Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2518-2529.doi: 10.3864/j.issn.0578-1752.2023.13.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China

CHEN ShuoTong1,2(), XIA Xin2, DING YuanJun2, FENG Xiao2, LIU XiaoYu2, Marios Drosos2, LI LianQing2, PAN GenXing2()   

  1. 1 College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu
    2 Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095
  • Received:2022-05-11 Accepted:2022-07-12 Online:2023-07-01 Published:2023-07-06
  • Contact: PAN GenXing

Abstract:

【Objective】This study was to explore the changes in topsoil organic matter content and composition of a rice paddy with crop residue return in different forms, in order to provide the useful information for crop residue utilization and paddy soil carbon sequestration.【Method】 In June, 2015, compared with no straw amendment (CK), untreated (CS), manured (CM) and pyrolyzed (CB) maize residue were returned at 10 t C·hm-2 to a paddy topsoil in Tai Lake Plain, China. Topsoil (0-15 cm) samples were collected at rice harvest in November respectively of 2015, 2017 and 2019, and the changes in soil organic carbon (SOC) content and molecular composition were analyzed using 13C isotope and biomarker assays. 【Result】Compared with CK, topsoil OC was significantly increased by 8%-36% in 2015 and 2017 with all the residue amendment treatments, but increased by 24% only under CB in 2019, with the SOC increases mainly from the input biochar. The abundance of lignin phenols in the topsoil under CS and CM peaked after 2-year amendment, and increased by 115% and 66% relative to CK, respectively. After 4 years, molecular abundance of plant-derived lipids increased significantly under all the amendments and the abundance ratio of plant- to microbe-derived lipids (PL/ML) and Shannon diversity of biomarkers (H’) were significantly enhanced. 【Conclusion】Compared with untreated and manured residue, pyrolyzed residue returning enhanced SOC sequestration and the molecular diversity of organic matter, through the retention of plant-derived components in the paddy soil.

Key words: paddy soil, crop residue return, soil organic matter, biomarkers, molecular composition, Tai Lake Plain

Table 1

Basic properties of the materials prepared for the experiment"

材料
Material
pH
(H2O)
有机碳
OC (g·kg-1)
同位素丰度
δ13C (‰, VPDB)
全氮
Total N (g·kg-1)
全磷
Total P (g·kg-1)
全钾
Total K (g·kg-1)
玉米秸秆 Maize straw 6.2 489.9 -12.03 4.4 3.1 6.0
玉米秸秆粪肥 Maize straw manure 8.9 287.0 -16.42 15.2 70.4 29.9
玉米秸秆生物质炭 Maize straw biochar 9.8 510.1 -14.97 15.2 23.0 12.5

Fig. 1

The field experiment with crop residue return (a) and the layout of treatment plots (b)"

Table 2

Abundance (mg·g-1 OC) and indicators of phenols in tested materials"

材料
Material
酚类丰度
Phenols abundance
对羟基/(香草基+丁香基)
P/(V+S)
肉桂基/香草基
C/V
丁香基/香草基
S/V
(酸/醛)香草基
(Ad/Al)V
(酸/醛)丁香基
(Ad/Al)S
玉米秸秆 Maize straw 480.34 0.26 19.18 0.46 0.14 0.44
玉米秸秆粪肥 Maize straw manure 43.93 0.22 9.06 0.78 0.33 1.31

Table 3

Topsoil (0-15 cm) properties of the paddy following amendments of maize crop residue in different forms"

