Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4696-4705.doi: 10.3864/j.issn.0578-1752.2023.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

40 Years’ Change Characteristics of Soil Basic Properties in the Main Planting Area of Winter Oilseed Rape

HUO RunXia1(), ZHANG Zhe2, LI WenPing1, ZHANG YangYang1, LIAO ShiPeng1, REN Tao1, LI XiaoKun1, LU ZhiFeng1, CONG RiHuan1(), LU JianWei1   

  1. 1 College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070
    2 National Agricultural Technical Extension and Service Center, Beijing 100125
  • Received:2022-12-15 Accepted:2023-02-27 Online:2023-12-04 Published:2023-12-04
  • Contact: CONG RiHuan

Abstract:

【Objective】The objective of this study was to investigate the changes in basic physical and chemical properties of soils in the main winter oilseed rape producing areas in the Yangtze River Basin over the past 40 years, and to clarify the characteristics of changes in comprehensive soil fertility of arable land in winter rape growing areas, in order to provide a scientific basis for conservation and soil fertility improvement in low and middle yielding fields in the Yangtze River Basin.【Method】By collecting and organizing the data from published literatures, master’s and doctoral dissertations at home and abroad in the past 40 years, the temporal variation characteristics of basic soil properties in winter oilseed rape growing areas in the Yangtze River Basin were analyzed. Then the variation characteristics of integrated soil fertility (IFI) and its correlation with basic soil physical and chemical properties were evaluated. 【Result】The average values of soil organic matter, total nitrogen, available phosphorus and potassium, and pH in the main winter oilseed rape producing areas of the Yangtze River Basin were 18.54 g·kg-1, 1.16 mg·kg-1, 8.60 mg·kg-1, 42.90 mg·kg-1, and 6.26 during the period of 1981-1990, respectively, but enhanced to 25.60 g·kg-1, 1.41 mg·kg-1, 18.66 mg·kg-1, 108.98 mg·kg-1, and 6.31 by 2016-2020, respectively. Clearly, the soil basic physical and chemical properties have been improved extensively in planting area of winter oilseed rape in the Yangtze River Basin. The average annual increase rate was 1.2% in soil organic matter and 0.7% in soil total nitrogen. Soil available phosphorus and available potassium were enhanced by 3.0% and 4.0% per year, respectively. Soil pH remained stable in the past 40 years, with the mean range of 6.21-6.45 among different periods. Based on the improved Nemerow index method, soil IFI value was also found enhanced in the past four decades. Compared with the mean IFI in the period of 1981-2000, the value was significantly increased by 14.8%-30.4% during the period of 2001-2020. The IFI was positively correlated with soil organic matter, pH, total nitrogen, available phosphorus and available potassium. Path analysis showed that soil available potassium was the most important index affecting IFI, followed by soil total nitrogen and available phosphorus. 【Conclusion】The basic physical and chemical properties and comprehensive fertility of the soil was significantly improved in the past 40 years in the planting area of winter oilseed rape. Developing the planting area of oilseed rape would be benefit for soil fertility and productivity improvement in the Yangtze River Basin, especially for the farmland with low yield productivity.

Key words: Yangtze River Basin, winter oilseed rape, soil organic matter, soil available potassium, soil comprehensive fertility index, temporal variation characteristics

Table 1

Characteristics of the sample distribution of data from different generations"

时间 Time 省市(样本数) Province and city (sample size)
1981-1990 湖北Hubei (8), 湖南Hunan (4), 江西Jiangxi (4), 安徽Anhui (1), 江苏Jiangsu (38), 浙江Zhejiang (5)
1991-2000 云南Yunnan (4), 贵州Guizhou (4), 四川Sichuan (2), 重庆Chongqing (2), 湖北Hubei (18), 河南Henan (3), 湖南Hunan (2), 江西Jiangxi (4), 安徽Anhui (4), 江苏Jiangsu (5), 浙江Zhejiang (13)
2001-2010 贵州Guizhou (10), 四川Sichuan (3), 重庆Chongqing (2), 湖北Hubei (58), 湖南Hunan (9), 江西Jiangxi (14), 安徽Anhui (14), 江苏Jiangsu (21), 浙江Zhejiang (11)
2011-2015 云南Yunnan (1), 贵州Guizhou (6), 四川Sichuan (7), 湖北Hubei (54), 湖南Hunan (17), 江西Jiangxi (8), 安徽Anhui (7), 江苏Jiangsu (1)
2016-2020 云南Yunnan (4), 贵州Guizhou (4), 四川Sichuan (7), 重庆Chongqing (6), 湖北Hubei (82), 湖南Hunan (9), 江西Jiangxi (22), 安徽Anhui (14), 江苏Jiangsu (4), 浙江Zhejiang (6)

