Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2187-2201.doi: 10.3864/j.issn.0578-1752.2022.11.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions

WANG Ning1,2,3(),FENG KeYun3,NAN HongYu3,ZHANG TongHui1()   

  1. 1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000
    2University of Chinese Academy of Sciences, Beijing 100049
    3Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2021-04-06 Accepted:2021-06-23 Online:2022-06-01 Published:2022-06-16
  • Contact: TongHui ZHANG E-mail:wangning@nieer.ac.cn;zhangth@lzb.ac.cn

Abstract:

【Objective】 The aim of this study was to explore the effects of combined application of organic and chemical fertilizer on the growth and development of cotton root system, dry matter accumulation and yield under different water conditions, so as to provide a theoretical basis for rational utilization of water and fertilizer resources in arid areas.【Method】 The fixed position experiments were conducted in 2018 and 2019. The experiment was designed by split block, the main plot treatment consisted of severe water deficit (W1), mild water deficit (W2) and normal water deficit (W3), and the soil water content was 32%-46%, 51%-62% and 67%-81% of the field capacity, respectively. The split-plot treatment was composed of four fertilizer treatments: no fertilizer (F0), single application of chemical fertilizer (F1), 30% organic fertilizer with 70% chemical fertilizer (F2) and 70% organic fertilizer with 30% chemical fertilizer (F3). The effects of fertilizer on root morphological characteristics, vertical distribution of root length, root activity, dry matter accumulation in shoot and yield traits of cotton at flowering and boll stage under different water conditions were analyzed.【Result】 The results showed that the growth of cotton root at the flowering and boll stage was inhibited by water deficit, and the root length, root surface area, root volume and root vitality were significantly reduced compared with normal water. The dry weight of the shoot decreased and the root-shoot ratio increased, then the number of bolls and boll weight per plant decreased, finally leading to a decline in seed cotton yield, while W1 had the most serious negative effect among the water treatments. The effects of various fertilizer treatments on root morphological characteristics under different water conditions were significantly different: the root length, root surface area and root volume were increased by fertilizer treatments significantly, and the combined application of organic and chemical fertilizer were significantly higher than that of single fertilizer F1 under W2 and W3. Under the condition of W2, the root length, root surface area and root volume were improved with the increase of the proportion of organic fertilizer, and F3 had an average increase of 18.1%, 12.2% and 35.0% in 2 years compared with F1, respectively. Under the condition of W3, F2 had the most significant promotion effect on root morphology, which was 7.6%, 17.0% and 20.1% higher than that of F1 on root length, root surface area and root volume, respectively. Under W1, the treatments of fertilizer had an inhibitory effect on root length and root surface area, among which F1 had the most significant inhibitory effect. The combined application of organic and chemical fertilizer could promote the growth of roots in the 20-40 cm soil layer under W2 and W3, and significantly increase the distribution ratio of root. Furthermore, compared with single application of chemical fertilizer, it could significantly increase the root activity of each soil layer, promote the increase of shoot and root dry weight, reduce the root-shoot ratio, and increase the number of bolls per plant and the seed yield of cotton. Under the water condition of W2, the boll number per plant and seed cotton yield under F3 was the highest one, which were 13.2% and 17.2% higher than that under F1, respectively. However, under the condition of W3, the boll number per plant and seed cotton yield under F3 was the highest one, which was 16.1% and 9.2% higher than that under F1, respectively. 【Conclusion】 Combined application of organic and chemical fertilizer could optimize root morphology and spatial distribution, improve root activity, promote dry matter accumulation in shoot and increase lint yield, and alleviate the effects of mild water deficit on cotton root growth and development. With the combined application of organic and chemical fertilizer under different water condition, the optimal fertilizer treatments were 70% organic fertilizer with 30% chemical fertilizer (F3) under mild water deficit, and 30% organic fertilizer with 70% chemical fertilizer (F2) under normal water condition.

Key words: cotton, water, organic fertilizer, root, yield

Table 1

Basic chemical properties of the 0-20 cm soil layer of the experimental field before sowing"

年份
Year
处理
Treatment
pH 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
碱解氮
Alkaline-hydrolytic N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
2018 F0 7.34 10.86 0.65 58.63 11.68 85.64
F1 7.28 12.64 0.82 64.75 28.87 123.56
F2 7.23 13.82 0.87 67.84 29.14 136.43
F3 7.19 15.16 0.94 68.52 31.67 139.35
2019 F0 7.31 10.72 0.63 57.15 11.46 87.69
F1 7.25 12.79 0.84 65.24 29.42 124.86
F2 7.22 13.46 0.93 68.17 30.28 138.64
F3 7.18 15.29 1.02 69.36 32.19 141.27

Fig. 1

Rainfall and daily average temperature in growth period of cotton in 2018, 2019"

Table 2

Total N, P, K nutrient application rates under different fertilization treatments"

