Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3565-3583.doi: 10.3864/j.issn.0578-1752.2022.18.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Overview of Soil Survey Works in Main Countries of World

WeiLi ZHANG1(),H KOLBE2,RenLian ZHANG1,DingXiang ZHANG3,ZhanGuo BAI4,Jing ZHANG5,HuaDing SHI6   

  1. 1Institute of Agricultural Resources and Agricultural Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2ächsische Landesanstalt für Landwirtschaft, Waldheimer Straβe 219, D-01683, Germany
    3China Land Surveying and Planning Institute, Beijing 100035, China
    4ISRIC-World Soil Information, P. O. Box 353, 6700 AJ, Wageningen, The Netherlands
    5Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    6Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
  • Received:2022-07-11 Accepted:2022-08-18 Online:2022-09-16 Published:2022-09-22

Abstract:

The reviewing soil surveys and soil investigations in different countries shows that in order to understand the soil resources and soil quality, the soil surveys and investigations carried out by different countries since the end of the 19th century can be divided into four categories, namely: survey for soil classification, investigation and evaluation of farmland fertility, testing of soil chemical properties for fertilizer recommendation and soil investigations related to environmental issues. Among the four categories, soil classification is the earliest and the most widely implemented survey works carried out in the world. Main purpose of the classification survey is to clarify the differences in soil types and their spatial distributions caused by various soil formation processes. Since soil formation processes under natural conditions can reach tens of thousands of years, the main outputs of the classification survey—the soil maps and the records of soil profiles, expressing the physicochemical properties of various soil types, have a long timeliness and are widely used in various research areas. After the completion of nation-wide soil classification surveys in the last century in developed countries, the updated survey was not conducted in these countries. In the second national soil survey in China, large-scale soil maps covering the whole country were completed by relatively higher profile sampling density. The physicochemical properties of 100 000 soil profiles, representing different soil types, were also recorded. Both the map scale and the richness of soil profile data from the survey surpassed the outputs from classification surveys in many developed country. Soil classification data obtained from this survey are valid for a long time to different disciplines and sectors. In order to meet needs for easy-to-understand farmland fertility grades by land management sectors and farmers, investigation and evaluation of farmland fertility have been carried out in Central European countries, where per capita arable land resources have been in shortage. Through high-density profile samplings, soil fertility evaluation for each farmland plot with an independent cadastral code was carried out. An officially certified fertility grades in percentile index and the records of soil profiles were established and archived for each plot. The investigation results have been widely used in farmland management, taxation, agricultural subsidies, farmland leasing, trading, lending, insurance and other sectors, and have become the indispensable and centennial basic information for farmland quality. China's per capita arable land is much less than that of Central European countries, but so far there has been still in shortage of soil fertility data for farmland management. For preservation of arable land resources with high fertility and ensure food safety, it is essential and also urgent to establish precise and reliable fertility archives for each farmland plot in China. Also more efficient investigation and evaluation approaches, which are compatible with China's economic and social condition should be developed. The review of testing soil chemical properties to make fertilizer recommendation shows that such testing has been incorporated into the technical supporting system for best farming management practices in the developed countries. To improve farmers' fertilization techniques, it is more important to establish an efficient technical supporting system and maintain its running, in comparison to nation-wide soil nutrient census of farmland. In the past, there was continuous weakening of applied researches and extension works for fertilization technological chain from basic research to farmers' application. Due to inadequate research works, the technical indexes for fertilization, that should be differentiated to and compatible with the various regional soil and climate conditions and hence easy to be followed by farmers of different regions, have not been issued yet in China. Also the intelligent tools that can reach and provide targeted guidance to farmers were not available. Unbalanced and excessive fertilization was common in vegetable, fruit and other cash crop growing area, which accounted for 23.6% of the total cropping area in China. This resulted in reduction of crop yield and quality as well as benefit of farmers and also leaded to agricultural non-point source pollution. Making up for the shortcomings in the technical supporting system has become the key to improve both crop yield and soil fertility. Since the end of the last century, soil investigations related with environment issues have been carried out in different countries. Main purposes of these investigations are to clarify the status of environmental pollution and changing, to develop control strategy and to check effects of countermeasures. With the quick progresses of GIS-, GPD-, RS- and big data techniques, the traditional mapping approaches have be replaced by digital soil mapping techniques. An exact defining of investigation objectives and a comprehensive reviewing of relevant research progress as well as available auxiliary data are essential for drafting sampling design and achieving investigation tasks finally.