Table 2

Grading standards of soil physical and chemical properties"

指标
Index
等级 Grade
xa xb xc
pH 4.50 6.50 8.50
有机质 SOM (g·kg-1) 10.00 20.00 30.00
全氮 TN (g·kg-1) 0.75 1.50 2.00
有效磷 AP (mg·kg-1) 3.00 10.00 20.00
速效钾 AK (mg·kg-1) 40.00 100.00 150.00

Fig. 1

Temporal variation characteristics of soil organic matter and total nitrogen contents in the planting area of winter oilseed rape in the Yangtze River Basin (1980-2020) A and C represented the distribution of soil organic matter and total nitrogen from 1980 to 2020, respectively; red shaded areas indicated 95% confidence bands. B and D were the boxplot graph of soil organic matter and total nitrogen in the periods of 1981-1990, 1991-2000, 2001-2010, 2011-2015, and 2016-2020, respectively. The upper and lower limits of each box represented 25th and 75th percentiles, the upper and lower whisker caps indicated 10th and 90th percentiles, and the horizontal solid and dashed lines inside the box indicated the median and mean, respectively. In the ANOVA results, LSD test was used to compare the significant differences between treatments; the different lowercase letters above boxes indicated the significant differences between fertilization treatments (P<0.05). The same as below"

Fig. 2

Temporal variation characteristics of soil available phosphorus and potassium content in the planting area of winter oilseed rape in the Yangtze River Basin (1980-2020) A and C represented the distribution of soil available phosphorus and potassium from 1980 to 2020, respectively; B and D were the boxplot graphs of soil available phosphorus and available potassium contents in the periods of 1981-1990, 1991-2000, 2001-2010, 2011-2015, 2016-2020, respectively"

Fig. 3

Temporal variation characteristics of soil pH in the planting area of winter oilseed rape in the Yangtze River Basin (1980-2020)"

Fig. 4

Variation of soil comprehensive fertilizer index (IFI) among different ages"

Table 3

Correlation and path analysis between integrated soil fertility index (IFI) and soil properties"

土壤性质
Soil property
相关系数
Correlation coefficient
通径系数
Direct path coefficient
pH 0.201* 0.236*
有机质 SOM (g·kg-1) 0.320** 0.266*
全氮 TN (g·kg-1) 0.398** 0.541**
有效磷 AP (mg·kg-1) 0.504** 0.356**
速效钾 AK (mg·kg-1) 0.475** 0.688**
[1]
RATHKE G W, BEHRENS T, DIEPENBROCK W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agriculture, Ecosystems & Environment, 2006, 117(2/3): 80-108.

doi: 10.1016/j.agee.2006.04.006
[2]
沈仁芳, 王超, 孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题. 中国科学院院刊, 2018, 33(2): 135-144.
SHEN R F, WANG C, SUN B. Soil related scientific and technological problems in implementing strategy of “storing grain in land and technology”. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 135-144. (in Chinese)
[3]
邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究[D]. 武汉: 华中农业大学, 2010.
ZOU J. Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[4]
高永祥, 李若尘, 张民, 周洪印, 郑文魁, 陈德清, 刘之广. 秸秆还田配施控释掺混尿素对玉米产量和土壤肥力的影响. 土壤学报, 2021, 58(6): 1507-1519.
GAO Y X, LI R C, ZHANG M, ZHOU H Y, ZHENG W K, CHEN D Q, LIU Z G. Effects of straw returning combined with application of mixture of controlled-release urea and common urea on maize yield and soil fertility. Acta Pedologica Sinica, 2021, 58(6): 1507-1519. (in Chinese)
[5]
OLDFIELD E E, BRADFORD M A, WOOD S A. Global meta- analysis of the relationship between soil organic matter and crop yields. Soil, 2019, 5(1): 15-32.

