Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 674-685.doi: 10.3864/j.issn.0578-1752.2023.04.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors

LI YaZhen1(), HAN TianFu2, QU XiaoLin3, MA ChangBao3, DU JiangXue2, LIU KaiLou1, HUANG Jing2,4, LIU ShuJun2,4, LIU LiSheng2,4, SHEN Zhe2, ZHANG HuiMin2,4()   

  1. 1Jiangxi Institute of Red Soil and Germplasm Resources/National Engineering and Technology Research Center for Red Soil Improvement, Jinxian 331717, Jiangxi
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
    4Red Soil Experimental Station of Chinese Academy of Agricultural Sciences in Hengyang/National Observation and Research Station of Farmland Ecosystem in Qiyang, Hunan, Qiyang 426182, Hunan
  • Received:2022-01-08 Accepted:2022-02-23 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】 Spatio-temporal variations and driving factors of fertilizer contribution rate were conducted for the paddy soil in China, so as to provide a theoretical basis for the sustainable development of rice and scientific recommended application of fertilizers in rice cultivation areas. 【Method】 Data was cited from a total of 338 long-term paddy soil monitoring sites located in rice-producing provinces of China for this study. The effects of fertilizer contribution rate for cropping system, climate, regions, soil texture and its driving factors were evaluated. 【Result】 In the past 30 years (1988-2017), the fertilizer contribution rate for rice increased first and then levelled off in China in the condition of same rice variety and cultivation techniques both in fertilization and none-fertilization plots. The variable range of fertilizer contribution rate for rice was from 41.20% to 51.89%. The fertilizer contribution rate for rice was 38.58%-55.49%, 41.96%-51.05%, and 42.34%-53.43% in single, double rice, and rice and other cropping systems, respectively. After 30 years, the fertilizer contribution rate for rice from high to low was as follows: Southwest China (55.82%), Middle of Yangtze River (46.73%), North China (46.27%), North east China (45.90%), South China (45.83%) and Lower of Yangtze River (44.25%). According to the fitting equation, it was found that the stable fertilization years of fertilizer contribution rate for rice was 15.2 a, 18.5 a, 19.0 a, 15.3 a, 15.3 a and 14.5 a in the Northeast China, North China, Southwest China, Middle of Yangtze River, Lower of Yangtze River and South China, respectively. The fertilizer contribution rate for rice in subtropical monsoon (49.23%) was much higher than temperate monsoon (45.90%) and tropical monsoon (34.57%). The fertilizer contribution rate for rice with different soil texture was 43.25%-64.80% for clay soil, 40.65%-48.46% for loam soil, and 26.20%- 45.98% for sand soil. Among the fertilization factors, nitrogen and phosphate fertilizer were the main factors affecting fertilizer contribution rate. Among the climatic factors, frost-free period, mean annual rainfall and mean annual temperature were the main factors and soil organic matter was the most important one among the soil factors. 【Conclusion】 The fertilizer contribution rate for rice was increased first and then levelled off in 1988-2017, and there was different for fertilizer contribution rate for rice under different rice cropping systems, regions, climate and texture. Nitrogen and phosphate fertilizers were main factors of fertilizer contribution rate for rice in China. Moreover, the soil organic matter in paddy soil was the most important to fertilizer contribution rate for rice in soil fertility indexes.

Key words: paddy soil, fertilization, fertilizer contribution rate, spatio-temporal variations, soil organic matter

Fig. 1

Interannual variation of fertilizer contribution rate for rice under different cropping systems Solid lines represent the median values, ▼ Represent the average values; The upper and lower line represent 75% and 25% confidence intervals, respectively. The upper and lower dots represent 95% and 5% confidence intervals, respectively. The same as below"

Table 1

The relationship between fertilizer contribution rate for rice (y, %) and fertilization time (x, a) under different cropping systems"

种植制度
Cropping system
拟合方程
Equation
R2 p
全部
All
y = 0.6864x + 38.200, x<19.6
y=51.55, x≥19.6
0.9669 0.0198
单季稻
Single rice
y = 1.0532x + 34.007, x<21.9
y=54.52, x≥21.9
0.9604 0.0236
双季稻
Double rice
y = 0.5813x + 39.990, x<16.5
y=47.97, x≥16.5
0.8879 0.0409
水稻-其他作物轮作
Rice-other
y = 0.5461x + 38.944, x<28.4
y=53.33, x≥28.4
0.9623 0.0225