Key words: soil survey, farmland fertility investigation and evaluation, testing soil chemical properties, soil environmental quality, protection of arable land, soil samplings design

Table 1

Objectives, outputs, sampling designs and items investigated in different soil surveys"

调查类别
Survey type
调查目标
Objectives
主要产出
Main outputs
采样设计:布点原则、
采样密度和深度
Sampling design: principles,
density and depth
调查与化验科目
Items of investigation &
laboratory analysis
土壤分类调查
Soil survey for classification[26-30]
查清土壤发生类型及分布特征
To determine soil types and their spatial distributions
土壤图,土壤剖面理化性状表
Soil maps, physico-
chemical properties
of soil profile
地面调查与采样要求:能分辨不同成土过程生成的各类土壤及其空间分布
土层深度:0-100 cm至更深
Sampling design and requirements: Distinguishing soil types from various generating processes and their spatial distribution.
Soil depth: 0-100 cm or more deeper
稳定性土壤性状为主, 如土壤类型、土体构造,土体各发生层厚度、颜色、质地类型、土壤结构、容重、有机质、pH、全氮、全磷、全钾、阳离子代换量、CaCO3含量、土壤硅铝率、铁铝率、土壤障碍层与障碍因素等
Stable soil properties: soil type; profile structure; thickness, color, texture, bulk density, SOC, pH, total N, P, K, CEC of each soil layers, CaCO3- content, silica-alumina & ferrallitic ratio, fertility barrier layer or factors
农田土壤基础地力
调查与评价
Farmland fertility investigation & evaluation[10-11,19,21,25]
为每个田块给出简明易懂的土壤基础地力(农田土壤自然生产力)等级评分
To get an easy-to-understand farmland fertility grades (natural productivity)
大比例尺田块图、每个田块的农田土壤百分价和土壤剖面理化性状表
Large-scale land map, certified fertility grades in percentile index, records of soil profile
地面调查与采样要求:对每个具有独立地籍编码的田块进行采样和评价
剖面设置:网格化分布,每块地至少一个剖面
土层深度:0-100 cm
Sampling design and requirements: Each plot with a cadastral code was sampled and evaluated
Profile setting: grid distribution, one profile for each plot at least
Soil depth: 0-100 cm
稳定性土壤性状为主。如土层厚度,剖面分层质地类型、有机质累积状况、石灰含量,土体构造、显著影响农田地力的成土类型等
Stable soil properties: soil thickness, texture, SOC and CaCO3-content of each soil layer, profile structure, main soil types with marked influence on farm land fertility, etc
科学施肥与耕地保
育土壤采样调查
Soil testing for fertilization and land care[24,31-34]
为农民提供科学施肥和耕地保育推荐
To draw recommendation for fertilization and arable land care
每个田块的耕层土壤有效养分含量、酸碱度、科学施肥和耕地保育推荐
Soil available nutrient content, pH and fertilization recommendation for each field
采样(推荐)单元要求:地力接近、轮作类型和施肥措施比较一致的田块
采样点设置:采样单元内之字形均衡分布,15-40点多点混合样本
土层深度:养分、农田类型不同,采土深度不同
Sampling (recommended) unit: Field with similar fertility, rotation and fertilizing measures
Sampling setting: Mixed sampling by zigzag sampling lines with 15-40 drillings
Soil depth: Different according to nutrients and land use
易于变化的土壤化学性状。如:矿质氮,矿质硫,土壤有效磷、钾、镁、pH等
Variable soil chemical properties such as Nmin, Smin, soil available P, K, Mg and pH, etc
环境质量为主题的
土壤调查
Soil surveys related with environment issues[14-16]
为科学界和政府了解环境污染与变化,制定控制对策、检验控制效率服务
To clarify pollution status, to develop control strategy & to check countermeasures
土壤环境质量要素分布图、调查与评价报告
Thematic maps and reports for environmental quality
因调查主题和目标不同,采样设计、样本量、土层深度各不相同
Depending on the survey theme and objectives, the sampling design, size and soil depth vary
易于受人类生产和生活方式影响的土壤环境化学和生物性状,如土壤重金属、有机污染物含量,土壤有机碳储量,生物多样性等
Soil environmental chemical and biological properties which are susceptible to human production and lifestyle, such as soil heavy metals, POPs, SOC storage, biodiversity, etc