doi: 10.5194/soil-5-15-2019
[6]
黄少辉, 贾良良, 杨云马, 刘克桐. 边界线法解析冀中南麦区基础地力产量的土壤养分影响因子. 农业工程学报, 2019, 35(6): 141-148.
HUANG S H, JIA L L, YANG Y M, LIU K T. Analysis on soil nutrient influencing factors of winter wheat yield gaps of basic soil productivity by boundary line method in central and southern Hebei Province. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 141-148. (in Chinese)
[7]
贾良良, 黄少辉, 刘克桐, 孙彦铭, 杨军芳, 杨云马, 邢素丽, 刘孟朝. 太行山前平原农田基础地力对夏玉米产量的影响及培肥目标. 中国土壤与肥料, 2021(3): 340-346.
JIA L L, HUANG S H, LIU K T, SUN Y M, YANG J F, YANG Y M, XING S L, LIU M C. Effect of inherent soil fertility on summer maize yield and the goal of improving basic soil fertility in the Taihang Mountain pediment plain. Soil and Fertilizer Sciences in China, 2021(3): 340-346. (in Chinese)
[8]
武红亮, 王士超, 槐圣昌, 闫志浩, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年来典型黑土肥力和生产力演变特征. 植物营养与肥料学报, 2018, 24(6): 1456-1464.
WU H L, WANG S C, HUAI S C, YAN Z H, MA C B, XUE Y D, XU M G, LU C A. Evolutionary characteristics of fertility and productivity of typical black soil in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1456-1464. (in Chinese)
[9]
包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青. 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012, 45(20): 4197-4204. doi: 10.3864/j.issn.0578-1752.2012.20.009.
BAO Y X, XU M G, F T, HUANG Q H, NIE J, ZHANG H M, YU H Q. Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012, 45(20): 4197-4204. doi: 10.3864/j.issn.0578-1752.2012.20.009. (in Chinese)
[10]
李玉浩, 王红叶, 崔振岭, 营浩, 曲潇琳, 张骏达, 王新宇. 我国主要粮食作物耕地基础地力的时空变化. 中国农业科学, 2022, 55(20): 3960-3969. doi: 10.3864/j.issn.0578-1752.2022.20.008.
LI Y H, WANG H Y, CUI Z L, YING H, QU X L, ZHANG J D, WANG X Y. Spatial-temporal variation of cultivated land soil basic productivity for main food crops in China. Scientia Agricultura Sinica, 2022, 55(20): 3960-3969. doi: 10.3864/j.issn.0578-1752.2022.20.008. (in Chinese)
[11]
黄兴成, 李渝, 白怡婧, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 长期不同施肥下黄壤综合肥力演变及作物产量响应. 植物营养与肥料学报, 2018, 24(6): 1484-1491.
HUANG X C, LI Y, BAI Y J, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Evolution of yellow soil fertility under long-term fertilization and response of corp yield. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1484-1491. (in Chinese)
[12]
LEAL O A, AMADO T J C, FIORIN J E, KELLER C, REIMCHE G B, RICE C W, NICOLOSO R S, BORTOLOTTO R P, SCHWALBERT R. Linking cover crop residue quality and tillage system to CO2-C emission, soil C and N stocks and crop yield based on a long-term experiment. Agronomy, 2020, 10(12): 1848.

doi: 10.3390/agronomy10121848
[13]
ZHANG W J, WANG X J, XU M G, HUANG S M, LIU H, PENG C. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China. Biogeosciences, 2010, 7(2): 409-425.

doi: 10.5194/bg-7-409-2010
[14]
王旭东, 张一平, 吕家珑, 樊小林. 不同施肥条件对土壤有机质及胡敏酸特性的影响. 中国农业科学, 2000, 33(2): 75-81.

doi: 10.3864/j.issn.0578-1752.2000-33-2-78-84
WANG X D, ZHANG Y P, J L, FAN X L. Effect of long term different fertilization on properties of soil organic matter and humic acids. Scientia Agricultura Sinica, 2000, 33(2): 75-81. (in Chinese)
[15]
CONG R H, XU M G, WANG X J, ZHANG W J, YANG X Y, HUANG S M, WANG B R. An analysis of soil carbon dynamics in long-term soil fertility trials in China. Nutrient Cycling in Agroecosystems, 2012, 93(2): 201-213.

