Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2294-2310.doi: 10.3864/j.issn.0578-1752.2022.12.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize

XIAO ShanShan1(),ZHANG YiFei1,2(),YANG KeJun1,3(),MING LiWei1,DU JiaRui1,XU RongQiong1,SUN YiShan1,LI WeiQing1,LI GuiBin1,LI ZeSong1,LI JiaYu1   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang
    2Key Laboratory of Low Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, Heilongjiang
    3Heilongjiang Province Cultivating Collaborative Innovation Center for Beidahuang Modern Agricultural Industry Technology, Daqing 163319, Heilongjiang
  • Received:2021-10-03 Accepted:2021-12-13 Online:2022-06-16 Published:2022-06-23
  • Contact: YiFei ZHANG,KeJun YANG E-mail:byndxss@163.com;byndzyf@163.com;byndykj@163.com

Abstract:

【Objective】In view of the high grain moisture content during the maize harvest period in high latitude and cold areas of China, it restricts the efficient promotion and application of mechanical grain harvesting technology. In this study, the maize varieties with different maturities were intercropped according to a certain proportion under field conditions, in order to clarify the regulating effects of intercropping at different maturity on grain filling, dehydration characteristics and yield of spring maize.【Method】Maize varieties of Zhengdan 958 (ZD958), Xianyu 335 (XY335) and Yinongyu 10 (YNY10) with different maturities were used as experimental materials, two-factor randomized block design was applied to set up the intercropping between varieties with longer growth period (LGPV) and varieties with shorter growth period (SGPV), that is, ZD958 and YNY10 intercropping (Z‖Y), and XY335 and YNY10 intercropping (X‖Y). Based on the above main treatment, six kinds of intercropping width (line number) ratios, namely 6﹕6, 4﹕4, 2﹕2, 1﹕1, 0﹕1 and 1﹕0, were designed to compare and analyze the changes of maize grain filling, dehydration characteristics and yield under different treatment combinations.【Result】For LGPV, with the decrease of the intercropping ratio, the moisture content of grains in the physiological maturity and harvest phases decreased. The average dehydration rate and total dehydration rate of grains before and after physiological maturity showed a trend of acceleration, and the average filling rate (Gmean), the maximum grain filling rate (Gmax), and the grain weight at which the filling rate reached the maximum (Wmax) gradually increased; The number of days required for the maximum filling rate (Tmax) and the active grain-filling period (D) gradually shortened, and grain yield and 100-kernel weight increased significantly (P<0.05). In response to the decline of intercropping ratios, it was showed that SGPV increased in grain moisture content and decreased in dehydration rate during the physiological maturity period and harvest period, while Gmean, Gmax, and Wmax continued to decreased, and Tmax and D were slightly extended. Although yield and 100-kernel weight showed a downward trend for SGPV, but the variation did not reach a significant level. At the same time, the average grain moisture content of the intercropping compound population at the harvest period was significantly lower than that of the LGPV monocropping. The percentage of grain moisture content decline were 6.44%-7.29% for Z‖Y-(6﹕6-1﹕1) and 4.30%-4.75% for X‖Y-(6﹕6-1﹕1) on 2-year means. In terms of average grain yield to intercropping compound population, the grain yield increased with the decrease of intercropping ratios. Moreover, compared with the SGPV YNY10 monocropping, the average grain yield for Z‖Y-(6﹕6-1﹕1) and X‖Y-(6﹕6-1﹕1) increased by 5.12%-6.49% and 1.87%-2.96% on 2-year means, respectively and the increase was obvious under Z‖Y treatment.While the average grain yield of Z‖Y and X‖Y treatments was not significantly different from that of longer growth period (LGPV) monocropping.【Conclusion】Under dense planting conditions, the intercropping with different maturity maize varieties significantly promoted the increase of maximum grain filling rate and grain weight with shortening of active grain filling period and accelerating total grain dehydration rate of LGPV, effectively reduced the average grain moisture content of field composite population at harvest time, and realized the coordinated development of high and stable yield, and efficient dehydration of maize grains.