Table 2

Terms and amounts of field experiments for evaluating fertilizer effects and drafting fertilization technical criteria within a federal state of Germany[51⇓⇓⇓-55]"

氮、硫肥料
Nitrogen & sulfur
磷、钾、镁肥及石灰
Phosphorus, potassium, magnesium and lime
有机肥料
Organic manures
定位试验年限 Experiment term (a) 1-5 5-20 10-20
田间定位试验数量 Experiment amounts 30-50 20-30 20-50

Fig. 1

Technical supporting system for farming management practices of fertilization and arable land care in Central European countries"

Table 3

Rules of soil sampling for farmland nutrient management in Germany"

氮、硫
Nitrogen & sulfur
磷、钾、镁及石灰
Phosphorus, potassium, magnesium and lime
土壤采样测定科目
Testing items
土壤矿质氮、矿质硫
Nmin, Smin
土壤有效磷、钾、镁含量与pH
Soil available Phosphorus, potassium, magnesium and pH
采样间隔期
Sampling interval
每年或每季作物(氮肥)
Each year or cropping
每隔3-6年
Every 3-6 a
采样时期
Sampling period
春季或作物施肥之前
In spring or before fertilizing
秋季作物收获后,或施用基肥之前
In autumn after harvest or before base fertilization
采样深度
Sampling depth
耕地 Arable land
0-30 & 30-60 cm
耕地 Arable land
0-20 cm
草地 Grassland
0-15,15-30 & 30-60 cm
草地 Grassland
0-10 cm
推荐单元面积
Size of one unit to be recommended
1-10 hm2,若轮作、田块土壤肥力差异大,需要进一步细分
1-10 hm2, further subdivided is needed, if rotation and fertility of the field varies greatly
推荐单元混合样本最少钻数
Minimum drillings for a mixed sample of one recommendation unit
耕地Arable land: 15-20
草地 Grassland: 35-40
推荐单元中样点的分布
Drilling line
之字形均衡分布Zigzag sampling line
推荐单元土壤气候条件信息
Soil and climate info’s of the recommended unit
质地、土壤有机质含量、主要成土类型、土壤气候分区
Soil texture, type,SOC,soil & climate zoning
[1] 张维理, 张认连, 徐爱国, 田有国, 姚政, 段宗颜. 中国1﹕5万比例尺数字土壤的构建. 中国农业科学, 2014, 47(16): 3197-3215.
ZHANG W L, ZHANG R L, XU A G, TIAN Y G, YAO Z, DUAN Z Y. Development of China digital soil maps (CDSM) at 1﹕50 000 scale. Scientia Agricultura Sinica, 2014, 47(16): 3197-3215. (in Chinese)
[2] HALLETT S, DEEKS L. A history of soil survey in England and Wales., Geophysical Research Abstracts. 2012, 14: 5525.
[3] BEHRENS T, SCHOLTEN T. Digital soil mapping in Germany-a review. Journal of Plant. Nutrition and Soil Science, 2006, 169(3): 434-443. doi: 10.1002/jpln.200521962.
doi: 10.1002/jpln.200521962
[4] KING D, JAMAGNE M, ARROUAYS D, BORNAND D, FAVROT J C, HARDY R, LE BAS C, STENGEL P. Inventaire cartographique et surveillance des sols en France. Etat d’advancement et exemples d’utilisation. E´ tude et Gestion des Sols. 1999, 6: 215-228.
[5] GREVE M H, BREUNING-MADSEN H. Soil Mapping in Denmark. 1999, European Soil Bureau-Research Report No.9.1999,111-119.
[6] ARNOLD R W. The soil survey: past, present, and future, 1999. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/home/?cid=nrcs142p2_053369.
[7] TAKATA Y, KANDA T, WAKABAYASHI S, MAEJIMA Y, OHKURA T, KOHYAMA K, OBARA H. A new soil classification system and soil map for conservation of soil resources in Japan. 2015. www.naro.affrc.go.jp/archive/niaes/marco/marco2015/text/ws3-5_y_takata.pdf.
[8] Atlas of Australian soils. https://www.asris.csiro.au/themes/Atlas.html.