处理
Treatment
N
(kg·hm-2)
P2O5
(kg·hm-2)
K2O
(kg·hm-2)
有机无机氮施用量
Organic and inorganic nitrogen application rates
F0 0 0 0 不施氮 No nitrogen application
F1 450 90 40 450 kg·hm-2 无机氮 450 kg·hm-2 Inorganic nitrogen
F2 450 90 40 135 kg·hm-2 有机氮+315 kg·hm-2无机氮
135 kg·hm-2 Organic nitrogen+315 kg·hm-2 Inorganic nitrogen
F3 450 90 40 315 kg·hm-2 有机氮+135 kg·hm-2无机氮
315 kg·hm-2 Organic nitrogen+135 kg·hm-2 Inorganic nitrogen

Fig. 2

Changes of soil relative water content under different water treatments during flowering and boll-forming stage"

Fig. 3

Changes of water potential of leaves under different water treatments during flowering and boll-forming stage"

Fig. 4

Schematic diagram of the planting pattern and sampling method"

Table 3

Effects of fertilizer on cotton root morphology under different water conditions"

土壤水分
Soil water condition
施肥
Fertilizer
根长 Root length (m) 根表面积 Root surface area (cm2) 根体积 Root biomass (cm3)
2018 2019 2018 2019 2018 2019
W1 F0 24.2a 25.8a 378.2a 392.1a 38.2a 41.3a
F1 18.6c 20.1c 314.7c 356.2c 40.3a 42.8a
F2 19.0c 22.7b 356.1b 372.8b 41.5a 43.4a
F3 22.2b 23.1b 371.5a 385.6a 43.6a 45.1a
W2 F0 33.7d 35.3d 432.8d 446.7d 64.7d 68.9d
F1 38.3c 40.1c 516.3c 529.4c 87.3c 92.4c
F2 42.6b 42.4b 531.7b 558.6b 105.2b 112.4b
F3 47.3a 45.3a 576.2a 597.3a 117.9a 124.7a
W3 F0 42.2d 41.1d 457.1d 462.8d 67.8c 73.1d
F1 55.3c 56.5c 623.5c 610.7c 125.4b 133.6c
F2 59.6a 60.7a 714.8a 729.3a 152.1a 158.9a
F3 56.4b 58.7b 653.2b 682.5b 130.7b 146.3b
方差分析 ANOVA
W ** ** ** ** ** **
F ** ** ** ** ** **
W×F ** ** ** ** ** **

Fig. 5

Effects of fertilizer on root length under different water conditions in different soil layers Different small letters indicate significantly different between treatments at P<0.05. The same as below"

Fig. 6

Effects of fertilizer on root length distribution ratio under different water conditions in different soil layers"

Fig. 7

Effects of fertilizer on root activity under different water conditions in different soil layers"

Table 4

Effects of fertilizer on shoot and root matter and their ratio of cotton plant under different water conditions during flowering and boll-forming stage"

土壤水分
Soil water condition
施肥
Fertilizer
地上部干重 Shoot dry matter (g/plant) 根系干重 Root dry matter (g/plant) 根冠比 R/S ratio
2018 2019 2018 2019 2018 2019
W1 F0 33.9c 34.5c 6.1a 6.5a 0.18a 0.19a
F1 38.8b 40.7b 6.2a 6.6a 0.16b 0.16b
F2 40.2a 41.6a 6.3a 7.0a 0.16b 0.17b
F3 40.7a 42.5a 6.2a 7.2a 0.15b 0.17b
W2 F0 42.7d 43.1d 6.8c 6.8c 0.16a 0.16a
F1 51.4c 53.6c 7.1c 6.4c 0.14c 0.12d
F2 59.7b 61.4b 8.9b 8.5b 0.15b 0.14c
F3 62.3a 67.2a 9.3a 10.0a 0.15b 0.15b
W3 F0 46.9d 48.6d 6.0c 6.8c 0.13a 0.14a
F1 58.9c 54.4c 5.8c 5.9d 0.10c 0.11d
F2 67.5a 71.2a 8.1a 9.2a 0.12b 0.13b
F3 63.4b 67.3b 7.6b 8.1b 0.12b 0.12c
方差分析 ANOVA
W ** ** ** ** * *
F ** ** ** ** * **
W×F ** ** ** ** ns ns

Table 5

Effects of soil water and fertilizer on cotton yield and its components"