Fig. 2

Interannual variation of fertilizer contribution rate for rice under different regions"

Table 2

The relationship between fertilizer contribution rate for rice (y, %) and fertilization time (x, a) under different regions"

区域
Region
拟合方程
Equation
R2 p
东北
Northeast China
y = 1.0171x + 37.316, x<15.2
y=42.06, x≥15.2
0.7017 0.0350
华北
North China
y = 1.4224x + 30.458, x<18.5
y=51.46, x≥18.5
0.9996 <0.0001
西南
Southwest China
y = 1.3346x + 38.202, x<19.0
y=57.68, x≥19.0
0.8647 0.0096
长江中游
Middle of Yangtze River
y = 0.7811x + 36.540, x<15.3
y=47.57, x≥15.3
0.9001 0.0015
长江下游
Lower of Yangtze River
y = 0.2423x + 41.283, x<15.3
y=44.14, x≥15.3
0.6535 0.0417
华南
South China
y = 0.5514x + 36.757, x<14.5
y=51.85, x≥14.5
0.7672 0.0328

Fig. 3

Interannual variation of fertilizer contribution rate for rice under different climate conditions"

Table 3

The relationship between fertilizer contribution rate for rice (y, %) and fertilization time (x, a) under different climate conditions"

气候
Climate
拟合方程
Equation
R2 p
热带季风
Tropical monsoon
y = 0.5138x +32.698, x<16.2
y = 0.8238x + 10.705, x≥16.2
0.8807 0.047
温带季风
Temperate monsoon
y = 1.0171x +37.316, x<15.2
y=42.06, x≥15.2
0.8921 0.023
亚热带季风
Subtropical monsoon
y = 0.7455x +37.915, x<20.5
y=53.21, x≥20.5
0.9907 0.014

Fig. 4

Interannual variation of fertilizer contribution rate for rice under different soil textures"

Table 4

The relationship between fertilizer contribution rate of rice (y, %) and fertilization time (x, a) under different soil textures"

土壤质地
Soil texture
拟合方程
Equation
R2 P
黏土Clay y = 1.3348x + 36.325, x<20.9
y = 64.50, x≥20.9
0.9616 <0.01
壤土Loam y = 0.6339x + 37.772, x<17.5
y = -0.4177x + 56.145, x≥17.5
0.9114 <0.01
砂土Sand ns - -

Fig. 5

Relative variable importance ranking of different factors for the fertilizer contribution rate for rice"

[1]
YAMAJI N, TAKEMOTO Y, MIYAJI T, MITANI-UENO N, YOSHIDA K T, MA J F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature, 2017, 541(7635): 92-99. doi:10.1038/nature20610.

doi: 10.1038/nature20610.
[2]
ZHANG M, YAO Y L, TIAN Y H, CENG K, ZHAO M, ZHAO M, YIN B. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crops Research, 2018, 227: 102-109. doi:10.1016/j.fcr.2018.08.010.

doi: 10.1016/j.fcr.2018.08.010.
[3]
中华人民共和国国家统计局.中国统计年鉴-2020. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook-2020. Beijing: China Statistics Press, 2020. (in Chinese)
[4]
HUANG S, ZHANG W J, YU X C, HUANG Q R. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of Southern China. Agriculture, Ecosystems & Environment, 2010, 138(1/2): 44-50. doi:10.1016/j.agee.2010.03.015.

doi: 10.1016/j.agee.2010.03.015.
[5]
FAN M S, LU S H, JIANG R F, LIU X J, ZHANG F S. Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery. Agronomy Journal, 2009, 101(6): 1421-1425. doi:10.2134/agronj2009.0009.

doi: 10.2134/agronj2009.0009.
[6]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010. doi:10.1126/science.1182570.

