Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2311-2323.doi: 10.3864/j.issn.0578-1752.2022.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Research on Senescence Process and Suitable Indicators of Maize Ear Leaves

LÜ ZhiWei1(),DU Kang1,ZHOU ZhiGuo1,ZHAO WenQing1,HU Wei1,ZHAO JianMing2,ZHU SuQin3,WANG YouHua1()   

  1. 1College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Ecophysiology and Management, Ministry of Agriculture and Rural Affairs/Jiangsu Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing 210095
    2Jiangsu Golden Agriculture Co., Ltd., Dafeng 224100, Jiangsu
    3Comprehensive Service Center of Agricultural Technology Extension, Sancang Town, Dongtai City, Dongtai 224200, Jiangsu
  • Received:2021-09-29 Accepted:2021-12-15 Online:2022-06-16 Published:2022-06-23
  • Contact: YouHua WANG E-mail:1419204507@qq.com;w_youhua@njau.edu.cn

Abstract:

【Objective】The main objectives of this study were to find more optimized methods and suitable indicators to accurately indicate the senescence process of maize ear leaves, and to clarify the senescence process of maize ear leaves, so as to provide the theoretical reference for accurate and efficient cultivation measures of maize. 【Method】In the spring and summer of 2020, the field trial was carried out at Dafeng Research Station (33°12′ N, 120°28′ E) in Jiangsu province. By using hybrid cultivar Suyu 29 (SY29) as the testing material, six maize populations (N1-N6) with different leaf nitrogen concentration under different nitrogen application rates (0, 67.5, 136.5, 205.5, 274.5, and 343.5 kg N·hm-2) were constructed. The dynamic changes of 12 morphological and physiological indicators after silking were fitted by the Logistic model and the accuracy of indicating the senescence process by these indicators were compared. 【Result】The fitting trend and degree of the Logistic formula y=(a-d)/(1+(x/c)b)+d were better than the predecessor commonly used Logistic formula y=a/(1+e-b(x-c)). It was showed by a multi-indicator analysis that the ear leaves of spring maize and summer maize initiated senescence process at 18.8-29.1 ($\bar{x}$=25.8) days and 17.5-28.2 ($\bar{x}$=23.9) days after silking, rapid senescence occurred at 30.5-37.9 ($\bar{x}$=34.4) days and 28.0-35.7 ($\bar{x}$=31.8) days after silking, and terminated senescence process at 40.6-54.1 ($\bar{x}$=45.9) days and 38.3-47.0 ($\bar{x}$=42.1) days after silking, respectively. The effective accumulated temperature of spring and summer maize at 25.8 days and 23.9 days from silking to the initiation of senescence process was 392.9 ºC and 477.6 ºC, respectively. The effective accumulated temperature of spring and summer maize at 20.1 days and 18.2 days from the initiation to termination of senescence process was 360.0 ºC and 284.0 ºC, respectively. It was showed by an indicator classification analysis that the σ-value under normal distribution of the senescence characteristic time indicated by physiological indicators was greater than that indicated by morphological indicators within the same senescence stage, which was the case in both spring maize and summer maize. The coefficient of variation (CV) of senescence characteristic time indicated by the content of malondialdehyde (MDA), total chlorophyll, chlorophyll a, fructose, glucose and transpiration rate (Tr) were all less than 5%. The root mean square error (RMSE) between the mean time of each stage and the senescence characteristic time indicated by the content of MDA, total chlorophyll, fructose, glucose and net photosynthetic rate (Pn) were all less than 2. 【Conclusion】The Logistic formula y=(a-d)/(1+(x/c)b)+d could serve as a mathematical tool to accurately fit the dynamic changes of senescence related indicators of maize ear leaves. Based on this evaluation method, the ear leaves of spring maize and summer maize initiated senescence at 26 days and 24 days after silking, their senescence rate reached the maximum at 34 days and 32 days after silking, and substantially enter the functional death stage at 46 days and 42 days after silking, respectively. Effective accumulated temperature was an important factor to affect the senescence process of maize ear leaves. The content of MDA, total chlorophyll, fructose, and glucose were excellent indicators to characterize the senescence process of maize ear leaves.