年份
Year
处理
Treatment
容重
Bulk density
(g·cm-3)
pH
(H2O)
全氮
Total N
(g·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
可溶性有机碳
DOC
(mg·kg-1)
微生物生物量碳
MBC
(mg·kg-1)
微生物生物量氮
MBN
(mg·kg-1)
2015 CK 0.89±0.01 Aa 7.26±0.08 Ac 1.96±0.03 Cc 23.55±4.63 Cb 79.70±7.67 Ac 64.03±9.49 Ad 743.72±33.65 Ab 67.35±8.77 Ab
CS 0.77±0.03 Bc 7.33±0.05 Ac 2.23±0.06 Cb 26.90±3.16 Bb 109.84±11.32 Ab 78.29±3.87 Ac 875.98±74.54 Aa 72.43±8.10 Ab
CM 0.80±0.01 Bb 7.45±0.05 Bb 2.26±0.10 Cb 37.91±7.90 Ba 120.14±6.87 Ab 92.69±6.03 Ab 936.38±103.25 Aa 100.49±17.57 Aa
CB 0.78±0.02 Bbc 7.59±0.07 Aa 2.47±0.10 Ca 36.02±5.59 Ba 169.63±21.27 Aa 125.28±11.04 Aa 734.42±55.45 Ab 63.48±11.77 Ab
2017 CK 0.90±0.04 Aa 7.29±0.13 Aa 2.57±0.13 Bb 29.10±1.71 Bb 92.28±12.39 Ab 44.03±5.12 Ba 770.63±30.08 Abc 57.83±7.83 Aa
CS 0.87±0.02 Aa 7.36±0.13 Aa 2.54±0.24 Bb 28.60±2.05 Bb 93.54±9.45 Bb 32.36±5.69 Cb 791.91±54.85 Aab 57.69±13.59 ABa
CM 0.92±0.03 Aa 7.42±0.07 Ba 2.80±0.14 Bab 37.30±2.99 Ba 96.25±3.92 Bb 36.49±1.31 Bb 821.37±21.72 Ba 51.85±6.24 Ba
CB 0.88±0.02 Aa 7.44±0.10 Ba 2.98±0.14 Ba 38.23±1.72 Ba 132.58±21.06 Ba 47.16±3.92 Ca 727.80±32.91 Ac 55.48±9.34 Aa
2019 CK 0.86±0.03 Aab 7.17±0.12 Ac 2.90±0.05 Ac 37.42±0.50 Ac 78.50±1.73 Ab 35.52±1.64 Cb 697.76±22.66 Ba 58.43±5.07 Aa
CS 0.89±0.03 Aa 7.36±0.14 Ab 2.86±0.03 Ac 36.86±0.47 Ac 78.00±0.82 Cb 39.90±4.12 Bb 615.45±50.88 Bb 50.46±13.28 Bab
CM 0.88±0.06 Aa 7.58±0.06 Aa 3.00±0.04 Ab 49.01±2.25 Aa 79.25±1.71 Cb 35.97±1.93 Bb 676.92±27.07 Cab 43.69±5.64 Bb
CB 0.81±0.03 Bb 7.46±0.07 Bab 3.16±0.04 Aa 46.63±1.66 Ab 87.75±2.22 Ca 91.28±4.20 Ba 613.48±50.64 Bb 40.71±3.86 Bb

Table 4

SOC content, δ13C value and the proportion of maize -derived OC of topsoil (0-15 cm) sampled at rice harvest following amendments of crop residue in different forms"

年份
Year
处理
Treatment
有机碳
SOC (g·kg-1)
同位素丰度
δ13C (‰,VPDB)
源于玉米秸秆碳比例
Maize -derived OC (%)
2015 CK 28.47 ± 1.10 Ac -27.16 ± 0.26 Bc
CS 30.81 ± 1.73 Ab -25.67 ± 0.33 Ab 9.9 ± 0.9 Ab
CM 31.84 ± 1.49 Ab -25.94 ± 0.53 Ab 11.3 ± 6.7 Ab
CB 37.94 ± 1.41 ABa -22.80 ± 0.31 Aa 35.8 ± 1.9 Aa
2017 CK 28.81 ± 1.80 Ac -27.07 ± 0.56 Ac
CS 32.21 ± 1.47 Ab -25.94 ± 0.67 Ab 7.4 ± 7.0 ABb
CM 32.38 ± 0.88 Ab -25.78 ± 0.48 Ab 9.7 ± 5.9 Ab
CB 39.23 ± 1.22 Aa -24.44 ± 0.30 Ba 21.6 ± 4.7 Ba
2019 CK 29.39 ± 1.12 Ab -27.71 ± 0.12 ABc
CS 27.65 ± 1.21 Bb -27.16 ± 0.40 Bb 3.5 ± 2.3 Bb
CM 29.44 ± 1.38 Bb -26.98 ± 0.43 Bb 6.4 ± 4.0 Ab
CB 36.37 ± 0.62 Ba -24.50 ± 0.38 Ba 25.2 ± 2.8 Ba

