Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 563-573.doi: 10.3864/j.issn.0578-1752.2020.03.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions

ZHANG ZhenHua,DING JianLi(),WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong   

  1. College of Research and Environmental Science, Xinjiang University/ Ministry of Education Key Laboratory of Qasis Ecology, Xinjiang University/ Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046
  • Received:2019-05-06 Accepted:2019-09-18 Online:2020-02-01 Published:2020-02-13
  • Contact: JianLi DING E-mail:watarid@xju.edu.cn

Abstract:

【Objective】The spatial distribution of soil properties is an important factor affecting agricultural productivity, land management and ecological security. Utilizing the coupling relationship between soil and environment within framework of machine learning algorithm, the spatial distribution of soil pH, soil salt content (SSC) and soil organic matter (SOM) was quantitatively predicted to provide a scientific basis on ecological security and agricultural production in the arid region. 【Method】A total of 82 topsoil (0-20 cm) samples were collected from the Ugan-Kuqa River basin oasis in Xinjiang Uyghur Autonomous Region in July 2017. Furthermore, Digital elevation model (DEM) data and Landsat 8 data were used to extract 32 environmental covariates according to the soil-environment relationship. The 32 extracted variables were resampled to 90 m spatial resolution via raster resampling and were converted to grid format for participate in modeling. According to the importance of environmental covariates, they were ranked respectively using Gradient Boosting Decision Tree (GBDT) algorithm on the three soil attributes. We considered three strategies to estimate soil properties, including random forest, bagging and Cubist algorithm. Compared with non-linear models, we introduced classic linear model (MLR) to conduct optimization. On this foundation, we mapped the soil properties (pH, SSC and SOM) with a resolution of 90 m in the Ugan-Kuqa River basin oasis, respectively.【Result】The results showed that GBDT could screen out important covariates effectively. Elevation and Profile Curvature, Difference Vegetation Index, Extended Normalized Difference Vegetation Index, Modified Soil Adjusted Vegetation Index and Salinity Index S1 and Salinity Index S6 were important factors and involved in modeling of three kinds of soil properties, among which SSC selects 15 covariates to participate in modeling, pH and SOM were both 17. Remote sensing index played a significant role in predicting soil property maps. Non-linear models showed more accuracy than MLR as linear model. Random forest performed best in all three soil properties. Among the three soil properties predicted by random forest, the validation dataset of soil pH, SSC and SOM were R 2=0.6779, RMSE=0.2182, ρc=0.6084, R 2=0.7945, RMSE=3.1803, ρc=0.8377 and R 2=0.7472, RMSE=3.5456, ρc=0.7009, respectively. 【Conclusion】 The importance factors selected by GBDT and machine learning algorithm could be used to mapping soil properties in arid areas. The random forest strategy showed the best predictive ability for soil properties. The spatial distribution of mapping three properties could be determined by combining with soil classification map.

Key words: soil property, environment covariates, digital soil mapping, machine learning, Gradient Boosting Decision Tree, GBDT, Random Forest, RF, Bagging Model, Cubist Model

Fig. 1

Study area and distribution of soil sampling sites"

Table 1

Environmental covariates of digital soil mapping"