Key words: maize, ear leaves, senescence process, senescence indicator, accuracy

Table 1

Soil basic nutrient content"

年份
Year
有机质含量
Organic matter content (g·kg-1)
全氮含量
Total nitrogen content (g·kg-1)
碱解氮含量
Alkali-hydrolyzable nitrogen content (mg·kg-1)
速效磷含量
Available phosphorus content (mg·kg-1)
速效钾含量
Available potassium content (mg·kg-1)
2020 春Spring 16.01 1.06 51.07 28.33 193.87
夏Summer 13.77 0.93 50.93 22.74 199.35

Fig. 1

Air temperature and precipitation of maize growing season in Dafeng in 2020"

Table 2

Experimental treatment and treatment effects"

试验处理
Experimental treatment
施氮量
Nitrogen rate
(kg N·hm-2)
穗位叶氮浓度(春玉米)
Nitrogen concentration of ear leaves (spring maize) (%)
穗位叶氮浓度(夏玉米)
Nitrogen concentration of ear leaves (summer maize) (%)
20 DAS 30 DAS 40 DAS 20 DAS 30 DAS 40 DAS
N1 0 3.00d 1.83e 0.91f 3.10d 1.75d 0.83e
N2 67.5 3.39c 2.54d 1.13e 3.11d 1.80d 0.95d
N3 136.5 3.41c 3.04c 1.46d 3.59c 2.50c 1.05c
N4 205.5 4.21b 3.32b 2.02c 3.71bc 2.51c 1.09c
N5 274.5 4.82a 4.12a 2.73b 3.79b 2.84b 1.23b
N6 343.5 4.82a 3.97a 2.92a 4.33a 3.14a 1.46a

Fig. 2

Fitting trends comparison of the different Logistic formulas in simulating senescence related indicators of maize ear leaves Data point is the average of the measured value of six treatments"

Fig. 3

Fitting degree comparison of the different Logistic formulas in simulating senescence related indicators of maize ear leaves"

Fig. 4

The senescence characteristic time of maize ear leaves indicated by different senescence related indicators"

Fig. 5

The normal distribution of senescence characteristic time indicated by different senescence related indicators of maize ear leaves"

Table 3

Changes of days and growing-degree days in different growing period of maize"

发育阶段
Growing period
春玉米 Spring maize 夏玉米 Summer maize
有效积温
Ti (℃)
发育天数
Growing days (d)
有效积温
Ti (℃)
发育天数
Growing days (d)
吐丝至衰老启动Silking-senescence initiation 392.9 25.8 477.6 23.9
衰老启动至终止Senescence initiation-termination 360.0 20.1 284.0 18.2

Fig. 6

Comparison of the senescence process indicated by morphological and physiological senescence related indicators of maize ear leaves"

Table 4

The precision of indicating maize ear leaves senescence process by different senescence related indicators"

指示性指标
Indicative indicator
穗位叶衰老特征时间变异系数(春玉米)
CV of ear leaves senescence characteristic time
(spring maize) (%)
穗位叶衰老特征时间变异系数(夏玉米)
CV of ear leaves senescence characteristic time (summer maize) (%)
启动Initiation 快速Peak 终止Termination 启动Initiation 快速Peak 终止Termination
比叶重 Specific leaf weight 6.389 4.099 2.874 4.124 3.302 3.231
SPAD值 SPAD value 6.753 4.148 4.016 5.102 3.687 3.348
总叶绿素 Total chlorophyll 3.863 3.368 2.327 4.363 3.648 3.549
叶绿素a Chlorophyll a 3.573 3.101 2.692 4.439 3.820 3.674
叶绿素b Chlorophyll b 6.127 4.589 4.057 4.742 3.381 4.005
氮浓度 Nitrogen concentration 7.806 5.197 2.321 7.383 4.103 1.984
净光合速率 Pn 7.686 5.159 3.248 3.406 1.709 1.029
蒸腾速率 Tr 3.893 3.197 3.262 3.324 2.908 2.588
丙二醛 Malondialdehyde 4.895 2.753 4.319 4.651 3.151 1.975
蔗糖 Sucrose 7.923 5.025 3.365 4.008 3.146 2.909
果糖 Fructose 2.731 3.044 3.731 4.339 3.218 2.999
葡萄糖 Glucose 2.275 1.863 1.721 0.891 1.241 1.601