Fig. 2

Abundance (mg·g-1SOC) of plant-derived lipids in topsoil at rice harvest following amendments of maize residue in different forms Different capital and lowercase characters indicate difference (P<0.05) among the amended years and treatments, respectively. The same as Fig.3"

Fig. 3

Abundance (mg·g-1 SOC) of microbe-derived lipids in topsoil at rice harvest following amendments of maize residue in different forms"

Table 5

Abundance (mg·g-1 SOC) and ratios of phenols in topsoil sampled at rice harvest following amendment of maize residue in different forms"

处理
Treatment
木质素酚
Lignin phenols
对羟基酚
P phenols
肉桂基/香草基
C/V
丁香基/香草基
S/V
对羟基/(香草基+丁香基)
P/(V+S)
(酸/醛)丁香基
(Ad/Al)S
(酸/醛)香草基
(Ad/Al)V
2015
CK 13.93±1.05 Aa 1.78±0.11 Aa 1.09±0.14 Aa 1.62±0.16 Aa 0.18±0.01 Ba 1.75±0.20 Aa 1.28±0.07 Aa
CS 13.63±0.72 Ba 1.70±0.11 Ba 1.19±0.13 Ba 1.48±0.19Bab 0.19±0.01 Ba 1.87±0.26 Ba 1.51±0.19 Ba
CM 11.17±1.22 Bb 1.41±0.13 Bb 1.05±0.08 Aa 1.39±0.08Bbc 0.18±0.01 Ba 1.77±0.09 Ba 1.50±0.21 Aa
CB 7.10±0.63 Ac 0.91±0.07 Bc 0.78±0.02Bb 1.25±0.05 Ac 0.17±0.01 Ba 1.77±0.30 Aa 1.39±0.24 Aa
2017
CK 9.31±1.14 Bc 1.35±0.10 Bc 0.83±0.11 Bc 1.30±0.12 Bb 0.20±0.02 ABb 1.44±0.19 Bc 1.28±0.19 Ac
CS 19.97±2.10 Aa 2.82±0.24 Aa 1.83±0.19 Aa 1.85±0.13 Aa 0.23±0.00 Aa 2.23±0.07 Aa 2.44±0.26 Aa
CM 15.50±1.75 Ab 1.91±0.28 Ab 1.29±0.23Ab 1.68±0.19 Aa 0.18±0.02 Bb 2.02±0.15Aab 1.70±0.36 Ab
CB 6.84±0.24 Ad 1.12±0.05 Ac 0.82±0.05 Bc 1.15±0.06 Ab 0.23±0.02 Aa 1.85±0.15 Ab 1.47±0.18Abc
2019
CK 12.70±0.78 Aa 1.89±0.16 Aa 1.00±0.03ABb 1.34±0.01 Ba 0.21±0.01 Ab 1.69±0.15Aa 1.42±0.07 Aa
CS 12.94±1.67 Ba 1.81±0.22 Ba 1.31±0.30 Ba 1.28±0.15 Ba 0.22±0.02 Aab 1.63±0.14 Ba 1.50±0.12 Ba
CM 11.68±1.19 Ba 1.71±0.19ABab 1.06±0.09Aab 1.36±0.05 Ba 0.21±0.00 Ab 1.65±0.13 Ba 1.35±0.14 Aa
CB 8.78±1.41 Ab 1.42±0.31 Ab 1.11±0.11 Aab 1.29±0.20 Aa 0.24±0.01 Aa 1.82±0.05 Aa 1.46±0.09 Aa