Key words: maize, varieties with different maturity, intercropping, grain filling, dehydration characteristics, yield

Table 1

Variety characteristics"

品种
Variety
生育期
Growing period
(d)
有效积温需求
Effective accumulated
temperature demand (℃)
成株叶片数
Number of leaves per plant
籽粒类型
Grain type
株高
Plant height
(cm)
郑单958 ZD958 128 2750 22 半马齿型 Half-toothed horse 264.19
先玉335 XY335 127 2650 20 半硬粒型 Semi-granular type 283.15
益农玉10 YNY10 120 2500 18 半马齿型 Half-toothed horse 271.13

Fig. 1

Temperature and daily rainfall changes during the growth period of maize in 2018 and 2019"

Table 2

Growth period and accumulated temperature of maize varieties with different maturities under various intercropping ratios"

年份
Year
品种间作
Varieties intercropping
间作比例
Intercropping ratio
出苗
Emergence (M-D)
吐丝
Silking
(M-D)
生理成熟
Physiological
maturity
(M-D)
吐丝-生理成熟天数
Days from silking
stage to physiological
maturity (d)
生育期
Growing
period
(d)
吐丝-生理成熟积温
Accumulated temperature from silking to physiological maturity (℃·d)
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2018 Z‖Y 1﹕0 05-19 08-01 10-01 61 135 1165.3
6﹕6 05-19 05-18 08-01 07-31 09-30 09-20 60 51 134 125 1153.7 1052.1
4﹕4 05-19 05-19 07-31 07-31 09-29 09-21 60 52 133 125 1148.6 1068.3
2﹕2 05-19 05-18 08-02 07-31 09-29 09-21 58 52 133 126 1117.8 1068.3
1﹕1 05-19 05-18 08-02 07-30 09-28 09-21 57 53 132 126 1104.7 1094.1
0﹕1 05-18 07-31 09-19 50 124 1032.8
X‖Y 1﹕0 05-19 08-01 09-28 58 132 1129.7
6﹕6 05-19 05-17 08-01 07-30 09-27 09-19 57 51 131 125 1116.5 1041.7
4﹕4 05-19 05-17 08-31 07-30 09-25 09-19 56 51 129 125 1108.1 1041.7
2﹕2 05-19 05-17 07-31 07-30 09-25 09-20 56 52 129 126 1108.1 1077.9
1﹕1 05-18 05-17 07-31 07-30 09-24 09-20 55 52 129 126 1095.2 1077.9
0﹕1 05-18 07-31 09-19 50 124 1032.8
2019 Z‖Y 1﹕0 05-21 08-04 10-06 63 138 1182.0
6﹕6 05-21 05-18 08-04 08-01 10-05 09-22 62 52 137 127 1171.3 1044.4
4﹕4 05-21 05-19 08-05 08-01 10-05 09-23 61 53 137 127 1145.5 1062.5
2﹕2 05-21 05-20 08-05 08-01 10-04 09-24 60 54 136 127 1138.4 1082.6
1﹕1 05-21 05-18 08-05 08-01 10-03 09-24 59 54 135 129 1131.1 1082.6
0﹕1 05-19 08-02 09-22 51 126 1020.5
X‖Y 1﹕0 05-20 08-03 10-01 59 134 1156.1
6﹕6 05-19 05-19 08-02 08-02 09-29 09-23 58 52 133 127 1142.3 1038.6
4﹕4 05-20 05-19 08-03 08-02 09-29 09-24 57 53 132 128 1117.2 1053.4
2﹕2 05-20 05-19 08-02 08-02 09-28 09-24 57 53 131 128 1097.3 1053.4
1﹕1 05-20 05-19 08-02 08-02 09-28 09-25 57 54 131 129 1097.3 1069.2
0﹕1 05-19 08-02 09-22 51 126 1020.5

Table 3

Grain moisture content and dehydration rate of maize varieties with different maturities under various intercropping ratios"