编号
Number
数据来源
Data source
协变量定义
Covariable definition
简称
Abbreviation
计算公式
Formula
参考文献
Reference
1 DEM 高程 Elevation Ele [23]
2 坡度 Slope Slo [23]
3 坡向 Aspect Asp [23]
4 曲率 Curvature Cur [23]
5 剖面曲率 Profile curvature PrCu [23]
6 平面曲率 Plan curvature PlCu [23]
7 地形湿度指数 Topographic wetness index TWI ln(α/tanβ) [23]
8 Landsat 8 OLI / TIRS 海岸波段 band 1 coastal b1
9 蓝波段 Band 2 blue b2
10 绿波段 Band 3 green b3
11 红波段 Band 4 Red b4
12 近红外波段 Band 5 near infrared b5
13 短波红外1 Band 6 shortwave infrared 1 b6
14 短波红外2 Band 7 shortwave infrared 2 b7
15 增强型植被指数 Enhanced vegetation index EVI 2.5[(NIR-R)/(NIR+6×R-7.5×R+1)] [24]
16 差值植被指数 Difference vegetation index DVI NIR-R [9]
17 归一化植被指数 Normalized difference vegetation index NDVI (NIR-R)/(NIR+R) [9]
18 扩展增强型植被指数
Extended normalized difference vegetation index
ENDVI (NIR+SWIR2 -R)/(NIR+SWIR2 +R) [25]
19 调整土壤亮度植被指数
Modified soil adjusted vegetation index
MSAVI [2NIR+1-((2NIR+1)2-8(NIR-R))0.5]/2 [9]
20 强度指数1 Intensity index 1 Int1 (G+R)/2 [26]
21 强度指数2 Intensity index 2 Int2 (G+R+NIR)/2 [26]
22 盐分指数S1 Salinity index S1 S1 B/R [27]
23 盐分指数S3 Salinity index S3 S3 (G×R)/B [27]
24 盐分指数S5 Salinity index S5 S5 (B×R)/G [27]
25 盐分指数S6 Salinity index S6 S6 (R×NIR)/G [27]
26 盐分指数 Salinity index SI (B×R)0.5 [27]
27 盐分指数1 Salinity index 1 SI1 (G×R)0.5 [27]
28 盐分指数2 Salinity index 2 SI2 (G2 + R2 + NIR²)0.5 [27]
29 盐分指数3 Salinity index 3 SI3 (R2 + G2)0.5 [27]
30 归一化盐分指数 Normalized difference salinity index NDSI (R-NIR)/(R+NIR) [27]
31 综合光谱响应指数 Combined spectral response index CoSRI (B+G)/(R+NIR)×NDVI [28]
32 地表温度 Land surface temperature LST [16]

Fig. 2

Descriptive statistical analysis SD corresponding to variance, CV corresponding to the coefficient of variation"

Fig. 3

Environmental covariates importance"

Fig. 4

Environmental covariate threshold division in digital soil mapping"

Table 2

Environmental covariables involved in modeling"

土壤属性
Soil attribute
参与协变量
Environmental covariable
最大重要性变量
Importance variable
pH Ele、DVI、MSAVI、S1、PrCu、Slope、TWI、PlCu、Aspect、SI2、ENDVI、S6、b3、CoSRI、Int2、NDVI、LST Ele
SSC b4、S5、b1、PlCu、b6、b5、MSAVI、ENDVI、DVI、PrCu、S6、Ele、b2、CoSRI、S1 MSAVI
SOM Aspect、PrCu、b4、b3、EVI、ENDVI、b6、DVI、SI2、S1、Int2、b2、S6、NDSI、Ele、S3、MSAVI MSAVI

Table 3

Performance comparison between soil attribute Calibration and Validation"

土壤属性
Soil Attribute
模型
Model
建模集 Calibration 验证集 Validation
R2 ρc RMSE R2 ρc RMSE
pH RF 0.7929 0.7786 0.1681 0.6779 0.6084 0.2182
Cubist 0.5182 0.6356 0.2308 0.4383 0.5805 0.2252
Bagging 0.6389 0.6409 0.2092 0.5829 0.6159 0.2214
MLR 0.4154 0.4559 0.2971 0.3004 0.4683 0.2445
SSC RF 0.9067 0.9219 2.6680 0.7945 0.8377 3.1803
Cubist 0.8820 0.9237 2.9190 0.7135 0.6194 7.5771
Bagging 0.7417 0.8331 4.2156 0.6974 0.7791 3.9743
MLR 0.6478 0.7687 4.0600 0.5050 0.6670 5.7829
SOM RF 0.8565 0.7872 3.3215 0.7472 0.7009 3.5456
Cubist 0.5204 0.5774 4.4070 0.4795 0.4305 5.4758
Bagging 0.7653 0.7551 3.6085 0.6402 0.5494 4.2667
MLR 0.3835 0.5559 5.0483 0.3250 0.5151 4.8424

Fig. 5

Land use types"

Fig. 6

Prediction of spatial distribution of soil pH"

Fig. 7

Prediction of spatial distribution of SSC"

Fig. 8

Prediction of spatial distribution of SOM"