[9] HARTEMINK A E, SONNEVELD M P W. Soil maps of the Netherlands. Geoderma, 2013, 204/205: 1-9. doi: 10.1016/j.geoderma.2013.03.022.
doi: 10.1016/j.geoderma.2013.03.022
[10] Bodenschätzung in Schleswig-Holstein und Ihre Nutzung für den Bodenschutz, 2015. https://www.schleswig-holstein.de/DE/fachinhalte/B/boden/bodenschaetzung.html.
[11] Bodenschätzung in Schleswig-Holstein und Ihre Nutzung für den Bodenschutz, 2021. https://www.lbeg.niedersachsen.de/karten_daten_publikationen/karten_daten/boden/bodenkarten/bodenschaetzungskarte_15000/bodenschaetzungskarte-von-niedersachsen-im-mastab-1--5-000-bs5-681.html.
[12] 环境保护部. 全国土壤污染状况调查公报, 2014. https://www.mee.gov.cn/searchnew/?searchword.
Ministry of Environmental Protection. Bulletin of national soil pollution survey, 2014. https://www.mee.gov.cn/searchnew/?searchword. (in Chinese)
[13] 全国农业技术推广服务中心. 测土配方施肥土壤基础养分数据集: 2005-2014. 北京: 中国农业出版社, 2015: 1-533.
National Agricultural Technology Extension Service Center. Data Set of Soil Nutrients for Soil Testing and Formula Fertilization (2005-2014). Beijing: Chinese Agriculture Press, 2015: 1-533. (in Chinese)
[14] TÓTH G, HERMANN T, SZATMÁRI G, PÁSZTOR L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 2016, 565: 1054-1062. doi: 10.1016/j.scitotenv.2016.05.115.
doi: 10.1016/j.scitotenv.2016.05.115
[15] Thünen-Institut. Landwirtschaftlich Genutzte Böden in Deutschland - Ergebnisse der Bodenzustandserhebung. Braunschweig: Johann Heinrich von Thünen-Institut, 2019: 1-284. (in German)
[16] Smith L C, Orgiazzi A, Eisenhauer N, Cesarz S, Lochner A, Jones A, Bastida F, Patoine G, Reitz T, Buscot F, Rillig M C, Buschart A H, Lehmann A, Guerra C A. Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe, 2021. https://www.researchgate.net›publication›353985224_Large-scale_drivers_of.
[17] https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/.
[18] https://www.finanzamt.bayern.de/Informationen/Steuerinfos/Weitere_Themen/Bodenschaetzung/Merkblatt-ueber-den-Aufbau-der-Bodenschaetzung.pdf.
[19] MOHR H, RATZKE U. 75 Jahre einheitliche Bodenscahaetzung. Buddin: Kunsthaus Verlag, 2009: 1-97. (in German)
[20] Bundesministeriums der Justiz und für Verbraucherschutz. Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz -BodSchätzG). 2007: 1-10. (in German)
[21] Bundesministeriums der Justiz und für Verbraucherschutz. Verordnung zur Durchführung des §6 Absatz 3 des Bodenschätzungsgesetzes (Bodenschätzungs-Durchführungsverordnung - BodSchätzDV). 2012: 1-114. (in German)
[22] 张维理, 傅伯杰, 徐爱国, 杨鹏, 陈涛, 张认连, 史舟, 吴文斌, 李建兵, 冀宏杰, 刘峰, 雷秋良, 李兆君, 冯瑶, 李艳丽, 徐用兵, 裴玮. 中国土壤调查结果的地统计特征. 中国农业科学, 2022, 55(13): 2572-2583.
ZHANG W L, FU B J, XU A G, YANG P, CHEN T, ZHANG R L, SHI Z, WU W B, LI J B, JI H J, LIU F, LEI Q L, LI Z J, FENG Y, LI Y L, XU Y B, PEI W. Geostatistical characteristics of soil data from national soil survey works in China. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583. (in Chinese)
[23] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007.
doi: 10.3864/j.issn.0578-1752.2020.02.007
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi: 10.3864/j.issn.0578-1752.2020.02.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.007