Table 5

The accuracy of indicating maize ear leaves senescence process by different senescence related indicators"

指示性指标
Indicative indicator
穗位叶衰老特征时间均方根误差(春玉米)
RMSE of ear leaves senescence characteristic
time (spring maize)
穗位叶衰老特征时间均方根误差(夏玉米)
RMSE of ear leaves senescence characteristic
time (summer maize)
启动Initiation 快速Peak 终止Termination 启动Initiation 快速Peak 终止Termination
比叶重 Specific leaf weight 2.342 1.623 2.890 1.506 0.965 2.365
SPAD值 SPAD value 1.624 1.587 2.554 1.108 1.799 3.337
总叶绿素 Total chlorophyll 0.946 1.188 1.530 1.954 1.321 1.792
叶绿素a Chlorophyll a 0.917 1.280 3.913 2.122 1.259 2.348
叶绿素b Chlorophyll b 1.719 2.035 1.965 2.742 2.194 1.594
氮浓度 Nitrogen concentration 5.003 2.012 2.535 4.491 2.168 1.694
净光合速率 Pn 1.897 1.719 1.811 0.812 0.716 0.448
蒸腾速率 Tr 4.563 1.010 6.398 2.619 0.904 2.875
丙二醛 Malondialdehyde 1.675 1.018 1.952 1.205 0.937 0.846
蔗糖 Sucrose 2.267 2.085 2.708 1.129 0.926 2.246
果糖 Fructose 0.707 0.983 1.567 0.959 1.142 1.329
葡萄糖 Glucose 0.940 0.635 1.004 0.903 0.391 0.694
[1] FOWLER D B. Crop nitrogen demand and grain protein concentration of spring and winter wheat. Agronomy Journal, 2003, 95(2): 260-265.
doi: 10.2134/agronj2003.2600
[2] HOU P, GAO Q, XIE R Z, LI S K, MENG Q F, KIRKBY E A, RÖMHELD V, MÜLLER T, ZHANG F S, CUI Z L, CHEN X P. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China. Field Crops Research, 2012, 129: 1-6.
doi: 10.1016/j.fcr.2012.01.006
[3] KOSGEY J R, MOOT D J, FLETCHER A L, MCKENZIE B A. Dry matter accumulation and post silking N economy of stay green maize (Zea mays L.) hybrids. European Journal of Agronomy, 2013, 51: 43-52.
doi: 10.1016/j.eja.2013.07.001
[4] NOVOA R, LOOMIS R S. Nitrogen and plant production. Plant and Soil, 1981, 58(1/3): 177-204.
doi: 10.1007/BF02180053
[5] MASCLAUX C, VALADIER M H, BRUGIÈRE N, MOROT- GAUDRY J F, HIREL B. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta, 2000, 211: 510-518.
doi: 10.1007/s004250000310
[6] ZHAO D, DERKX A P, LIU D C, BUCHNER P, HAWKESFORD M J. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biology, 2015, 17: 904-913.
doi: 10.1111/plb.12296
[7] LIM P O, KIM H J, NAM H G. Leaf senescence. Annual Review of Plant Biology, 2007, 58: 115-136.
doi: 10.1146/annurev.arplant.57.032905.105316
[8] LIU T N, GU L M, DONG S T, ZHANG J W, LIU P, ZHAO B. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 2015, 170: 32-39.
doi: 10.1016/j.fcr.2014.09.015
[9] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀芝, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014, 40(9): 1650-1657.
doi: 10.3724/SP.J.1006.2014.01650
CHEN C J, WANG R H, ZHAO J R, XU T J, WANG Y D, LIU X Z, LIU C G, PEI Z C, CHENG G L, CHEN G P. Effects of shading on grain-filling properties and yield of maize at different growth stages. Acta Agronomica Sinica, 2014, 40(9): 1650-1657. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01650
[10] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47(18): 3557-3565.
WANG X H, ZHANG L, LIU S L, CAO Y J, WEI W W, LIU C G, WANG Y J, BIAN S F, WANG L C. Grain filling characteristics of maize hybrids differing in maturities. Scientia Agricultura Sinica, 2014, 47(18): 3557-3565. (in Chinese)