doi: 10.1007/s10705-012-9510-4
[16]
查燕, 武雪萍, 张会民, 蔡典雄, 朱平, 高洪军. 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 2015, 48(23): 4649-4659. doi: 10.3864/j.issn.0578-1752.2015.23.006.
ZHA Y, WU X P, ZHANG H M, CAI D X, ZHU P, GAO H J. Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil. Scientia Agricultura Sinica, 2015, 48(23): 4649-4659. doi: 10.3864/j.issn.0578-1752.2015.23.006. (in Chinese)
[17]
HOWARD P J A, HOWARD D M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biology and Fertility of Soils, 1990, 9(4): 306-310.

doi: 10.1007/BF00634106
[18]
LI H G, LIU J, LI G H, SHEN J B, BERGSTRÖM L, ZHANG F S. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio, 2015, 44(Suppl 2): S274-S285.
[19]
都江雪, 柳开楼, 黄晶, 韩天富, 王远鹏, 李冬初, 李亚贞, 马常宝, 薛彦东, 张会民. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应. 土壤学报, 2021, 58(2): 476-486.
DU J X, LIU K L, HUANG J, HAN T F, WANG Y P, LI D C, LI Y Z, MA C B, XUE Y D, ZHANG H M. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China. Acta Pedologica Sinica, 2021, 58(2): 476-486. (in Chinese)
[20]
曹宁, 陈新平, 张福锁, 曲东. 从土壤肥力变化预测中国未来磷肥需求. 土壤学报, 2007, 44(3): 536-543.
CAO N, CHEN X P, ZHANG F S, QU D. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility. Acta Pedologica Sinica, 2007, 44(3): 536-543. (in Chinese)
[21]
BERHANE M, XU M, LIANG Z Y, SHI J L, WEI G H, TIAN X H. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology, 2020, 26(4): 2686-2701.

doi: 10.1111/gcb.v26.4
[22]
HAO X X, HAN X Z, WANG S Y, LI L J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research, 2022, 215: 105221.

doi: 10.1016/j.still.2021.105221
[23]
WANG K K, REN T, YAN J Y, ZHU D D, LIAO S P, ZHANG Y Y, LU Z F, CONG R H, LI X K, LU J W. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment, 2022, 335: 107991.

doi: 10.1016/j.agee.2022.107991
[24]
POWERS S M, BRUULSEMA T W, BURT T P, CHAN N I, ELSER J J, HAYGARTH P M, HOWDEN N J K, JARVIE H P, LYU Y, PETERSON H M, SHARPLEY A, SHEN J B, WORRALL F, ZHANG F S. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9(5): 353-356.

doi: 10.1038/ngeo2693
[25]
张洋洋, 鲁剑巍, 邹娟, 王筝, 任涛, 李小坤, 丛日环. 冬油菜施钾的增产效果和肥料利用率研究. 中国土壤与肥料, 2013(5): 51-55.
ZHANG Y Y, LU J W, ZOU J, WANG Z, REN T, LI X K, CONG R H. Effect of potassium fertilizer on yield increase and potassium nutrient utilization for winter rapeseed. Soil and Fertilizer Sciences in China, 2013(5): 51-55. (in Chinese)
[26]
ZHU D D, CONG R H, REN T, LU Z F, LU J W, LI X K. Straw incorporation improved the adsorption of potassium by increasing the soil humic acid in macroaggregates. Journal of Environmental Management, 2022, 310: 114665.