[24] Sächsische Landesanstalt für Landwirtschaft. Umsetzung der Düngeverordnung: Hinweise und Richtwerte für die Praxis. 2007: 1-164. (in German) https://publikationen.sachsen.de/bdb/artikel/15242.
[25] 中华人民共和国国家质量监督检验检疫局中国国家标准化管理委员会. 农用地质量分等规程:GB/T 28407-2012. 北京: 中国标准出版社, 2012: 1-31.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Regulation for gradation on agriculture land quality:GB/T 28407-2012. Beijing: China Standards Press, 2012: 1-31. (in Chinese)
[26] Soil Survey Staff. Keys to Soil Taxonomy. 11th ed.Washington: USDA, Natural Resources Conservation Service, 2010: 1-338.
[27] BUOL S W, SOUTHARD R J, GRAHAM R C, MCDANIEL P A. Soil Genesis and Classification. 6th ed. Iowa: Iowa State Press, 2010: 1-494.
[28] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998: 1246.
The Office of National Soil Survey. Soils of China. Beijing: Chinese Agriculture Press, 1998: 1246. (in Chinese)
[29] Natural Resources Conservation Service. Soil Taxonomay: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. 2nd ed. Washington: United States Department of Agriculture, 1999: 871.
[30] Canada Soil Classification Working Group. The Canadian System of Soil Classification. 3rd ed. Ottawa: NRC Research Press, 1998: 187.
[31] Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung -DüV). Germany: Bundesministerium der Justiz und für Verbraucherschutz, 2017: 1-46. https://www.gesetze-im-internet.de/. (in German)
[32] Ministry of Agriculture, Fisheries and Food. Fertiliser recommendations for agricultural and horticultural crops (RB209). 2000. http://www.defra.gov.uk/environ/pollute/rb209/
[33] KAISER D E, LAMB J A, ELIASON R. Fertilizer guideline for agronomic crops in Minnesota, 2011. www.extension.umn.edu/nutrient-management/www.extension.umn.edu/nutrient-management/.
[34] USDA. Building Soils for Better Crops, 2009: 1-310.
[35] LAGACHERIE P, MCBRATNEY A, VOLTZ M. Digital soil mapping:an introductory perspective. Amsterdam: Elsevier, 2007: 1-659.
[36] LAMBERT J J, DAROUSSIN J, EIMBERCK M, LE BAS C, JAMAGNE M, KING D, MONTANARELLA L. Soil Geographical Database for Europe & the Mediterranean: Instructions Guide for Elaboration at Scale 1:1 000 000. Version 4.0. Luxembourg: Office for Official Publications of the European Communities, EUR 20422 EN, 2003: 64.
[37] CSIRO Land and Water. Australian Soil Resource Information System (ASRIS). http://www.asris.csiro.au/asris
[38] USDA. Natural Resources Conservation Service. Soils national soil information system. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/cid=nrcs142p2_053552.
[39] 张维理, 徐爱国, 张认连, 冀宏杰. 土壤分类研究回顾与中国土壤分类系统的修编. 中国农业科学, 2014, 47(16): 3214-3230.
ZHANG W L, XU A G, ZHANG R L, JI H J. Review of soil classification and revision of China soil classification system. Scientia Agricultura Sinica, 2014, 47(16): 3214-3230. (in Chinese)
[40] ISSS, ISRIC, FAO. World reference base for soil resources. Wageningen/Rome, 1998: 68.