[11] 刘开昌, 董树亭, 赵海军, 王庆成, 李宗新, 刘霞, 张慧. 我国玉米自交系叶片保绿性及其与产量的关系. 作物学报, 2009, 35(9): 1662-1671.
doi: 10.3724/SP.J.1006.2009.01662
LIU K C, DONG S T, ZHAO H J, WANG Q C, LI Z X, LIU X, ZHANG H. Leaf stay-green traits in Chinese maize inbred lines and their relationship with grain yield. Acta Agronomica Sinica, 2009, 35(9): 1662-1671. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01662
[12] 赵延明, 张海艳. 基于叶片面积玉米叶片保绿度开花后衰减特性初步研究. 中国农学通报, 2009, 25(12): 91-94.
ZHAO Y M, ZHANG H Y. The primary studies on reducing characteristics of leaf stay-green based on leaf area after flowering in maize. Chinese Agricultural Science Bulletin, 2009, 25(12): 91-94. (in Chinese)
[13] BIRCH C J, HAMMER G L, RICKERT K G. Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays L.). Australian Journal of Agricultural Research, 1998, 49: 249-262.
doi: 10.1071/A97010
[14] 吕国锋, 范金平, 张伯桥, 高德荣, 王慧, 刘业宇, 吴素兰, 程凯, 王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析. 作物学报, 2019, 45(1): 144-152.
doi: 10.3724/SP.J.1006.2019.81014
LÜ G F, FAN J P, ZHANG B Q, GAO D R, WANG H, LIU Y Y, WU S L, CHENG K, WANG X E. Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process. Acta Agronomica Sinica, 2019, 45(1): 144-152. (in Chinese)
doi: 10.3724/SP.J.1006.2019.81014
[15] VAN OOSTEROM E J, JAYACHANDRAN R, BIDINGER F R. Diallel analysis of the stay-green trait and its components in sorghum. Crop Science, 1996, 36(3): 549-555.
doi: 10.2135/cropsci1996.0011183X003600030002x
[16] KASSAHUN B, BIDINGER F R, HASH C T, KURUVINASHETTI M S. Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica, 2010, 172: 351-362.
doi: 10.1007/s10681-009-0108-0
[17] MAHALAKSHMI V, BIDINGER F R. Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Science, 2002, 42(3): 965-974.
[18] 薛晖, 贾丽, 龚月桦, 刘赢洲, 吴养会. 冬小麦叶片持绿能力及其衰老特征研究. 西北植物学报, 2010, 30(2): 336-343.
XUE H, JIA L, GONG Y H, LIU Y Z, WU Y H. Study on the stay- green capacity and leaf senescence of winter wheat. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(2): 336-343. (in Chinese)
[19] LIM P O, WOO H R, NAM H. Molecular genetics of leaf senescence in arabidopsis. Trends in Plant Science, 2003, 8(6): 272-278.
doi: 10.1016/S1360-1385(03)00103-1
[20] BUCHANAN-WOLLASTON V. The molecular biology of leaf senescence. Journal of Experimental Botany, 1997, 48(2): 181-199.
doi: 10.1093/jxb/48.2.181
[21] MCMASTER G S, WILHELM W W. Is soil temperature better than air temperature for predicting winter wheat phenology? Agronomy Journal, 1998, 90(5): 602-607.
doi: 10.2134/agronj1998.00021962009000050006x
[22] 许东恒, 石玉海, 孙宁, 张林, 曹铁华, 王立春, 赵洪祥. 氮肥运筹对玉米叶片光合速率、比叶重和SPAD值的影响. 玉米科学, 2010, 18(6): 102-106.
XU D H, SHI Y H, SUN N, ZHANG L, CAO T H, WANG L C, ZHAO H X. Effects of nitrogen application on photosynthetic rate, specific leaf weight and SPAD value in leaf of maize. Journal of Maize Sciences, 2010, 18(6): 102-106. (in Chinese)
[23] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 186-191.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 186-191. (in Chinese)
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 134-137.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 134-137. (in Chinese)