Fig. 4

Principal component analysis (PCA) of biomarkers in topsoil sampled at rice harvest following amendment of maize residue in different forms"

Table 6

Total abundance (mg·g-1SOC) and molecular proxies of biomarkers identified in all SOM extractions of topsoil sampled at rice harvest following amendment of maize residues in different forms"

年份
Year
处理
Treatment
总丰度
Total abundance
(mg·g-1SOC)
生物标志物的多样性
H' index of
biomarker groups
长链与短链
脂肪酸丰度比
LFA/SFA
植物与微生物源
脂类丰度比
PL/ML
木栓质与角质丰度比
Suberin/Cutin
2015 CK 25.91±1.68 Aa 1.52±0.05 Bc 0.13±0.01 Bb 0.24±0.03 Ac 1.44±0.09 Aa
CS 25.99±0.63 Ba 1.61±0.03 Abc 0.16±0.01 Aa 0.28±0.02 Bb 1.53±0.12 Aa
CM 22.45±1.53 Bb 1.70±0.08 Aa 0.16±0.01 Ba 0.32±0.02 Ba 1.64±0.20 Aa
CB 14.38±0.69 Bc 1.64±0.05 Bab 0.13±0.01 Bb 0.25±0.01 Bc 1.53±0.05 Aa
2017 CK 20.90±1.27 Bc 1.74±0.10 Aa 0.16±0.01 Aab 0.27±0.04 Ab 1.50±0.15 Aa
CS 33.03±2.93 Aa 1.42±0.05 Bc 0.17±0.02 Aa 0.34±0.03 Aab 1.52±0.20 Aa
CM 28.08±2.15 Ab 1.62±0.08 Ab 0.16±0.03 Bab 0.38±0.05 Aa 1.46±0.11 Aa
CB 14.95±0.24 Bd 1.76±0.03 Aa 0.13±0.02 Bb 0.29±0.03 Bb 1.34±0.09 Ba
2019 CK 23.43±1.50 Aa 1.50±0.05 Bb 0.13±0.01 Bc 0.20±0.05 Ac 1.70±0.24 Aa
CS 24.35±1.94 Ba 1.63±0.06 Aa 0.19±0.03 Ab 0.35±0.04 Ab 1.50±0.05 Aab
CM 22.99±1.51 Ba 1.72±0.06 Aa 0.23±0.02 Aa 0.42±0.04 Aa 1.55±0.09 Aab
CB 17.89±1.54 Ab 1.75±0.13 ABa 0.23±0.01 Aa 0.44±0.03 Aa 1.43±0.10 ABb
[1]
LAL R, NEGASSA W, LORENZ K. Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 2015, 15: 79-86.

doi: 10.1016/j.cosust.2015.09.002
[2]
SMITH P, HOUSE J I, BUSTAMANTE M, SOBOCKÁ J, HARPER R, PAN G X, WEST P C, CLARK J M, ADHYA T, RUMPEL C, PAUSTIAN K, KUIKMAN P, COTRUFO M F, ELLIOTT J A, MCDOWELL R, GRIFFITHS R I, ASAKAWA S, BONDEAU A, JAIN A K, MEERSMANS J, PUGH T A M. Global change pressures on soils from land use and management. Global Change Biology, 2016, 22(3): 1008-1028.

doi: 10.1111/gcb.13068 pmid: 26301476
[3]
许山晶, 尹晓青. 我国农村秸秆资源利用的综合效应评价. 重庆社会科学, 2021(2): 19-32.
XU S J, YIN X Q. The effect evaluation of comprehensive utilization of straw resources in China. Chongqing Social Sciences, 2021(2): 19-32. (in Chinese)
[4]
OLK D C, CASSMAN K G, SCHMIDT-ROHR K, ANDERS M M, MAO J D, DEENIK J L. Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biology and Biochemistry, 2006, 38(11): 3303-3312.