[41] SHI X Z, YU D S, XU S X, WARNER E D, WANG H J, SUN W X, ZHAO Y C, GONG Z T. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma, 2010, 155(3/4): 344-350. doi: 10.1016/j.geoderma.2009.12.017.
doi: 10.1016/j.geoderma.2009.12.017
[42] 中华人民共和国国家质量监督检验检疫局中国国家标准化管理委员会. 中国土壤分类与代码: GB/T 17296-2009. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Classification and Code for China Soil: GB/T 17296-2009. Beijing: China Standards Press, 2009. (in Chinese)
[43] Soil Survey Staff. Soil Taxonomy. Washington: Agriculture Handbook No.436, 1975.
[44] WITTMANN O, BLUME H P, FILIPINSKI M. Soil Classification of the Federal Republic of Germany. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1997: Bd. 84: 253-275.
[45] 农用地等级价体系建立. 人民日报, 2005-7-22(6). http://finance.sina.com.cn/g/20050722/07041823783.shtml.
Establishment of price system for agricultural land grade. People's Daily, 2005-7-22(6). http://finance.sina.com.cn/g/20050722/07041823783.shtml. (in Chinese)
[46] 中华人民共和国国家质量监督检验检疫局中国国家标准化管理委员会. 耕地质量等级: GB/T33469-2016. 北京: 中国标准出版社, 2016: 1-48.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration. Cultivated Land Quality Grade: GB/T33469-2016. Beijing: China Standards Press, 2016: 1-48. (in Chinese)
[47] 崔小涛. 中国城市土地利用存在的主要问题和解决措施. 中国资源综合利用, 2017, 35(6): 41-42.
CUI X T. The main problems and solutions of urban land use in China. China Resources Comprehensive Utilization, 2017, 35(6): 41-42. (in Chinese)
[48] FAO-Statistics. 2017-2019.
[49] 张维理, 徐爱国, 张认连, 冀宏杰. 中国耕地保育技术创新不足已危及粮食安全与环境安全. 中国农业科学, 2015, 48(12): 2374-2378.
ZHANG W L, XU A G, ZHANG R L, JI H J. Shortage of innovative technology for arable land fertility management endangered food security and environmental safety in China. Scientia Agricultura Sinica, 2015, 48(12): 2374-2378. (in Chinese)
[50] 张维理, 张认连, 冀宏杰, KOLBE H, 陈印军. 中德农业源污染管控制度比较研究. 中国农业科学, 2020, 53(5): 965-976.
ZHANG W L, ZHANG R L, JI H J, KOLBE H, CHEN Y J. A comparative study between China and Germany on the control system for agricultural source pollution. Scientia Agricultura Sinica, 2020, 53(5): 965-976. (in Chinese)
[51] VDLUFA. Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. Germany: VDLUFA-Standpunkt, 2018: 1-11. . (in German)
[52] VDLUFA. Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf. Germany: VDLUFA-Standpunkt, 1999: 1-5. https://www.vdlufa.de/de/index.php/fachinformation. (in German)
[53] VDLUFA. Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Germany: VDLUFA--Standard, 2000: 1-8. https://www.vdlufa.de/de/index.php/fachinformation. (in German)
[54] 张维理, KOLBE H, 张认连, 冀宏杰. 农田土壤有机碳管理与有机质平衡算法. 中国农业科学, 2020, 53(2): 332-345.
ZHANG W L, KOLBE H, ZHANG R L, JI H J. Soil organic carbon management and farmland organic matter balance method. Scientia Agricultura Sinica, 2020, 53(2): 332-345. (in Chinese)
[55] KUCHENBUCH R O, BUCZKO U. re-visiting potassium- and phosphate-fertilizer responses in field experiments and soil-test interpretations by means of data mining. Journal of Plant Nutrition and Soil Science, 2011, 174(2): 171-185. doi: 10.1002/jpln.200900162.
doi: 10.1002/jpln.200900162