[1] MA Y X, MINASNY B, WU C F . Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional, 2017,10:144-153.
[2] 杨琳, Sherif F, Sheldon H, 朱阿兴, 秦承志, 徐志刚. 基于土壤-环境关系的更新传统土壤图研究. 土壤学报, 2010,47(6):1039-1049.
YANG L, SHERIF F, SHELDON H, ZHU A X, QIN C Z, XU Z G . Updating conventional soil maps using knowledge on soil- environment relationships extracted from the maps. Acta Pedologica Sinica, 2010,47(6):1039-1049. (in Chinese)
[3] 王幼奇, 白一茹, 赵云鹏 . 宁夏砂田小尺度土壤性质空间变异特征与肥力评价. 中国农业科学, 2016,49(23):4566-4575. DOI: 10.3864/j.issn.0578-1752.2016.23.009.
WANG Y Q, BAI Y R, ZHAO Y P . Assessment of soil fertility and its spatial variability based on small scale in the gravel mulched field of NingXia. Scientia Agricultura Sinica, 2016,49(23):4566-4575. DOI: 10.3864/j.issn.0578-1752.2016.23.009. (in Chinese)
[4] LAGACHERIE P, MCBRATNEY A B . Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. Developments in Soil Science, 2006,31:3-22.
[5] ZHU A X, BAND L, VERTESSY R, DUTTON B . Derivation of soil properties using a soil land inference model (SoLIM). Soil Science Society of America Journal, 1997,61(2):523-533.
[6] 王飞, 杨胜天, 丁建丽, 魏阳, 葛翔宇, 梁静 . 环境敏感变量优选及机器学习算法预测绿洲土壤盐分. 农业工程学报, 2018,34(22):102-110. DOI: 10.11975/j.issn.1002-6819.2018.22.013.
WANG F, YANG S T, DING J L, WEI Y, GE X Y, LIANG J . Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(22):102-110. DOI: 10.11975/j.issn.1002-6819.2018.22.013. (in Chinese)
[7] ZHANG H, WU P B, YIN A J, YANG X H, ZHANG M, GAO C . Prediction of soil organic carbon in an intensively managed reclamation zone of Eastern China: A comparison of Multiple Linear Regressions and the Random Forest model. Science of the Total Environment, 2017,592:704-713.
[8] BODAGHABADI B M, MARTÍNEZ-CASASNOVAS J, SALEHI M H, MOHAMMADI J, BORUJENI E I, TOOMANIAN N, GANDOMKAR A. Digital soil mapping using Artificial Neural Networks and terrain-related attributes. Pedosphere, 2015,25(4):580-591.
[9] MAHMOUDABADI E, KARIMI A, HAGHNIA G H, SEPEHR A . Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental Monitoring Assessment, 2017,189(10):500.
[10] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods for Soil Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press, 2000. ( in Chinese)
[11] ZHOU Y, HARTEMINK A E, SHI Z, LIANG Z Z, LU Y L . Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 2019,647:1230-1238.
[12] ABDEL-KADER F H . Digital soil mapping at pilot sites in the northwest coast of Egypt: A Multinomial Logistic Regression approach. The Egyptian Journal of Remote Sensing and Space Science, 2011,14(1):29-40.
[13] PENG J, BISWAS A, JIANG Q S, ZHAO R Y, HU J, HU B F, SHI Z . Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 2019,337:1309-1319.
[14] 朱阿兴 . 精细数字土壤普查模型与方法. 北京: 科学出版社, 2008: 21-57.
ZHU A X. Model and Method of Fine Digital Soil Survey. Beijing: Science Press, 2008: 21-57. (in Chinese)
[15] MEHNATKESH A, AYOUBI S, JALALIAN A, SAHRAWAT K L . Relationships between soil depth and terrain attributes in a semi arid hilly region in western Iran. Journal of Mountain Science, 2013,10(1):163-172.
[16] QIN Z H, KARNIELI A, BERLINER P . A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 2001,22(18):3719-3746.
[17] LIU L F, JI M, BUCHROITHNER M . Combining partial least squares and the gradient-boosting method for soil property retrieval using visible Near-Infrared shortwave infrared spectra. Remote Sensing, 2017,9(12):1299.
[18] GE X Y, WANG J Z, DING J L, CAO X Y, ZHANG Z P, LIU J, LI X H . Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 2019,7:e6926.
[19] DING J L, YANG A X, WANG J Z, SAGAN V, YU D L . Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. PeerJ, 2018,6:e5714.
[20] CORETEAM R . R:A language and environment for statistical computing. Computing, 2015,14:12-21.
[21] LAWRENCE I, LIN K . A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989,45(1):255-268.
[22] WANG J Z, DING J L, ABULIMITI A, CAI L H . Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 2018,6:e4703.
[23] ZERAATPISHEH M, AYOUBI S, JAFARI A, TAJIK S, FINKE P . Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 2019,338:445-452.
[24] LOBELL D, LESCH S, CORWIN D, ULMER M, ANDERSON K, POTTS D, DOOLITTLE J, MATOS M, BALTES M . Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 2010,39(1):35-41.