年份
Year
品种间作
Varieties intercropping
间作比例
Intercropping ratio
生理成熟期含水率
Moisture content in physiological maturity stage (%)
收获期含水率
Moisture content in harvest period (%)
生理成熟前平均
脱水速率
Average dehydration rate before physiological maturity [%·(℃·d)-1]
生理成熟后平均
脱水速率
Average dehydration rate after physiological maturity [%·(℃·d)-1]
总脱水速率
Total
dehydration rate
[%·(℃·d)-1]
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2018 Z‖Y 1﹕0 34.89a 31.85a 0.047e 0.015c 0.043d
6﹕6 34.44b 27.30b 31.04b 20.02c 0.048d 0.060b 0.016bc 0.022ab 0.044c 0.050a
4﹕4 33.87c 27.45b 30.15c 20.62b 0.049c 0.059c 0.017ab 0.021b 0.045b 0.050a
2﹕2 33.11d 27.75ab 29.37d 20.94b 0.051b 0.058c 0.017ab 0.020b 0.046a 0.049a
1﹕1 31.89e 27.95a 27.82e 21.54a 0.053a 0.057d 0.018a 0.020b 0.046a 0.048b
0﹕1 27.26b 19.96c 0.061a 0.023a 0.051a
X‖Y 1﹕0 31.89a 27.42a 0.051d 0.018a 0.046b
6﹕6 31.42a 27.35a 26.77ab 20.08d 0.052c 0.060b 0.019a 0.023a 0.046ab 0.050a
4﹕4 30.83b 27.40a 26.03b 20.48c 0.053b 0.060b 0.020a 0.022a 0.046ab 0.050a
2﹕2 30.45bc 27.64a 25.14c 20.85b 0.054b 0.058c 0.021a 0.020b 0.047a 0.049b
1﹕1 30.06c 27.79a 24.36c 21.25a 0.055a 0.058d 0.021a 0.020b 0.047a 0.049b
0﹕1 27.26a 19.96d 0.061a 0.023a 0.051a
2019 Z‖Y 1﹕0 35.11a 32.85a 0.046d 0.014b 0.043d
6﹕6 35.03a 28.02a 32.26b 20.34d 0.047d 0.059b 0.015b 0.022ab 0.044c 0.050a
4﹕4 34.38b 28.16a 31.65c 20.65c 0.049c 0.058c 0.016ab 0.022ab 0.045b 0.049b
2﹕2 33.51c 28.46a 30.67d 21.06b 0.050b 0.057d 0.016ab 0.021ab 0.046a 0.049b
1﹕1 32.77d 28.68a 29.14e 21.75a 0.051a 0.057d 0.018a 0.020b 0.046a 0.047c
0﹕1 27.88a 20.17d 0.061a 0.023a 0.051a
X‖Y 1﹕0 32.02a 28.33a 0.050d 0.018c 0.047c
6﹕6 31.55b 28.00a 27.13b 20.35c 0.051c 0.060b 0.019bc 0.022ab 0.047c 0.050a
4﹕4 31.22c 28.08a 27.01b 20.73b 0.053b 0.059bc 0.020b 0.022ab 0.048b 0.050a
2﹕2 30.83d 28.24a 26.03c 21.48a 0.054a 0.058c 0.021a 0.020b 0.049a 0.049b
1﹕1 30.33e 28.59a 25.21d 21.67a 0.054a 0.057d 0.022a 0.020b 0.049a 0.048c
0﹕1 27.88a 20.17c 0.061a 0.023a 0.051a
显著性 Significance (F-value)
年份 Year(Y) 40.88** 44.46** 253.73** 40.02** 150.26** 11.05** 0.54 0.05 106.4** 13.21**
品种 Variety (V) 2150.96** 0.48 4478.08** 0.01 2252.44** 30.67** 1128.26** 0.28 1411.97** 6.33*
间作比例 Intercropping ratio (IR) 167.60** 5.92** 346.08** 173.39** 406.85** 128.83** 12.28** 14.85** 184.78** 95.47*
Y×V 4.51* 0.02 13.05** 4.33* 2.47 1.23 1.06 1.65 138.97** 3.83
Y×IR 1.15 0.06 1.37 0.97 9.24** 0.49 0.30 0.61 9.03** 8.13**
V×IR 10.76** 0.11 6.83** 1.77 12.69** 2.30* 0.30 0.32 19.20** 3.60*
Y×V×IR 0.89 0.02 0.90 1.38 12.60** 4.17** 0.36 0.47 3.60* 0.70

Fig. 2

Average grain moisture content for maize under various intercropping ratios at harvest period in 2018-2019 Different letters indicate significance at 0.05 level"

Fig. 3

Dynamic relationship between grain moisture content and accumulated temperature of maize varieties with different maturity under various intercropping ratios from 2018 to 2019"

Table 4

Logistic Power model fitting results of maize varieties with different maturities under various intercropping ratios"