doi: 10.1126/science.1182570 pmid: 20150447
[7]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[8]
曾希柏, 陈同斌, 林忠辉, 胡清秀. 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002, 57(5): 539-546.
ZENG X B, CHEN T B, LIN Z H, HU Q X. Grain productivity and its potential as related to fertilizer consumption among different counties of China. Acta Geographica Sinica, 2002, 57(5): 539-546. (in Chinese)

doi: 10.11821/xb200205005
[9]
王祖力, 肖海峰. 化肥施用对粮食产量增长的作用分析. 农业经济问题, 2008, 29(8): 65-68.
WANG Z L, XIAO H F. Effect of fertilizer application on grain yield growth. Issues in Agricultural Economy, 2008, 29(8): 65-68. (in Chinese)
[10]
房丽萍, 孟军. 化肥施用对中国粮食产量的贡献率分析: 基于主成分回归C-D生产函数模型的实证研究. 中国农学通报, 2013, 29(17): 156-160.
FANG L P, MENG J. Application of chemical fertilizer on grain yield in China analysis of contribution rate: based on principal component regression C-D production function model and its empirical study. Chinese Agricultural Science Bulletin, 2013, 29(17): 156-160. (in Chinese)
[11]
麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究. 植物营养与肥料学报, 2018, 24(4): 1113-1120. doi:10.11674/zwyf.17375.

doi: 10.11674/zwyf.17375.
MA K, DIAO G. Research on the contribution rate of fertilizer to grain yield in China. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1113-1120. doi:10.11674/zwyf.17375. (in Chinese)

doi: 10.11674/zwyf.17375.
[12]
鲁彩艳, 隋跃宇, 史奕, 陈欣. 化肥施用对黑龙江省黑土区近50年粮食产量的贡献率. 农业系统科学与综合研究, 2006, 22(4): 273-275.
LU C Y, SUI Y Y, SHI Y, CHEN X. The contribution of chemical fertilizer to crop production in typical black soil region of Heilongjiang Province in the last 50 years. System Sciences and Comprehensive Studies in Agriculture, 2006, 22(4): 273-275. (in Chinese)
[13]
孙彦铭, 黄少辉, 杨云马, 刘克桐, 杨振立, 贾良良. 河北省夏玉米施肥效果与肥料利用率现状. 江苏农业科学, 2019, 47(15): 301-306. doi:10.15889/j.issn.1002-1302.2019.15.069.

doi: 10.15889/j.issn.1002-1302.2019.15.069.
SUN Y M, HUANG S H, YANG Y M, LIU K T, YANG Z L, JIA L L. Present fertilization effects and fertilizer use efficiency of summer maize in Hebei Province. Jiangsu Agricultural Sciences, 2019, 47(15): 301-306. doi:10.15889/j.issn.1002-1302.2019.15.069. (in Chinese)

doi: 10.15889/j.issn.1002-1302.2019.15.069.
[14]
王伟妮, 鲁剑巍, 李银水, 邹娟, 苏伟, 李小坤, 李云春. 当前生产条件下不同作物施肥效果和肥料贡献率研究. 中国农业科学, 2010, 43(19): 3997-4007. doi:10.3864/j.issn.0578-1752.2010.19.012.

doi: 10.3864/j.issn.0578-1752.2010.19.012.
WANG W N, LU J W, LI Y S, ZOU J, SU W, LI X K, LI Y C. Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions. Scientia Agricultura Sinica, 2010, 43(19): 3997-4007. doi:10.3864/j.issn.0578-1752.2010.19.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2010.19.012.
[15]
刘振兴, 杨振华, 邱孝煊, 刘玉环, 林炎金, 庄淑英, 方红, 林增泉. 肥料增产贡献率及其对土壤有机质的影响. 植物营养与肥料学报, 1994(1): 19-26.
LIU Z X, YANG Z H, QIU X X, LIU Y H, LIN Y J, ZHUANG S Y, FANG H, LIN Z Q. Contribution of fertilizers to yield increase and its effect on soil organic matter. Plant Nutrition and Fertilizing Science, 1994(1): 19-26. (in Chinese)
[16]
全国农业技术推广服务中心. 土壤分析技术规范. 2版. 北京: 中国农业出版社, 2006.
National Agricultural Technology Extension and Service Center. Technical Specification for Soil Analysis. 2nd ed. Beijing: China Agriculture Press, 2006. (in Chinese)
[17]
王伟妮, 鲁剑巍, 何予卿, 李小坤, 李慧. 氮、 磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011, 25(6): 645-653. doi:10.3969/j.issn.1001-7216.2011.06.012.

