3rd instar larvae of different P. xylostella populations to chlorantraniliprole was determined using the leaf dip method. On the strength of insectbase database and P. xylostella genome database together with transcriptome sequencing data, 52 relevant cytochrome P450 genes were screened. MEGA5.10 software was used to analyze the evolution of 52 cytochrome P450 genes, and CYP3 and CYP4 family P450 genes closely related to insecticide resistance were obtained. The expression levels of genes in CYP3 and CYP4 families were compared in HZ, HZY, LZ, DS and ZLT populations by qRT-PCR. The RNA interference experiments through injection were used to verify the function of CYP6BF1V4, which was significantly up-regulated in the resistant population of P. xylostella to chlorantraniliprole. 【Result】 The leaf dip bioassays showed that the populations of LZ and HZ were at medium level of resistance, while ZLT, DS and HZY populations were at high level of resistance. Phylogenetic tree analysis of 52 cytochrome P450s showed that ten genes from the CYP4 family and 28 genes from the CYP3 family potentially associated with insecticide resistance. The expression levels of two CYP4 family genes in the resistant induced population, HZ and HZY, were significantly higher than those in the susceptible population. Among the genes of CYP3 family, the expression levels of four genes were positively correlated with the resistance of P. xylostella. The expression levels of eight genes in P. xylostella with medium resistance were higher than those with high resistance. Six genes were up-regulated in all resistant field populations, among which four genes were CYP6 family genes (CYP6BF1V4, CYP6BF1V3, CYP6f1 and CYP6B6) and two genes were CYP9 family genes (CYP9G2-1 and CYP9G2-2). The expression of CYP6BF1V4 was the highest, and it was 3.5-6.3 times higher in the resistant populations than that in sensitive populations. The results of RNAi showed that knockdown of CYP6BF1V4 could significantly increase the sensitivity of P. xylostella to chlorantraniliprole.【Conclusion】CYP6BF1V4, CYP6BF1V3, CYP6f1, CYP6B6, CYP9G2-1 and CYP9G2-2 may help regulate the expression of multifunctional oxidases, thus accelerating the metabolize of chlorantraniliprole and enhancing the resistance of P. xylostella to chlorantraniliprole.

Key words: Plutella xylostella, insecticide resistance, chlorantraniliprole, CYP6, CYP9, metabolic activity, RNA interference (RNAi)

Table 1

The resistance level of different populations of P. xylostella to chlorantraniliprole"

种群
Population
回归方程
Regression equation (y=)
LC50
(mg·L-1)
95%置信区间
95% confidence interval (mg·L-1)
相关系数
Relevant coefficient
抗性倍数
Resistance ratio
ZLT 1.467x-2.364 40.95 24.20-57.69 0.961 157.50
LZ 1.011x-1.336 20.97 9.80-33.50 0.946 80.65
DS 1.458x-2.506 52.35 37.69-71.17 0.992 201.35
HZ 1.057x-1.265 15.71 7.27-24.80 0.945 62.84
HZY 1.468x-2.942 101.07 76.94-137.34 0.992 391.15
SS 1.518x-0.887 0.26 0.19-0.38 0.994

Fig. 1

Phylogenetic tree of the P. xylostella cytochrome P450"

Fig. 2

Differential expression analysis of CYP4 clan gene at the mRNA levels in different populations of P. xylostella"

Fig. 3

Differential expression analysis of CYP3 clan gene at the mRNA levels in different populations of P. xylostella"

Fig. 4

Differential expression analysis of P450 genes in different field populations of P. xylostella"

Fig. 5

Relative expression level of CYP6BF1V4 in P. xylostella after RNAi"

Fig. 6

Sensitivity of the 3rd instar larvae of P. xylostella to chlorantraniliprole after 24 h RNAi"