年份
Year
品种间作
Varieties intercropping
间作比例
Intercropping
ratio
b c R2 S-28AT (℃·d) S-25AT(℃·d)
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2018 Z‖Y
1﹕0 908.436 1.645 0.979 1473 1624
6﹕6 884.358 699.780 1.605 1.719 0.978 0.970 1451 1111 1604 1220
4﹕4 891.582 705.858 1.696 1.714 0.979 0.980 1425 1122 1566 1232
2﹕2 826.493 708.741 1.555 1.714 0.980 0.980 1378 1130 1528 1242
1﹕1 800.368 705.858 1.564 1.766 0.980 0.982 1331 1174 1474 1285
0﹕1 696.785 1.723 0.978 1105 1213
X‖Y
1﹕0 780.283 1.500 0.982 1326 1476
6﹕6 764.376 726.850 1.483 1.792 0.978 0.977 1306 1133 1456 1239
4﹕4 749.789 736.414 1.478 1.795 0.974 0.975 1284 1147 1431 1254
2﹕2 748.998 741.901 1.512 1.799 0.971 0.976 1267 1154 1409 1262
1﹕1 738.853 747.287 1.530 1.798 0.972 0.979 1242 1163 1389 1271
0﹕1 696.785 1.723 0.978 1105 1213
2019 Z‖Y
1﹕0 895.804 1.570 0.982 1486 1646
6﹕6 867.278 696.384 1.512 1.729 0.982 0.981 1467 1108 1632 1217
4﹕4 827.526 705.858 1.479 1.718 0.984 0.981 1416 1127 1579 1239
2﹕2 794.099 742.777 1.446 1.756 0.986 0.982 1376 1168 1538 1280
1﹕1 766.208 744.015 1.442 1.770 0.984 0.984 1330 1170 1486 1283
0﹕1 697.643 1.744 0.981 1100 1207
X‖Y
1﹕0 804.717 1.500 0.983 1367 1522
6﹕6 808.627 726.243 1.541 1.796 0.983 0.985 1354 1131 1503 1245
4﹕4 764.956 728.947 1.475 1.786 0.984 0.984 1311 1138 1462 1248
2﹕2 762.804 732.137 1.510 1.773 0.975 0.985 1291 1146 1436 1255
1﹕1 743.331 736.571 1.496 1.770 0.976 0.987 1264 1154 1408 1264
0﹕1 697.643 1.744 0.981 1100 1207

Table 5

Grain filling characteristic parameters of maize varieties with different maturities under various intercropping ratios"

年份
Year
品种间作
Varieties intercropping
间作比例
Intercropping
ratio
a b c Gmean (g·d-1) Tmax (d) Wmax (g) Gmax (g·d-1) D (d)
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2018 Z‖Y 1﹕0 34.87 23.19 0.10 0.58 31.68 C 17.44 0.87 60.46
6﹕6 35.03 32.03 23.46 25.45 0.10 0.14 0.59 0.74 31.30 23.46 17.52 16.02 0.88 1.10 59.51 43.48
4﹕4 35.72 31.84 22.08 26.78 0.10 0.14 0.60 0.73 30.56 24.03 17.86 15.92 0.90 1.09 59.26 43.86
2﹕2 36.09 31.53 22.06 26.82 0.10 0.14 0.62 0.71 30.17 24.24 18.05 15.77 0.93 1.07 58.51 44.22
1﹕1 36.75 31.05 21.84 26.56 010 0.14 0.63 0.70 29.95 24.28 18.38 15.53 0.95 1.05 58.28 44.43
0﹕1 32.45 25.56 0.14 0.75 23.35 16.23 1.13 43.23
X‖Y 1﹕0 33.50 30.56 0.11 0.64 29.85 16.75 0.96 52.37
6﹕6 33.79 32.16 29.87 26.16 0.12 0.14 0.65 0.74 29.44 23.64 16.90 16.08 0.97 1.11 52.01 43.46
4﹕4 34.11 32.04 29.15 26.54 0.12 0.14 0.66 0.74 29.15 23.78 17.06 16.02 0.99 1.10 51.87 43.52
2﹕2 34.36 31.94 29.16 26.73 0.12 0.14 0.67 0.73 28.96 23.95 17.18 15.97 1.00 1.10 51.52 43.73
1﹕1 35.05 31.68 29.27 27.02 0.12 0.14 0.69 0.72 28.77 24.05 17.53 15.84 1.03 1.09 51.13 43.76
0﹕1 32.45 25.56 0.14 0.75 23.35 16.23 1.13 43.23
2019 Z‖Y 1﹕0 34.58 20.19 0.10 0.57 30.59 17.29 0.85 61.08
6﹕6 34.82 31.12 20.48 23.56 0.10 0.14 0.58 0.71 30.43 22.92 17.41 15.56 0.86 1.07 60.46 43.53
4﹕4 35.12 30.95 19.86 24.28 0.10 0.14 0.59 0.70 29.89 23.34 17.56 15.48 0.88 1.06 60.00 43.91
2﹕2 35.26 30.73 19.75 25.77 0.10 0.14 0.60 0.70 29.27 23.79 17.63 15.37 0.90 1.05 58.87 43.93
1﹕1 36.14 30.32 20.26 26.83 0.10 0.14 0.62 0.69 29.23 24.26 18.07 15.16 0.93 1.03 58.30 44.25
0﹕1 31.48 22.56 0.14 0.73 22.44 15.74 1.09 43.21
X‖Y 1﹕0 33.25 28.73 0.11 0.63 29.71 16.63 0.94 53.08
6﹕6 33.56 31.06 28.96 23.58 0.11 0.14 0.64 0.72 29.52 22.82 16.78 15.53 0.96 1.08 52.62 43.32
4﹕4 33.78 31.00 29.02 25.64 0.12 0.14 0.65 0.71 29.28 23.76 16.89 15.50 0.97 1.06 52.16 43.94
2﹕2 34.05 30.95 29.34 26.03 0.12 0.14 0.66 0.70 29.12 23.91 17.03 15.48 0.99 1.05 51.71 44.02
1﹕1 34.27 30.76 29.55 26.16 0.12 0.14 0.67 0.70 28.74 24.01 17.14 15.38 1.01 1.05 50.92 44.13
0﹕1 31.48 22.56 0.14 0.73 22.44 15.74 0.87 1.09 43.21