doi: 10.1016/j.soilbio.2006.04.009
[5]
BHATTACHARYYA P, ROY K S, NEOGI S, ADHYA T K, RAO K S, MANNA M C. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 2012, 124: 119-130.

doi: 10.1016/j.still.2012.05.015
[6]
MA J, XU H, YAGI K, CAI Z C. Methane emission from paddy soils as affected by wheat straw returning mode. Plant and Soil, 2008, 313(1/2): 167-174.

doi: 10.1007/s11104-008-9689-y
[7]
DONG W Y, ZHANG X Y, DAI X Q, FU X L, YANG F T, LIU X Y, SUN X M, WEN X F, SCHAEFFER S. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 2014, 84: 140-147.

doi: 10.1016/j.apsoil.2014.06.007
[8]
ZHOU P, SHENG H, LI Y, TONG C L, GE T D, WU J S. Lower C sequestration and N use efficiency by straw incorporation than manure amendment on paddy soils. Agriculture, Ecosystems & Environment, 2016, 219: 93-100.

doi: 10.1016/j.agee.2015.12.012
[9]
FENG X, XIA X, CHEN S T, LIN Q M, ZHANG X H, CHENG K, LIU X Y, BIAN R J, ZHENG J F, LI L Q, JOSEPH S, DROSOS M, PAN G X. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil. Geoderma, 2022, 409: 115643.

doi: 10.1016/j.geoderma.2021.115643
[10]
MENG L, DING W X, CAI Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry, 2005, 37(11): 2037-2045.

doi: 10.1016/j.soilbio.2005.03.007
[11]
ZHU X M, MAO L J, CHEN B L. Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. Environment International, 2019, 133: 105211.

doi: 10.1016/j.envint.2019.105211
[12]
LEHMANN J, JOSEPH S. Biochar for Environmental Management: Science, Technology and Implementation. England: Routledge, 2015.
[13]
CHEN D, WANG C, SHEN J L, LI Y, WU J S. Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: insights from observations and modeling. Environmental Pollution, 2018, 235: 95-103.

doi: 10.1016/j.envpol.2017.12.041
[14]
LIU X Y, QU J J, LI L Q, ZHANG A F, ZHENG J F, ZHENG J W, PAN G X. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? —A cross site field experiment from South China. Ecological Engineering, 2012, 42: 168-173.

doi: 10.1016/j.ecoleng.2012.01.016
[15]
NGUYEN B T, TRINH N N, BACH Q V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Applied Soil Ecology, 2020, 152: 103531.

doi: 10.1016/j.apsoil.2020.103531
[16]
LEHMANN J, KLEBER M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68.

doi: 10.1038/nature16069
[17]
冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用. 植物生态学报, 2020, 44(4): 384-394.

doi: 10.17521/cjpe.2019.0139
FENG X J, WANG Y Y, LIU T, JIA J, DAI G H, MA T, LIU Z G. Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 2020, 44(4): 384-394. (in Chinese)

doi: 10.17521/cjpe.2019.0139
[18]
JEX C N, PATE G H, BLYTH A J, SPENCER R G M, HERNES P J, KHAN S J, BAKER A. Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 2014, 87: 46-59.

doi: 10.1016/j.quascirev.2013.12.028
[19]
THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: a review. Soil Biology and Biochemistry, 2010, 42(8): 1200-1211.

doi: 10.1016/j.soilbio.2010.03.017
[20]
BOENI M, BAYER C, DIECKOW J, CONCEIÇÃO P C, DICK D P, KNICKER H, SALTON J C, MACEDO M C M. Organic matter composition in density fractions of Cerrado Ferralsols as revealed by CPMAS 13C NMR: influence of pastureland, cropland and integrated crop-livestock. Agriculture, Ecosystems & Environment, 2014, 190: 80-86.

doi: 10.1016/j.agee.2013.09.024
[21]
HUANG R, TIAN D, LIU J, LV S, HE X H, GAO M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agriculture, Ecosystems & Environment, 2018, 265: 576-586.