[1] LI Z Y, FENG X, LIU S S, YOU M S, FURLONG M J. Biology, ecology, and management of the diamondback moth in China. Annual Review of Entomology, 2016, 61: 277-296.
doi: 10.1146/annurev-ento-010715-023622
[2] ZALUCKI M P, SHABBIR A, SILVA R, ADAMSON D, LIU S S, FURLONG M J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology, 2012, 105(4): 1115-1129.
doi: 10.1603/EC12107
[3] YIN Q, QIAN L, SONG P P, JIAN T Y, HAN Z J. Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in Plutella xylostella. Journal of Asia- Pacific Entomology, 2019, 22(1): 189-193.
doi: 10.1016/j.aspen.2018.12.015
[4] BANAZEER A, AFZAL M B S, HASSAN S, IJAZ M, SHAD S A, SERRÃO J E. Status of insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) from 1997 to 2019: Cross- resistance, genetics, biological costs, underlying mechanisms, and implications for management. Phytoparasitica, 2022, 50: 465-485.
doi: 10.1007/s12600-021-00959-z
[5] WANG X, KHAKAME S K, YE C, YANG Y, WU Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science, 2013, 69(5): 661-665.
doi: 10.1002/ps.3422
[6] TROCZKA B, ZIMMER C T, ELIAS J, SCHORN C, BASS C, DAVIES T G E, FIELD L M, WILLIAMSON M S, SLATER R, NAUEN R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology, 2012, 42(11): 873-880.
doi: 10.1016/j.ibmb.2012.09.001
[7] STEINBACH D, GUTBROD O, LÜMMEN P, MATTHIESEN S, SCHORN C, NAUEN R. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 2015, 63: 14-22.
doi: 10.1016/j.ibmb.2015.05.001
[8] GUO L, LIANG P, ZHOU X G, GAO X W. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Scientific Reports, 2014, 4: 6924.
doi: 10.1038/srep06924
[9] JOURAKU A, KUWAZAKI S, MIYAMOTO K, UCHIYAMA M, KUROKAWA T, MORI E, MORI M X, MORI Y, SONODA S. Ryanodine receptor mutations (G4946E and I4790K) differentially responsible for diamide insecticide resistance in diamondback moth, Plutella xylostella L.. Insect Biochemistry and Molecular Biology, 2020, 118: 103308.
doi: 10.1016/j.ibmb.2019.103308
[10] LI X X, GUO L, ZHOU X G, GAO X W, LIANG P. miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Scientific Reports, 2015, 5: 14095.
doi: 10.1038/srep14095
[11] HU Z D, FENG X, LIN Q S, CHEN H Y, LI Z Y, YIN F, LIANG P, GAO X W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 2014, 13(11): 2452-2459.
doi: 10.1016/S2095-3119(14)60748-6
[12] KANG W J, KOO H N, JEONG D H, KIM H K, KIM J, KIM G H. Functional and genetic characteristics of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Entomological Research, 2017, 47(6): 394-403.
doi: 10.1111/1748-5967.12258
[13] LIU X, WANG H Y, NING Y B, QIAO K, WANG K Y. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2015, 108(4): 1978-1985.
doi: 10.1093/jee/tov098
[14] LI X X, LI R, ZHU B, GAO X W, LIANG P. Overexpression of cytochrome P 450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science, 2018, 74(6): 1386-1393.
[15] HU Z, LIN Q, CHEN H, LI Z, YIN F, FENG X. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bulletin of Entomological Research, 2014, 104(6): 716-723.
doi: 10.1017/S0007485314000510