[25] LIU J R, MA Y N, LYU F J, CHEN J, ZHOU Z G, WANG Y H, ABUDUREZIKE A, OOSTERHUIS D M. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Research, 2013, 144: 200-211.
doi: 10.1016/j.fcr.2013.02.003
[26] 刘鹏, 胡昌浩, 董树亭, 王空军, 张吉旺, 张保仁. 甜质型与普通型玉米籽粒发育过程中糖代谢相关酶活性的比较. 中国农业科学, 2005, 38(1): 52-58.
LIU P, HU C H, DONG S T, WANG K J, ZHANG J W, ZHANG B R. Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corn. Sicientia Agricultura Sinica, 2005, 38(1): 52-58. (in Chinese)
[27] HENDRIX D L. Rapid extraction and analysis of nonstuctural carbohydrates in plant tissues. Crop Science, 2010, 33(6): 1306-1311.
doi: 10.2135/cropsci1993.0011183X003300060037x
[28] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 260-261.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 260-261. (in Chinese)
[29] NOODEN L D, GUIAMET J J, JOHN I. Senescence mechanisms. Physiologia Plantarum, 2010, 101(4): 746-753.
doi: 10.1111/j.1399-3054.1997.tb01059.x
[30] 薛生梁, 刘明春, 张惠玲. 河西走廊玉米生态气候分析与适生种植气候区划. 中国农业气象, 2003, 24(2): 12-15.
XUE S L, LIU M C, ZHANG H L. Analysis and division of ecological and climatic conditions for maize in the Hexi Corridor. Chinese Journal of Agrometeorology, 2003, 24(2): 12-15. (in Chinese)
[31] 李向岭, 李从锋, 侯玉虹, 侯海鹏, 葛均筑, 赵明. 不同播期夏玉米产量性能动态指标及其生态效应. 中国农业科学, 2012, 45(6): 1074-1083.
LI X L, LI C F, HOU Y H, HOU H P, GE J Z, ZHAO M. Dynamic characteristics of summer maize yield performance in different planting dates and its effect of ecological factors. Scientia Agricultura Sinica, 2012, 45(6): 1074-1083. (in Chinese)
[32] NING P, FRITSCHI F B, LI C J. Temporal dynamics of post-silking nitrogen fluxes and their effects on grain yield in maize under low to high nitrogen inputs. Field Crops Research, 2017, 204: 249-259.
doi: 10.1016/j.fcr.2017.01.022
[33] 刘春晓, 赵海军, 董树亭, 王庆成, 李宗新, 刘开昌. 玉米不同基因型双列杂交后代抽丝后氮素代谢特性. 中国农业科学, 2014, 47(1): 33-42.
LIU C X, ZHAO H J, DONG S T, WANG Q C, LI Z X, LIU K C. Study on characteristics of nitrogen metabolism in diallel cross generation of different maize genotypes after silking. Scientia Agricultura Sinica, 2014, 47(1): 33-42. (in Chinese)
[34] ZHANG Z S, LI G, GAO H Y, ZHANG L T, YANG C, LIU P, MENG Q W. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. Plos One, 2012, 7(8): e42936.
doi: 10.1371/journal.pone.0042936
[35] WU L C, LI M N, TIAN L, WANG S X, WU L J, KU L X, ZHNAG J, SONG X H, LIU H P, CHEN Y H. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention. Plos One, 2017, 12(10): e185838.
[36] THOMAS H, OUGHAM H. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.
doi: 10.1093/jxb/eru037
[37] MAE T, THOMAS H, GAY A P, MAKINO A, HIDEMA J. Leaf development in lolium temulentum: photosynthesis and photosynthetic proteins in leaves senescing under different irradiances. Plant and Cell Physiology, 1993, 34(3): 391-399.
[38] SMART C M, HOSKEN S E, THOMAS H, GREAVES J A, BLAIR B G, SCHUCH W. The timing of maize leaf senescence and characterisation of senescence-related cDNAs. Physiologia Plantarum, 1995, 93(4): 673-682.
doi: 10.1111/j.1399-3054.1995.tb05116.x
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!