Table 6

Grain yield and yield components of maize varieties with different maturities under various intercropping ratios"

年份
Year
品种间作
Varieties intercropping
间作比例
Intercropping
ratio
有效穗数
Effective panicle number (ears/hm2)
穗粒数
Grains per ear (spike/hm2)
百粒重
grain weigh (g)
产量
Yield (kg·hm-2)
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2018 Z‖Y 1:0 64816.02±1118.04a 560.82±5.78a 34.08±0.56b 12386.09±309.75c
6:6 65203.85±974.09a 65330.13±613.33a 566.53±11.59a 583.02±4.09a 34.37±0.16b 30.00±0.30a 12695.35±330.92bc 11428.17±219.86a
4:4 65330.77±1241.53a 65257.63±614.47a 569.29±13.83a 581.30±8.25a 35.02±0.36a 29.85±0.54a 13023.93±312.55ab 11321.35±66.80a
2:2 65699.10±417.30a 65172.50±116.36a 571.51±7.40a 580.27±3.59a 35.13±0.44a 29.63±0.28a 13191.45±219.85a 11205.94±68.48a
1:1 66004.23±1015.49a 65102.87±876.64a 573.79±5.21a 580.02±4.00a 35.27±0.16a 29.56±0.55a 13356.30±274.66a 11164.41±317.75a
0:1 65357.63±631.99a 584.52±4.99a 30.08±0.76a 11488.92±202.67a
X‖Y 1:0 64829.23±480.67a 568.68±9.06a 32.16±0.35c 11856.99±249.90b
6:6 64844.23±613.54a 65348.08±579.85a 569.72±6.53a 584.16±3.32a 32.34±0.45bc 30.02±0.29a 11948.15±265.47ab 11460.61±99.02a
4:4 64959.62±377.70a 65270.19±610.42a 570.95±18.31a 583.29±3.60a 32.67±0.37abc 29.95±0.12a 12117.39±481.19ab 11401.39±129.69a
2:2 64987.12±377.52a 65201.31±573.35a 572.67±4.99a 582.22±3.10a 32.88±0.56ab 29.78±0.11a 12236.08±298.58ab 11305.62±100.68a
1:1 65024.23±129.87a 65162.15±698.02a 574.22±1.64a 582.17±3.35a 33.07±0.04a 29.64±0.19a 12349.72±46.48a 11244.58±197.69a
0:1 65357.63±631.99a 584.52±4.99a 30.08±0.76a 11488.92±202.67a
2019 Z‖Y 1:0 64846.77±1122.36a 560.63±8.83a 34.43±0.31b 12519.47±426.20c
6:6 65153.85±886.01a 65372.63±640.47a 561.74±6.05a 584.77±4.51a 34.92±0.50ab 30.02±0.28a 12781.69±269.53bc 11513.64±263.92a
4:4 65230.77±1111.18a 65282.63±647.79a 571.29±17.30a 582.30±24.51a 34.97±0.43ab 29.92±0.54a 13030.05±389.91bc 11436.69±504.75a
2:2 65749.10±506.46a 65152.87±852.08a 575.01±10.02a 581.52±2.88a 35.05±0.60ab 29.46±0.40a 13248.43±273.51ab 11162.66±132.62a
1:1 65929.23±433.76a 64975.00±488.20a 578.12±8.11a 580.77±1.64a 35.37±0.10a 29.28±0.62a 13482.22±306.00a 11047.60±258.35a
0:1 65382.63±647.06a 585.97±2.34a 30.13±0.77a 11541.24±229.79a
X‖Y 1:0 64944.23±578.24a 568.68±9.06a 32.45±0.38c 11987.78±334.82b
6:6 64969.23±533.33a 65023.08±408.73a 569.72±6.53a 585.26±3.22a 32.59±0.41bc 30.12±0.51a 12063.21±218.08ab 11446.92±83.17a
4:4 65032.12±264.60a 64970.19±535.93a 571.70±19.19a 584.54±2.90a 32.86±0.44abc 30.08±0.35a 12218.60±529.30ab 11439.46±234.31a
2:2 65084.62±287.62a 64828.81±266.87a 572.67±4.99a 583.68±11.47a 33.07±0.33ab 30.00±021a 12326.20±208.28ab 11349.98±226.10a
1:1 65249.23±515.96a 64812.15±113.03a 576.72±1.62a 583.14±1.80a 33.41±0.09a 29.79±0.08a 12571.52±111.03a 11258.09±36.72a
0:1 65382.63±647.06a 585.97±2.34a 30.13±0.77a 11541.24±229.79a
显著性 Significance (F-value)
年份 Year (Y) 0.11 0.04 0.14 0.07 1.20 0.44 3.55 0.14
品种 Variety (V) 7.45** 0.01 1.59 0.14 730.07** 0.32 201.06** 0.51
间作比例 Intercropping ratio (IR) 2.74* 1.11 3.42* 0.73 25.05** 5.94** 22.12** 7.38**
Y×V 0.28 0.01 0.00 0.14 0.15 0.00 0.19 0.12
Y×IR 0.01 0.01 0.20 0.03 1.40 0.67 0.14 0.63
V×IR 1.15 0.00 1.15 0.01 0.61 0.04 1.94 0.05
Y×V×IR 0.02 0.00 0.11 0.01 0.37 0.04 0.03 0.04