[16] MALLOTT M, HAMM S, TROCZKA B J, RANDALL E, PYM A, GRANT C, BAXTER S, VOGEL H, SHELTON A M, FIELD L M, et al. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 2019, 115: 103247.
[17] ETEBARI K, AFRAD M H, TANG B, SILVA R, FURLONG M J, ASGARI S. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella. Insect Molecular Biology, 2018, 27(4): 478-491.
doi: 10.1111/imb.12387
[18] MARCHAL E, ZHANG J R, BADISCO L, VERLINDEN H, HULT E F, WIELENDAELE P V, YAGI K J, TOBE S S, BROECK J V. Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 2011, 41(4): 219-227.
doi: 10.1016/j.ibmb.2010.12.007
[19] CHUNG H, SZTAL T, PASRICHA S, SRIDHAR M, BATTERHAM P, DABORN P J. Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5731-5736.
[20] IGA M, KATAOKA H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biological and Pharmaceutical Bulletin, 2012, 35(6): 838-843.
doi: 10.1248/bpb.35.838
[21] RONG Y, FUJII T, KATSUMA S, YAMAMOTO M, ANDO T, ISHIKAWA Y. CYP341B14: A cytochrome P450 involved in the specific epoxidation of pheromone precursors in the fall webworm Hyphantria cunea. Insect Biochemistry and Molecular Biology, 2014, 54: 122-128.
doi: 10.1016/j.ibmb.2014.09.009
[22] 徐莉, 王建华, 梅宇, 李冬植. 解毒酶和转运蛋白介导的害虫抗药性分子机制研究进展. 农药学学报, 2020, 22(1): 1-10.
XU L, WANG J H, MEI Y, LI D Z. Research progress on the molecular mechanisms of insecticides resistance mediated by detoxification enzymes and transporters. Chinese Journal of Pesticide Science, 2020, 22(1): 1-10. (in Chinese)
[23] FEYEREISEN R, DERMAUW W, VAN LEEUWEN T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology, 2015, 121: 61-77.
doi: 10.1016/j.pestbp.2015.01.004
[24] 邱星辉. 细胞色素P450介导的昆虫抗药性的分子机制. 昆虫学报, 2014, 57(4): 477-482.
QIU X H. Molecular mechanisms of insecticide resistance mediated by cytochrome P450s in insects. Acta Entomologica Sinica, 2014, 57(4): 477-482. (in Chinese)
[25] 李浩, 陈亚平, 鲁智慧, 郭建洋, 李亚红, 朱林云, 和淑琪, 桂富荣. 草地贪夜蛾和斜纹夜蛾幼虫体内保护酶及解毒酶对2种杀虫剂的响应比较. 南方农业学报, 2021, 52(3): 559-569.
LI H, CHEN Y P, LU Z H, GUO J Y, LI Y H, ZHU L Y, HE S Q, GUI F R. Response comparison of protective and detoxification enzymes in Spodoptera frugiperda (J. E. Smith) and Spodoptera litura (Fabricius) larvae to two insecticides. Journal of Southern Agriculture, 2021, 52(3): 559-569. (in Chinese)
[26] ZHU F, LI T, ZHANG L, LIU N. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiology, 2008, 8: 18.
doi: 10.1186/1472-6793-8-18
[27] CHEN X E, ZHANG Y L. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: Possible involvement in resistance to beta-cypermethrin. Gene, 2015, 558(2): 208-214.
doi: 10.1016/j.gene.2014.12.053
[28] 王学贵, 余慧灵, 梁沛, 史雪岩, 宋敦伦, 高希武. 氯虫苯甲酰胺诱导甜菜夜蛾细胞色素P450基因上调表达. 昆虫学报, 2015, 58(3): 281-287.
WANG X G, YU H L, LIANG P, SHI X Y, SONG D L, GAO X W. Chlorantraniliprole induces up-regulated expression of cytochrome P450 genes in Spodoptera exigua (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 2015, 58(3): 281-287. (in Chinese)
[29] 刘俊杰, 苏栩, 李亚设, 谢兰芬, 张百重, 陈锡岭. 氯虫苯甲酰胺和氟虫腈对黏虫细胞色素P450基因表达的影响. 植物保护学报, 2019, 46(3): 563-573.
LIU J J, SU X, LI Y S, XIE L F, ZHANG B Z, CHEN X L. Effects of chlorantraniliprole and fipronil on cytochrome P450 genes in oriental armyworm Mythimna separate. Journal of Plant Protection, 2019, 46(3): 563-573. (in Chinese)