doi: 10.1016/j.agee.2018.07.013
[22]
CHEN S T, DING Y J, XIA X, FENG X, LIU X Y, ZHENG J F, DROSOS M, CHENG K, BIAN R J, ZHANG X H, LI L Q, PAN G X. Amendment of straw biochar increased molecular diversity and enhanced preservation of plant derived organic matter in extracted fractions of a rice paddy. Journal of Environmental Management, 2021, 285: 112104.

doi: 10.1016/j.jenvman.2021.112104
[23]
HAO X X, HAN X Z, WANG S Y, LI L J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research, 2022, 215: 105221.

doi: 10.1016/j.still.2021.105221
[24]
ZHENG S Q, ZHANG J M, CHI F Q, ZHOU B K, WEI D, KUANG E J, JIANG Y, MI G, CHEN Y P. Response of the chemical structure of soil organic carbon to modes of maize straw return. Scientific Reports, 2021, 11: 6574.

doi: 10.1038/s41598-021-84697-6 pmid: 33753757
[25]
DING X L, HAN X Z, ZHANG X D. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biology and Fertility of Soils, 2013, 49(7): 949-954.

doi: 10.1007/s00374-012-0768-0
[26]
SUN J L, LI H B, ZHANG D S, LIU R L, ZHANG A P, RENGEL Z. Long-term biochar application governs the molecular compositions and decomposition of organic matter in paddy soil. GCB Bioenergy, 2021, 13(12): 1939-1953.

doi: 10.1111/gcbb.v13.12
[27]
PAN G X, LI L Q, WU L S, ZHANG X H. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 2004, 10(1): 79-92.

doi: 10.1111/gcb.2004.10.issue-1
[28]
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
[29]
WRB I W G, 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, Fao Rome.
[30]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical Method of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[31]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.

doi: 10.1016/0038-0717(87)90052-6
[32]
OTTO A, SIMPSON M J. Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography - mass spectrometry. Journal of Separation Science, 2007, 30(2): 272-282.

doi: 10.1002/(ISSN)1615-9314
[33]
OTTO A, SIMPSON M J. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Organic Geochemistry, 2006, 37(4): 385-407.

doi: 10.1016/j.orggeochem.2005.12.011
[34]
OTTO A, SIMPSON M J. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry, 2006, 80(2): 121-142.

doi: 10.1007/s10533-006-9014-x
[35]
OKSANEN J, BLANCHET F G, KINDT R, LEGENDRE P, MINCHIN P R, O’HARA R, SIMPSON G L, SOLYMOS P, STEVENS M H H, WAGNER H. Package ‘vegan’. Community ecology package, version, 2013, 2(9): 1-295.
[36]
WICKHAM H, FRANCOIS R, HENRY L, MÜLLER KDplyr, useR! Conference, 2014.
[37]
HOTHORN T, BRETZ F, WESTFALL P, HEIBERGER R M, SCHUETZENMEISTER A, SCHEIBE S, HOTHORN M T. Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria, 2016.
[38]
NEUWIRTH E, NEUWIRTH M E, 2011. Package ‘RColorBrewer’, CRAN 2011-06-17 08: 34: 00. Apache License 2.0.
[39]
WICKHAM H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3(2): 180-185.
[40]
VU V Q. ggbiplot: A ggplot2 based biplot. R package, 2011, 342.
[41]
WU L, ZHANG W J, WEI W J, HE Z L, KUZYAKOV Y, BOL R, HU R G. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 2019, 135: 383-391.

doi: 10.1016/j.soilbio.2019.06.003
[42]
MOSADDEGHI M R, MAHBOUBI A A, SAFADOUST A. Short- term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil and Tillage Research, 2009, 104(1): 173-179.

doi: 10.1016/j.still.2008.10.011
[43]
XIANG Y Z, DENG Q, DUAN H L, GUO Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy, 2017, 9(10): 1563-1572.