Fig. 4

Average grain yield of maize under different intercropping ratios treatment The box part in boxplot shows the middle 50% of the ranked samples of averaged grain yield, which is the interquartile range (IQR); The two segments are the reasonable observation sample boundary determined by Tukey method; The median for each dataset is indicated by the centerline, the mean is indicated by the dashed line. Different lowercase letters are significantly different at P<0.05"

[1] 王克如, 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47(12): 2440-2449.
doi: 10.3724/SP.J.1006.2021.03046
WANG K R, LI L L, GAO S, WANG Y Z, HUANG Z F, XIE R Z, MING B, HOU P, XUE J, ZHANG G Q, HOU L Y, LI S K. Analysis of main quality index of corn harvesting with combine in China. Acta Agronomica Sinica, 2021, 47(12): 2440-2449. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03046
[2] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005—2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50(11): 1960-1972.
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China. Scientia Agricultura Sinica, 2017, 50(11): 1960-1972. (in Chinese)
[3] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
doi: 10.3724/SP.J.1006.2008.00447
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00447
[4] XUE J, GOU L, ZHAO Y S, YAO M N, YAO H S, TIAN J S, ZHANG W F. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016, 188: 133-141.
doi: 10.1016/j.fcr.2016.01.003
[5] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.
doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)
doi: 10.3724/SP.J.1006.2020.93034
[6] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[7] 李少昆, 王克如, 初振东, 李贺, 张万旭, 王俊河, 杜树海, 刘洋, 谢瑞芝, 侯鹏, 明博. 黑龙江第1-第3积温带玉米机械粒收现状及品种特性分析. 玉米科学, 2019, 27(1): 110-117.
LI S K, WANG K R, CHU Z D, LI H, ZHANG W X, WANG J H, DU S H, LIU Y, XIE R Z, HOU P, MING B. Study on the current status of maize mechanical kernel harvest and the hultivar characteristics in the 1-3 accumulated temperature zones in Heilongjiang province. Journal of Maize Sciences, 2019, 27(1): 110-117. (in Chinese)
[8] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51(10): 1878-1889.
LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Scientia Agricultura Sinica, 2018, 51(10): 1878-1889. (in Chinese)
[9] 冯东升, 高树仁, 杨克军. 解析玉米籽粒脱水的动力问题. 中国种业, 2017(10): 35-36.
FENG D S, GAO S R, YANG K J. Analysis on the dynamic problem of corn grain dehydration. China Seed Industry, 2017(10): 35-36. (in Chinese)
[10] WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern corn belt. Agronomy Journal, 2002, 94(5): 1020-1023.
doi: 10.2134/agronj2002.1020
[11] 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018, 42(6): 672-680.
doi: 10.17521/cjpe.2018.0033
ZHU Q L, XIANG R, TANG L, LONG G Q. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Chinese Journal of Plant Ecology, 2018, 42(6): 672-680. (in Chinese)
doi: 10.17521/cjpe.2018.0033
[12] 于桂霞. 玉米高矮秆间作试验研究初报. 耕作与栽培, 1999(2): 8-10, 27.
YU G X. Preliminary study on intercropping of tall and short stalks of maize. Tillage and Cultivation, 1999(2): 8-10, 27. (in Chinese)
[13] 赵亚丽, 康杰, 刘天学, 李潮海. 不同基因型玉米间混作优势带型配置. 生态学报, 2013, 33(12): 3855-3864.
doi: 10.5846/stxb201211131593
ZHAO Y L, KANG J, LIU T X, LI C H. Optimum stripe arrangement for inter-cropping and mixed-cropping of different maize (Zea mays L.) genotypes. Acta Ecologica Sinica, 2013, 33(12): 3855-3864. (in Chinese)
doi: 10.5846/stxb201211131593
[14] 李潮海, 苏新宏, 孙敦立. 不同基因型玉米间作复合群体生态生理效应. 生态学报, 2002, 22(12): 2096-2103.