[56] ROSSBERG D, VOLKER M, GRAF R, NEUKAMPF R. Boden- Klima-Räume und An-baugebiete als Basis des regionalisierten Sortenwesens in Deutschland. 2007, Beiträge zum Sorten- und Versuchswesen und zur Biostatistik Heft, 37:24-30. https://www.umweltkarten.mv-regierung.de/meta/bkr_herleitung.pdf. (in German)
[57] VDLUFA. Nährstoffbilanzierung im landwirtschaftlichen Betrieb. VDLUFA-Standard, 2007. https://www.vdlufa.de/de/index.php/fachinformation. (in German)
[58] 张维理, 冀宏杰, Kolbe H., 徐爱国. 中国农业面源污染形势估计及控制对策 Ⅱ.欧美国家农业面源污染状况及控制. 中国农业科学, 2004, 37(7): 1018-1025.
ZHANG W L, JI H J, KOLBE H, XU A G. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅱ.Status of agricultural non-point source pollution and the alleviating strategies in European and American countries. Scientia Agricultura Sinica, 2004, 37(7): 1018-1025. (in Chinese)
[59] 杨俐苹, 金继运, 白由路, 黄绍文. 土壤养分综合评价法和平衡施肥技术及其产业化. 磷肥与复肥, 2001, 16(4): 61-63.
YANG L P, JIN J Y, BAI Y L, HUANG S W. Comprehensive evaluation of soil nutrients balanced fertilization technique and its industrialization. Phosphate & Compound Fertilizer, 2001, 16(4): 61-63. (in Chinese)
[60] 陈吉宁. 流域面源污染控制技术: 以滇池流域为例. 中国环境科学出版社, 2009: 1-423.
CHEN J N. Nonpoint Source Pollution Control:Case Studies in Dianchi Lake Catchments. Bejing: China Environmental Press, 2009: 1-423. (in Chinese)
[61] 生态环境部. 全国土壤污染状况详查, 2021. https://www.mee.gov.cn/ywdt/hjywnews/202112/t20211220_964703.shtml.
Ministry of Ecological and Environment of the P. R. China. Detailed survey of soil pollution in China. 2021, https://www.mee.gov.cn/ywdt/hjywnews/202112/t20211220_964703.shtml. (in Chinese)
[62] ORGIAZZI A, PANAGOS P. Biodiversity factor in soil erosion, 2018. https://esdac.jrc.ec.europa.eu/content/biodiversity-factor-soil-erosion.
[63] B TÓTH, WEYNANTS M, PÁSZTOR L, HENGL T. Soil hydraulic database of Europe at 1 km and 250 m resolution, 2017. https://esdac.jrc.ec.europa.eu/content/3d-soil-hydraulic-database-europe-1-km-and-250-m-resolution.
[64] LUGATO E. N2O emissions from agricultural soils in Europe, 2017. https://esdac.jrc.ec.europa.eu/content/n2o-emissions-agricultural-soils.
[65] SMITH D B, CANNON W F, WOODRUFF L G, SOLANO F, ELLEFSEN K J. Geochemical and mineralogical maps for soils of the conterminous United States. U.S. Geological Survey Open-File Report 2014-1082. http://dx.doi.org/10.3133/ofr20141082.
[66] https://esdac.jrc.ec.europa.eu/.
[1] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[2] YAN Li, WANG Yin, FENG Guo-zhong, GAO Qiang. Status and Change Characteristics of Farmland Soil Fertility in Jilin Province [J]. Scientia Agricultura Sinica, 2015, 48(23): 4800-4810.
[3] ZHANG Wei-Li, XU Ai-Guo, ZHANG Ren-Lian, JI Hong-Jie. Review of Soil Classification and Revision of China Soil Classification System [J]. Scientia Agricultura Sinica, 2014, 47(16): 3214-3230.
[4] KONG Long-1, 2 , TAN Xiang-Ping-1, HE Wen-Xiang-1, 3 , WEI Ge-Hong-2. Response of Soil Enzyme Activity in Different Type of Soils to Cadmium Exposure in China [J]. Scientia Agricultura Sinica, 2013, 46(24): 5150-5162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!