doi: 10.1111/gcbb.2017.9.issue-10
[44]
CHANTIGNY M H, ANGERS D A, ROCHETTE P. Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biology and Biochemistry, 2002, 34(4): 509-517.

doi: 10.1016/S0038-0717(01)00209-7
[45]
JIN Z Q, SHAH T, ZHANG L, LIU H Y, PENG S B, NIE L X. Effect of straw returning on soil organic carbon in rice-wheat rotation system: a review. Food and Energy Security, 2020, 9(2): e200.
[46]
LU H F, BIAN R J, XIA X, CHENG K, LIU X Y, LIU Y L, WANG P, LI Z C, ZHENG J F, ZHANG X H, LI L Q, JOSEPH S, DROSOS M, PAN G X. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial. Geoderma, 2020, 376: 114567.

doi: 10.1016/j.geoderma.2020.114567
[47]
LIU S W, ZHANG Y J, ZONG Y J, HU Z Q, WU S, ZHOU J, JIN Y G, ZOU J W. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy, 2016, 8(2): 392-406.

doi: 10.1111/gcbb.2016.8.issue-2
[48]
LIU J, JIANG B S, SHEN J L, ZHU X, YI W Y, LI Y, WU J S. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture, Ecosystems & Environment, 2021, 311: 107286.

doi: 10.1016/j.agee.2020.107286
[49]
MAJUMDER S, NEOGI S, DUTTA T, POWEL M A, BANIK P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management, 2019, 250: 109466.

doi: 10.1016/j.jenvman.2019.109466
[50]
LIU Z W, WU X L, LI S X, LIU W, BIAN R J, ZHANG X H, ZHENG J F, DROSOS M, LI L Q, PAN G X. Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice-soil system. New Phytologist, 2021, 232(3): 1250-1258.

doi: 10.1111/nph.v232.3
[51]
GLEIXNER G, CZIMCZIK C J, KRAMER C, LÜHKER B, SCHMIDT M W I. Plant compounds and their turnover and stabilization as soil organic matter. Global Biogeochemical Cycles in the Climate System. Amsterdam: Elsevier, 2001: 201-215.
[52]
WANG C Q, XUE L, DONG Y H, JIAO R Z. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations. Science of the Total Environment, 2021, 758: 143695.

doi: 10.1016/j.scitotenv.2020.143695
[53]
CHEN S T, FENG X, LIN Q M, LIU C, CHENG K, ZHANG X H, BIAN R J, LIU X Y, WANG Y, DROSOS M, ZHENG J F, LI L Q, PAN G X. Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a Karst terrain. Soil Biology and Biochemistry, 2022, 166: 108553.

doi: 10.1016/j.soilbio.2022.108553
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[3] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[4] YIN ZeRun, SHENG Hao, LIU Xin, XIAO HuaCui, ZHANG LiNa, LI YuanZhao, TIAN Yu, ZHOU Ping. Response of Paddy Soil Health to Continuous Amendments of Organic Fertilizer and Lime Separately Under Double-Cropping Rice Fields [J]. Scientia Agricultura Sinica, 2023, 56(19): 3829-3842.
[5] GAO JiaRui, FANG ShengZhi, ZHANG YuLing, AN Jing, YU Na, ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[6] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[7] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[8] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[9] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[10] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
[11] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[12] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
[13] JIANG SaiPing,ZHANG RenLian,ZHANG WeiLi,XU AiGuo,ZHANG HuaiZhi,XIE LiangShang,JI HongJie. Spatial and Temporal Variation of Soil Organic Matter and Cause Analysis in Hainan Island in Resent 30 Years [J]. Scientia Agricultura Sinica, 2019, 52(6): 1032-1044.
[14] LIU Lin,JI BingJie,LI RuoNan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Characteristics of Soil Phosphorus in Winter Wheat/Summer Maize Cropping in Shaanxi Guanzhong Plain [J]. Scientia Agricultura Sinica, 2019, 52(21): 3878-3889.
[15] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!