LI C H, SU X H, SUN D L. Ecophysiological characterization of different maize (Zea mays L.) genotypes under mono-or inter- cropping conditions. Acta Ecologica Sinica, 2002, 22(12): 2096-2103. (in Chinese)
[15] 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响. 植物生态学报, 2008, 32(4): 914-921.
doi: 10.3773/j.issn.1005-264x.2008.04.021
LIU T X, LI C H, MA X M, ZHAO X, LIU S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. Journal of Plant Ecology (Chinese Version), 2008, 32(4): 914-921. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2008.04.021
[16] 胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54(9): 1856-1868.
HU D D, LI R F, LIU P, DONG S T, ZHAO B, ZHANG J W, REN B C. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868. (in Chinese)
[17] 史振声, 李凤海, 张喜华. 玉米杂交当代的生理反应. 玉米科学, 1996, 32(4): 25-29.
SHI Z S, LI F H, ZHANG X H. Physiological reaction on the maize F0 generation. Journal of Maize Sciences, 1996, 32(4): 25-29. (in Chinese)
[18] LIU Y E, LIU P, DONG S T, ZAHNG J W. Hormonal changes caused by the xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Science, 2010, 50(1): 215-221.
doi: 10.2135/cropsci2009.04.0186
[19] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47(3): 507-519.
doi: 10.3724/SP.J.1006.2021.03024
ZHU Y L, WANG C G, YANG M, ZHENG X H, ZHAO C F, ZHANG R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agronomica Sinica, 2021, 47(3): 507-519. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03024
[20] 曹鹏鹏, 田艺心, 高凤菊, 华方静, 王乐政. 玉米-大豆间作不同带距和行距对两作物生长及产量的影响. 山东农业科学, 2018, 50(7): 78-81, 87.
CAO P P, TIAN Y X, GAO F J, HUA F J, WANG L Z. Effects of different band and row spacing on growth and yield of intercropping maize and soybean. Shandong Agricultural Sciences, 2018, 50(7): 78-81, 87. (in Chinese)
[21] HALLETT S H, JONES R J A. Compilation of an accumulated temperature database for use in an environmental information system. Agricultural and Forest Meteorology, 1993, 63(1/2): 21-34.
[22] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44(12): 1755-1763.
doi: 10.3724/SP.J.1006.2018.01755
GAO S, MING B, LI L L, XIE R Z, XUE J, HOU P, WANG K R, LI S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai rivers summer maize. Acta Agronomica Sinica, 2018, 44(12): 1755-1763. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01755
[23] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45(9): 1446-1453.
doi: 10.3724/SP.J.1006.2019.83078
WAN Z H, REN B C, ZHAO B, LIU P, ZHANG J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agronomica Sinica, 2019, 45(9): 1446-1453. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83078
[24] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性. 作物学报, 2021, 47(1): 149-158.
doi: 10.3724/SP.J.1006.2021.93008
WANG R H, XU T J, CHEN C Y, WANG Y D, LÜ T F, LIU Y E, CAI W T, LIU X Z, ZHAO J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agronomica Sinica, 2021, 47(1): 149-158. (in Chinese)
doi: 10.3724/SP.J.1006.2021.93008
[25] 余利, 刘正, 王波, 段海明, 孟凡进, 李秋月. 行距和行向对不同密度玉米群体田间小气候和产量的影响. 中国生态农业学报, 2013, 21(8): 938-942.
doi: 10.3724/SP.J.1011.2013.00938
YU L, LIU Z, WANG B, DUAN H M, MENG F J, LI Q Y. Effects of different combinations of planting density, row spacing and row direction on field microclimatic conditions and grain yield of maize. Chinese Journal of Eco-Agriculture, 2013, 21(8): 938-942. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00938
[26] 刘开昌, 张秀清, 王庆成, 王春英, 李爱芹. 密度对玉米群体冠层内小气候的影响. 植物生态学报, 2000, 24(4): 489-493.