doi: 10.3969/j.issn.1001-7216.2011.06.012.
WANG W N, LU J W, HE Y Q, LI X K, LI H. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice. Chinese Journal of Rice Science, 2011, 25(6): 645-653. doi:10.3969/j.issn.1001-7216.2011.06.012. (in Chinese)

doi: 10.3969/j.issn.1001-7216.2011.06.012.
[18]
龚斌磊. 投入要素与生产率对中国农业增长的贡献研究. 农业技术经济, 2018(6): 4-18. doi:10.13246/j.cnki.jae.2018.06.001.

doi: 10.13246/j.cnki.jae.2018.06.001.
GONG B L. The contribution of inputs and productivity to agricultural growth in China. Journal of Agrotechnical Economics, 2018(6): 4-18. doi:10.13246/j.cnki.jae.2018.06.001. (in Chinese)

doi: 10.13246/j.cnki.jae.2018.06.001.
[19]
武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24(6): 1416-1424.
WU H L, WANG S C, YAN Z H, HUAI S C, MA C B, XUE Y D, XU M G, LU C G. Evolution characteristics of fertility of typical paddy soil in China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1416-1424. (in Chinese)
[20]
李冬初, 黄晶, 马常宝, 薛彦东, 高菊生, 王伯仁, 张杨珠, 柳开楼, 韩天富, 张会民. 中国稻田土壤有机质时空变化及其驱动因素. 中国农业科学, 2020, 53(12): 2410-2422.
LI D C, HUANG J, MA C B, XUE Y D, GAO J S, WANG B R, ZHANG Y Z, LIU K L, HAN T F, ZHANG H M. Spatio-temporal variations of soil organic matter in paddy soil and its driving factors in China. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422. (in Chinese)
[21]
黄晶, 刘立生, 马常宝, 薛彦东, 韩天富, 柳开楼, 刘淑军, 张璐, 李冬初, 都江雪, 张会民. 近30年中国稻区氮素平衡及氮肥偏生产力的时空变化. 植物营养与肥料学报, 2020, 26(6): 987-998.
HUANG J, LIU L S, MA C B, XUE Y D, HAN T F, LIU K L, LIU S J, ZHANG L, LI D C, DU J X, ZHANG H M. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 987-998. (in Chinese)
[22]
柳开楼, 韩天富, 黄晶, 李亚贞, 马常宝, 薛彦东, 都江雪, 王远鹏, 李文军, 张会民. 中国稻作区土壤速效钾和钾肥偏生产力时空变化. 土壤学报, 2021, 58(1): 202-212.
LIU K L, HAN T F, HUANG J, LI Y Z, MA C B, XUE Y D, DU J X, WANG Y P, LI W J, ZHANG H M. Spatio-temporal variation of soil readily available potassium and partial factor productivity of potassium fertilizer in rice cultivation regions of China. Acta Pedologica Sinica, 2021, 58(1): 202-212. (in Chinese)
[23]
都江雪, 柳开楼, 黄晶, 韩天富, 王远鹏, 李冬初, 李亚贞, 马常宝, 薛彦东, 张会民. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应. 土壤学报, 2021, 58(2): 476-486. doi:10.11766/trxb201911040381.

doi: 10.11766/ trxb201911040381.
DU J X, LIU K L, HUANG J, HAN T F, WANG Y P, LI D C, LI Y Z, MA C B, XUE Y D, ZHANG H M. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China. Acta Pedologica Sinica, 2021, 58(2): 476-486. doi:10.11766/trxb201911040381. (in Chinese)