[30] 韩慧, 王彪龙, 李恩, 胡军, 马瑞燕, 高玲玲, 郭艳琼. 梨小食心虫细胞色素P450 CYP6AE123基因的克隆及表达分析. 山西农业科学, 2021, 49(5): 539-544.
HAN H, WANG B L, LI E, HU J, MA R Y, GAO L L, GUO Y Q. Cloning and expression analysis of cytochrome P450 CYP6AE123 gene in Grapholita molesta (Busck). Journal of Shanxi Agricultural Sciences, 2021, 49(5): 539-544. (in Chinese)
[31] 杨峰山, 殷城, 杨静, 危学高, 杜田华, 杨鑫, 王少丽, 张友军. Q型烟粉虱细胞色素P450 CYP6DV5基因克隆及其在烟粉虱对噻虫嗪抗性中的作用. 农药学学报, 2021, 23(1): 83-89.
YANG F S, YIN C, YANG J, WEI X G, DU T H, YANG X, WANG S L, ZHANG Y J. Cloning and expression profiles of cytochrome P450 CYP6DV5 in Bemisia tabaci and its role in resistance of B. tabaci to thiamethoxam. Chinese Journal of Pesticide Science, 2021, 23(1): 83-89. (in Chinese)
[32] 党英侨, 殷晶晶, 陈传佳, 孙丽丽, 刘鹏, 曹传旺. 转舞毒蛾LdCYP6AN15v1基因果蝇品系对氯虫苯甲酰胺胁迫响应. 林业科学, 2017, 53(6): 94-104.
DANG Y Q, YIN J J, CHEN C J, SUN L L, LIU P, CAO C W. Responses of transformant Drosophila expressing LdCYP6AN15v1 gene to chlorantraniliprole stress. Scientia Silvae Sinicae, 2017, 53(6): 94-104. (in Chinese)
[33] 石鑫, 李莎, 王志敏, 付开赟, 付文君, 姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析. 中国农业科学, 2021, 54(14): 3004-3016.
SHI X, LI S, WANG Z M, FU K Y, FU W J, JIANG W H. Resistance monitoring to thiamethoxam and expression analysis of cytochrome P450 genes in Leptinotarsa decemlineata from Xinjiang. Scientia Agricultura Sinica, 2021, 54(14): 3004-3016. (in Chinese)
[34] 张雅男, 刘月庆, JUNAID M S, 王智琪, 樊东. 黏虫CYP9A113基因的克隆及外源物质对基因表达的诱导效应. 植物保护, 2019, 45(4): 97-103.
ZHANG Y N, LIU Y Q, JUNAID M S, WANG Z Q, FAN D. Cloning of CYP9A113 and inductive effect of exogenous substances on the gene expression in Mythimna separate. Plant Protection, 2019, 45(4): 97-103. (in Chinese)
[35] WANG X G, GAO X W, LIANG P, SHI X Y, SONG D L. Induction of cytochrome P450 activity by the interaction of chlorantraniliprole and sinigrin in the Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 2016, 45(2): 500-507.
doi: 10.1093/ee/nvw007
[36] LAI T, LI J, SU J. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pesticide Biochemistry and Physiology, 2011, 101(3): 198-205.
doi: 10.1016/j.pestbp.2011.09.006
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[3] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[7] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[8] LI FeiFei,WANG BeiBei,LAI YingFang,YANG FeiYing,YOU MinSheng,HE WeiYi. Knockout of Single Allele of fl(2)d Significantly Decreases the Fecundity and Fertility inPlutella xylostella [J]. Scientia Agricultura Sinica, 2021, 54(14): 3029-3042.
[9] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[10] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[11] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[12] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[13] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[14] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[15] HE JingLan,ZHANG Ming,LIU RuiYing,WAN GuiJun,PAN WeiDong,CHEN FaJun. Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(1): 45-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!