LIU K C, ZHANG X Q, WANG Q C, WANG C Y, LI A Q. Effect of plant density on microclimate in canopy of maize (Zea mays L.). Chinese Journal of Plant Ecology, 2000, 24(4): 489-493. (in Chinese)
[27] 白伟, 孙占祥, 郑家明, 侯志研, 刘洋, 冯良山, 杨宁. 辽西地区不同种植模式对春玉米产量形成及其生长发育特性的影响. 作物学报, 2014, 40(1): 181-189.
doi: 10.3724/SP.J.1006.2014.00181
BAI W, SUN Z X, ZHENG J M, HOU Z Y, LIU Y, FENG L S, YANG N. Effect of different planting patterns on maize growth and yield in western Liaoning province. Acta Agronomica Sinica, 2014, 40(1): 181-189. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00181
[28] 苏新宏, 李潮海, 孙敦立, 张怀志. 不同基因型玉米间作研究初报. 玉米科学, 2000, 8(4): 57-60.
SU X H, LI C H, SUN D L, ZHANG H Z. Preliminary report on intercropping research of different genotypes of maize. Journal of Maize Sciences, 2000, 8(4): 57-60. (in Chinese)
[29] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44(21): 4367-4376.
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Scientia Agricultura Sinica, 2011, 44(21): 4367-4376. (in Chinese)
[30] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11): 2027-2035.
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. (in Chinese)
[31] 朱敏, 史振声, 李凤海, 王志斌. 玉米不同品种间、混作研究综述. 玉米科学, 2007, 15(S1): 100-103.
ZHU M, SHI Z S, LI F H, WANG Z B. Summary of different maize variety inter- planting and mixed cultivation. Journal of Maize Sciences, 2007, 15(S1): 100-103. (in Chinese)
[32] 赵佰仁, 梁亚超, 张树权, 刘玉涛, 杨殿荣. 玉米高矮秆立体间作新模式研究. 玉米科学, 1999, 7(3): 51-53.
ZHAO B R, LIANG Y C, ZAHNG S Q, LIU Y T, YANG D R. Study on new model of high and short stalk intercropping in maize. Journal of Maize Sciences, 1999, 7(3): 51-53. (in Chinese)
[33] TOLLENAAR M. Physiological basis of genetic improvement of maize hybrids in ontario from 1959 to 1988. Crop Science, 1991, 31(1): 119-124.
doi: 10.2135/cropsci1991.0011183X003100010029x
[34] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6): 920-930.
doi: 10.3724/SP.J.1006.2018.00920
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic charac- teristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00920
[35] 王同朝, 卫丽, 马超, 杜园园, 常晓, 邵扬. 不同生态区夏玉米两类熟期品种子粒灌浆动态和产量分析. 玉米科学, 2010, 18(3): 84-89.
WANG T C, WEI L, MA C, DU Y Y, CHANG X, SHAO Y. Dynamic process of grain-filling and yield factors analysis of late-matured and middle-matured varieties of summer maize after flowering. Journal of Maize Sciences, 2010, 18(3): 84-89. (in Chinese)
[36] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47(18): 3557-3565.
WANG X H, ZHANG L, LIU S L, CAO Y J, WEI W W, LIU C G, WANG Y J, BIAN S F, WANG L C. Grain filling characteristics of maize hybrids differing in maturities. Scientia Agricultura Sinica, 2014, 47(18): 3557-3565. (in Chinese)
[37] 王小林, 张岁岐, 王淑庆, 王志梁. 黄土塬区不同品种玉米间作群体生长特征的动态变化. 生态学报, 2012, 32(23): 7383-7390.
doi: 10.5846/stxb201111111716
WANG X L, ZHANG S Q, WANG S Q, WANG Z L. The dynamic variation of maize (Zea mays L.) population growth characteristics under cultivars-intercropped on the loess plateau. Acta Ecologica Sinica, 2012, 32(23): 7383-7390. (in Chinese)
doi: 10.5846/stxb201111111716
[38] 安宏明, 李振, 李利利, 董树亭, 张吉旺, 刘鹏. 混播对不同基因型玉米产量和农艺性状的影响. 山东农业科学, 2010(7): 29-31, 35.
AN H M, LI Z, LI L L, DONG S T, ZHANG J W, LIU P. Effects of mixed planting on yield and agronomic traits of different genotypes of maize. Shandong Agricultural Sciences, 2010(7): 29-31, 35. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[10] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[11] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[12] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[13] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!