doi: 10.1016/j.jenvman.2022.114665
[27]
张洋洋. 土壤有效钾提取方法筛选与水稻及油菜钾素丰缺指标研究[D]. 武汉: 华中农业大学, 2014.
ZHANG Y Y. Screening of extracted methods for soil available potassium and potassium abundant & deficiency indices on rice and oilseed rape[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[28]
朱丹丹. 钾素管理措施对稻油轮作体系土壤钾素肥力的影响及其机制[D]. 武汉: 华中农业大学, 2022.
ZHU D D. Mechanisms underlying the effects of potassium management measures on soil potassium fertility in rice-oilseed rape rotation system[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[29]
李继福, 薛欣欣, 李小坤, 任涛, 邹家龙, 陈华东, 丛日环, 周鹂, 鲁剑巍. 水稻-油菜轮作模式下秸秆还田替代钾肥的效应. 植物营养与肥料学报, 2016, 22(2): 317-325.
LI J F, XUE X X, LI X K, REN T, ZOU J L, CHEN H D, CONG R H, ZHOU L, LU J W. Substituting effect of crop residues for potassium fertilizer in rice-rapeseed rotation system. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 317-325. (in Chinese)
[30]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[31]
丛日环, 张智, 郑磊, 苗洁, 任意, 任涛, 李小坤, 鲁剑巍. 基于GIS的长江中游油菜种植区土壤养分及pH状况. 土壤学报, 2016, 53(5): 1213-1224.
CONG R H, ZHANG Z, ZHENG L, MIAO J, REN Y, REN T, LI X K, LU J W. Soil nutrients and pH in rapeseed planting areas in the middle reaches of the Yangtze River based on GIS. Acta Pedologica Sinica, 2016, 53(5): 1213-1224. (in Chinese)
[32]
张顺涛, 任涛, 周橡棋, 方娅婷, 廖世鹏, 丛日环, 鲁剑巍. 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2022, 59(1): 194-205.
ZHANG S T, REN T, ZHOU X Q, FANG Y T, LIAO S P, CONG R H, LU J W. Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen. Acta Pedologica Sinica, 2022, 59(1): 194-205. (in Chinese)
[33]
朱芸, 廖世鹏, 刘煜, 李小坤, 任涛, 丛日环, 鲁剑巍. 长江流域油-稻与麦-稻轮作体系周年养分收支差异. 植物营养与肥料学报, 2019, 25(1): 64-73.
ZHU Y, LIAO S P, LIU Y, LI X K, REN T, CONG R H, LU J W. Differences of annual nutrient budgets between rapeseed-rice and wheat-rice rotations in the Yangtze River Basin. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 64-73. (in Chinese)
[34]
任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8): 1606-1616. doi: 10.3864/j.issn.0578-1752.2020.08.010.
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616. doi: 10.3864/j.issn.0578-1752.2020.08.010. (in Chinese)
[1] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[2] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[3] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[4] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[5] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[6] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[7] REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei. Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China [J]. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616.
[8] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
[9] LIU Lin,JI BingJie,LI RuoNan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Characteristics of Soil Phosphorus in Winter Wheat/Summer Maize Cropping in Shaanxi Guanzhong Plain [J]. Scientia Agricultura Sinica, 2019, 52(21): 3878-3889.
[10] LIU QiuXia, REN Tao, ZHANG YaWei, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU JianWei. Determination and Application of a Critical Nitrogen Dilution Curve for Direct-Sowing Winter Oilseed Rape in Central China [J]. Scientia Agricultura Sinica, 2019, 52(16): 2835-2844.
[11] KUAI Jie,WANG JiJun,ZUO QingSong,CHEN HongLin,GAO JianQin,WANG Bo,ZHOU GuangSheng,FU TingDong. Effects and Mechanism of Higher Plant Density on Directly-Sown Rapeseed in the Yangtze River Basin of China [J]. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632.
[12] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[13] ZHU Yun, XU HuaLi, ZHANG YangYang, REN Tao, CONG RiHuan, LU JianWei. Yield and Nutrient Efficiency Differences of Winter Oilseed Rape Between Farmer’s Practice and Recommended Fertilization in Yangtze River Basin: Based on Large-Number of Field Experiments [J]. Scientia Agricultura Sinica, 2018, 51(15): 2948-2957.
[14] SHANG Xuan, LI XiCan, XU YouYou, LIU ShaSha. The Role and Interaction of Soil Water and Organic Matter on Hyper-Spectral Reflectance [J]. Scientia Agricultura Sinica, 2017, 50(8): 1465-1475.
[15] ZHU YaXing, YU Lei, HONG YongSheng, ZHANG Tao, ZHU Qiang, LI SiDi, GUO Li, LIU JiaSheng. Hyperspectral Features and Wavelength Variables Selection Methods of Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(22): 4325-4337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!