doi: 10.11766/trxb201911040381.
[24]
李建军, 徐明岗, 辛景树, 段建军, 任意, 李冬初, 黄晶, 申华平, 张会民. 中国稻田土壤基础地力的时空演变特征. 中国农业科学, 2016, 49(8): 1510-1519.
LI J J, XU M G, XIN J S, DUAN J J, REN Y, LI D C, HUANG J, SHEN H P, ZHANG H M. Spatial and temporal characteristics of basic soil productivity in China. Scientia Agricultura Sinica, 2016, 49(8): 1510-1519. (in Chinese)
[25]
LIU K L, HAN T F, HUANG J, ZHANG S Q, GAO H J, ZHANG L, SHAH A, HUANG S M, ZHU P, GAO S D, MA C B, XUE Y D, ZHANG H M. Change of soil productivity in three different soils after long-term field fertilization treatments. Journal of Integrative Agriculture, 2020, 19(3): 848-858. doi:10.1016/S2095-3119(19)62742-5.

doi: 10.1016/S2095-3119(19)62742-5.
[26]
韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019, 52(11): 1918-1929.
HAN T F, MA C B, HUANG J, LIU K L, XUE Y D, LI D C, LIU L S, ZHANG L, LIU S J, ZHANG H M. Variation in rice yield response to fertilization in China: meta-analysis. Scientia Agricultura Sinica, 2019, 52(11): 1918-1929. (in Chinese)
[27]
LIU L Y, LI H Y, ZHU S H, GAO Y, ZHENG X Q, XU Y. The response of agronomic characters and rice yield to organic fertilization in subtropical China: a three-level meta-analysis. Field Crops Research, 2021, 263: 108049. doi:10.1016/j.fcr.2020.108049.

doi: 10.1016/j.fcr.2020.108049.
[28]
吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国水稻区域氮磷钾肥推荐用量及肥料配方研究. 中国农业大学学报, 2016, 21(9): 1-13.
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Studies on recommended nitrogen, phosphorus and potassium application rates and special fertilizer formulae for different rice production regions in China. Journal of China Agricultural University, 2016, 21(9): 1-13. (in Chinese)
[29]
李忠芳, 张水清, 李慧, 孙楠, 逄焕成, 娄翼来, 徐明岗. 长期施肥下我国水稻土基础地力变化趋势. 植物营养与肥料学报, 2015, 21(6): 1394-1402.
LI Z F, ZHANG S Q, LI H, SUN N, PANG H C, LOU Y L, XU M G. Trends of basic soil productivity in paddy soil under long-term fertilization in China. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1394-1402. (in Chinese)
[30]
汪景宽, 徐香茹, 裴久渤, 李双异. 东北黑土地区耕地质量现状与面临的机遇和挑战. 土壤通报, 2021, 52(3): 695-701. doi:10.19336/j.cnki.trtb.2021011103.

doi: 10.19336/ j.cnki.trtb.
WANG J K, XU X R, PEI J B, LI S Y. Current situations of black soil quality and facing opportunities and challenges in northeast China. Chinese Journal of Soil Science, 2021, 52(3): 695-701. doi:10.19336/j.cnki.trtb.2021011103. (in Chinese)

doi: 10.19336/j.cnki.trtb.
[31]
刘钦普, 濮励杰. 中国粮食主产区化肥施用时空特征及生态经济合理性分析. 农业工程学报, 2019, 35(23): 142-150.
LIU Q P, PU L J. Spatiotemporal variation of fertilizer utilization and its eco-economic rationality in major grain production areas of China. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 142-150. (in Chinese)
[32]
杜伟, 遆超普, 姜小三, 陈国岩. 长三角地区典型稻作农业小流域氮素平衡及其污染潜势. 生态与农村环境学报, 2010, 26(1): 9-14.
DU W, TI C P, JIANG X S, CHEN G Y. Balance and pollution potential of nitrogen in a typical rice-based agricultural watershed of Yangtze River Delta region. Journal of Ecology and Rural Environment, 2010, 26(1): 9-14. (in Chinese)
[33]
潘丹. 中国化肥施用强度变动的因素分解分析. 华南农业大学学报(社会科学版), 2014, 13(2): 24-31.
PAN D. A decomposition analysis of fertilizer use intensity in China. Journal of South China Agricultural University (Social Science Edition), 2014, 13(2): 24-31. (in Chinese)
[34]
韩天富, 柳开楼, 黄晶, 马常宝, 郑磊, 王慧颖, 曲潇林, 任意, 于子坤, 张会民. 近30年中国主要农田土壤pH时空演变及其驱动因素. 植物营养与肥料学报, 2020, 26(12): 2137-2149. doi:10.11674/zwyf.20399.