[25] 陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀 . 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015,31(5):107-114. DOI: 10.3969/j.issn.1002-6819.2015.05.016.
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X . Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. DOI: 10.3969/j.issn.1002-6819.2015.05.016. (in Chinese)
[26] TRIKI FOURATI H, BOUAZIZ M, BENZINA M, BOUAZIZ S . Modeling of soil salinity within a semi-arid region using spectral analysis. Arabian Journal of Geosciences, 2015,8(12):11175-11182.
[27] ALLBED A, KUMAR L, ALDAKHEEL Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 2014,230:1-8.
[28] MENG L, ZHOU S W, ZHANG H, BI X L . Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ Data. Journal of Coastal Conservation, 2016,20(4):271-279.
[29] GERSHMAN S J, NIV Y . Perceptual estimation obeys Occam's razor. Frontiers in Psychology, 2013,4:623.
[30] 古丽波斯坦·巴图 . 渭—库绿洲不同土地利用方式下土壤理化性质分析[D]. 乌鲁木齐: 新疆大学, 2018.
GULIBOSITAN-BATU . Analysis of soil physical and chemical properties under different land use/land cover in Weigan and Kuqa rivers delta oasis[D]. Urumqi: Xinjiang University, 2018. ( in Chinese)
[31] 谷海斌 . 灌区尺度土壤特性空间变异性研究[D]. 乌鲁木齐: 新疆农业大学, 2011.
GU H B . Research on spatial variation of properties in irrigation area scale[D]. Urumqi: Xinjiang Agricultural University, 2011. ( in Chinese)
[32] 王飞, 杨胜天, 魏阳, 杨晓东, 丁建丽 . 基于RF和SGT算法的子区优先建模对绿洲尺度土壤盐度预测精度的影响. 中国农业科学, 2018,51(24):4659-4676. DOI: 10.3864/j. issn.0578-1752.2018.24. 007.
WANG F, YANG S T, WEI Y, YANG X D, DING J L . Influence of sub-region priority modeling constructed by random forest and stochastic gradient treeboost on the accuracy of soil salinity prediction in oasis scale. Scientia Agricultura Sinica, 2018,51(24):4659-4676. DOI: 10.3864/j.issn.0578-1752.2018.24.007.(in Chinese)
[33] DING J L, YU D L . Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma, 2014,235:316-322.
[34] BRUBAKER S, JONES A, LEWIS D, FRANK K . Soil properties associated with landscape position. Soil Science Society of America Journal, 1993,57(1):235-239.
[35] FALAHATKAR S, HOSSEINI S M, AYOUBI S, SALMANMAHINY A . Predicting soil organic carbon density using auxiliary environmental variables in Northern Iran. Archives of Agronomy Soil Science, 2016,62(3):375-393.
[36] 葛翔宇, 丁建丽, 王敬哲, 王飞, 蔡亮红, 孙慧兰 . 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算. 光学学报, 2018,38(10):393-400. DOI: 10.3788/AOS201838.1030001.
GE X Y, DING J L, WANG J Z, WANG F, CAI L H, SUN H L . Estimation of soil moisture based on CARS algorithm coupled with machine learning. Acta Optica Sinca, 2018,38(10):393-400. DOI: 10.3788/AOS201838.1030001. (in Chinese)
[37] CHEN S C, LIANG Z Z, WEBSTER R, ZHANG G L, ZHOU Y, TENG H F, HU B F, ARROUAYS D, SHI Z . A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment, 2019,655:273-283.
[38] 彭杰, 刘焕军, 史舟, 向红英, 迟春明 . 盐渍化土壤光谱特征的区域异质性及盐分反演. 农业工程学报, 2014,30(17):167-174. DOI: 10.3969/j.issn.1002-6819.2014.17.022.
PENG J, LIU H J, SHI Z, XIANG H Y, CHI C M . Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(17):167-174. DOI: 10.3969/j.issn.1002-6819. 2014.17.022. (in Chinese)
[39] WANG H F, CHEN Y W, ZHANG Z T, CHEN H R, LI X W, WANG M X, CHAI H Y . Quantitatively estimating main soil water-soluble salt ions content based on visible-near infrared wavelength selected using GC, SR and VIP. PeerJ, 2019,7:e6310.
[40] MOSLEH Z, SALEHI M H, JAFARI A, BORUJENI I E, MEHNATKESH A . The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring Assessment, 2016,188(3):195.
[1] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[2] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[3] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[4] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[5] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[6] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[7] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[8] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[9] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[10] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[11] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[12] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[13] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[14] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[15] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!