doi: 10.11674/ zwyf.20399.
HAN T F, LIU K L, HUANG J, MA C B, ZHENG L, WANG H Y, QU X L, REN Y, YU Z K, ZHANG H M. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2137-2149. doi:10.11674/zwyf.20399. (in Chinese)

doi: 10.11674/zwyf.20399.
[35]
吕贻忠, 李保国. 土壤学. 北京: 中国农业出版社, 2006.
Y Z, LI B G. Soil Science. Beijing: Chinese Agriculture Press, 2006. (in Chinese)
[36]
林海, 李婷婷, 童汉华, 王志刚, 王磊, 鄂志国. 我国水稻主栽品种演替分析. 中国水稻科学, 2018, 32(6): 565-571. doi:10.16819/j. 1001-7216.2018.8107.

doi: 10.16819/j.1001-7216.2018.8107
LIN H, LI T T, TONG H H, WANG Z G, WANG L, E Z G. Analysis on evolution of major rice cultivars in China. Chinese Journal of Rice Science, 2018, 32(6): 565-571. doi:10.16819/j.1001-7216.2018.8107. (in Chinese)

doi: 10.16819/j.1001-7216.2018.8107
[37]
殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020, 53(5): 890-903. doi:10.3864/j.issn.0578-1752.2020.05.003.

doi: 10.3864/j.issn.0578-1752.2020.05.003.
YIN M, LIU S W, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Differences in yield and growth traits of different Japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020, 53(5): 890-903. doi:10.3864/j.issn.0578-1752.2020.05.003. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.05.003.
[38]
李仕贵, 马玉清, 何平, 王玉平, 周开达, 朱立煌. 不同环境条件下水稻生育期和株高的QTL分析. 作物学报, 2002, 28(4): 546-550. doi:10.3321/j.issn:0496-3490.2002.04.021.

doi: 10.3321/j.issn:0496-3490.2002.04.021.
LI S G, MA Y Q, HE P, WANG Y P, ZHOU K D, ZHU L H. Comparative mapping of quantitative trait loci for heading date and plant height in cultivated rice (Oryza sativa L.) across environments. Acta Agronomica Sinica, 2002, 28(4): 546-550. doi:10.3321/j.issn:0496-3490.2002.04.021. (in Chinese)

doi: 10.3321/j.issn:0496-3490.2002.04.021.
[39]
戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26(6): 272-276. doi:10.3969/j.issn.1002-6819.2010.06.047.

doi: 10.3969/j.issn.1002-6819.2010.06.047.
DAI Z G, LU J W, LI X K, LU M X, YANG W B, GAO X Z. Nutrient release characteristic of different crop straws manure. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 272-276. doi:10.3969/j.issn.1002-6819.2010.06.047. (in Chinese)

doi: 10.3969/j.issn.1002-6819.2010.06.047.
[40]
傅廷栋, 梁华东, 周广生. 油菜绿肥在现代农业中的优势及发展建议. 中国农技推广, 2012, 28(8): 37-39. doi:10.3969/j.issn.1002-381X.2012.08.020.

doi: 10.3969/j.issn.1002-381X.2012.08.020.
FU T D, LIANG H D, ZHOU G S. The advantages and development suggestions of rapeseed green manure in modern agriculture. China Agricultural Technology Extension, 2012, 28(8): 37-39. doi:10.3969/j.issn.1002-381X.2012.08.020. (in Chinese)

doi: 10.3969/j.issn.1002-381X.2012.08.020.
[41]
何浩然, 张林秀, 李强. 农民施肥行为及农业面源污染研究. 农业技术经济, 2006(6): 2-10.
HE H R, ZHANG L X, LI Q. Rational fertilization and reduction of large-scale farmland pollution by rationalized fertilizer usage. Journal of Agrotechnical Economics, 2006(6): 2-10. (in Chinese)
[1] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[2] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[3] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[4] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[5] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[6] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[7] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[8] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[9] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[10] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[11] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[12] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[13] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[14] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[15] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!