水分
Water
施肥
Fertilizer
单株铃数
Number of bolls
单铃重
Boll mass (g)
衣分
Lint percentage (%)
籽棉产量
Lint yield (kg·hm-2)
2018 2019 2018 2019 2018 2019 2018 2019
W1 F0 3.4b 3.3b 4.3b 4.5b 42.9a 43.1a 2137.5b 2318.6b
F1 4.1a 3.9a 5.5a 5.6a 43.1a 43.0a 2859.4a 2937.2a
F2 4.3a 4.2a 5.7a 5.6a 43.2a 43.1a 3025.7a 2986.1a
F3 4.4a 4.2a 5.5a 5.8a 43.0a 43.2a 3012.5a 2954.3a
W2 F0 3.9d 4.1d 5.6b 5.8b 42.5a 42.4a 2412.7d 2569.2d
F1 5.2c 5.4c 6.3a 6.2a 42.4a 42.4a 3628.4c 3714.6c
F2 5.6b 5.7b 6.4a 6.5a 42.3a 42.5a 3965.1b 4086.5b
F3 5.9a 6.1a 6.4a 6.4a 42.3a 42.4a 4217.3a 4386.5a
W3 F0 4.4d 4.7d 5.9b 6.1b 41.8a 41.6a 2675.2d 2834.7d
F1 5.6c 5.8c 6.3a 6.5a 42.0a 41.7a 4325.8c 4410.6c
F2 6.5a 6.9a 6.4a 6.4a 41.5a 41.8a 4713.5a 4822.3a
F3 6.1b 6.3b 6.5a 6.4a 41.6a 41.7a 4593.7b 4617.9b
方差分析 ANOVA
W ** ** ** ** ** ** ** **
F ** ** ** ** ns ns ** **
W×F ** ** ** ** ns ns ** **
[1] 冯克云, 王宁, 南宏宇. 甘肃河西棉花全生育期不同灌溉量对生长发育的影响及抗旱性评价. 干旱地区农业研究, 2015, 33(5): 140-146. doi: 10.7606/j.issn.1000-7601.2015.05.26.
doi: 10.7606/j.issn.1000-7601.2015.05.26
FENG K Y, WANG N, NAN H Y. Effects of different irrigation volumes during the entire growth period on development of cotton in Hexi area of Gansu and evaluation of its drought resistance. Agricultural Research in the Arid Areas, 2015, 33(5): 140-146. doi: 10.7606/j.issn.1000-7601.2015.05.26. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2015.05.26
[2] 马忠明, 王平, 陈娟, 包兴国. 适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益. 植物营养与肥料学报, 2016, 22(5): 1298-1309. doi: 10.11674/zwyf.15346.
doi: 10.11674/zwyf.15346
MA Z M, WANG P, CHEN J, BAO X G. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in He-xi Oasis of Gansu Province. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1298-1309. (in Chinese)
doi: 10.11674/zwyf.15346
[3] 冯克云, 张秉贤, 南宏宇. 河西内陆灌区不同灌水施氮水平对棉花产量构成的影响. 干旱地区农业研究, 2011, 29(6): 49-53.
FENG K Y, ZHANG B X, NAN H Y. Effect of different water and nitrogen supply on yield and its components of cotton in inland irrigation district of Hexi in Gansu. Agricultural Research in the Arid Areas, 2011, 29(6): 49-53. (in Chinese)
[4] 吕凤莲, 侯苗苗, 张弘弢, 强久次仁, 周应田, 路国艳, 赵秉强, 杨学云, 张树兰. 土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究. 植物营养与肥料学报, 2018, 24(1): 22-32.
LÜ F L, HOU M M, ZHANG H T, QIANG J, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 22-32. (in Chinese)
[5] 侯俊, 王帅, 崔士通, 王会刚, 张卫峰. 沙土地有机肥替代化肥与灌溉优化在苜蓿上的耦合效应研究. 中国土壤与肥料, 2018(6): 104-111. doi: 10.11838/sfsc.20180615.
doi: 10.11838/sfsc.20180615
HOU J, WANG S, CUI S T, WANG H G, ZHANG W F. The coupling effect on alfalfa from integrated improvement of replacing chemical with organic fertilization and optimized irrigation on sandy soil. Soils and Fertilizers Sciences in China, 2018(6): 104-111. doi: 10.11838/sfsc.20180615. (in Chinese)
doi: 10.11838/sfsc.20180615
[6] 张国娟, 濮晓珍, 张鹏鹏, 张旺锋. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响. 中国农业科学, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020.
doi: 10.3864/j.issn.0578-1752.2017.13.020
ZHANG G J, PU X Z, ZHANG P P, ZHANG W F. Effects of stubble returning to soil and fertilization on soil nitrogen availability and root biomass of cotton in arid region. Scientia Agricultura Sinica, 2017, 50(13): 2624-2634. doi: 10.3864/j.issn.0578-1752.2017.13.020. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.020
[26] PANG C H, ZHANG Z W, ZHANG Y Q. Effects of water and phosphorus coupling on root growth, biomass allocation and yield of quinoa. Scientia Agricultura Sinica, 2017, 50(21): 4107-4117. doi: 10.3864/j.issn.0578-1752.2017.21.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.21.005
[27] BENGOUGH A G, MCKENZIE B M, HALLETT P D, VALENTINE T A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 2011, 62(1): 59-68. doi: 10.1093/jxb/erq350.
doi: 10.1093/jxb/erq350
[7] 宿顺顺, 冯浩, 吴淑芳, 胡亚瑾, 陈光杰, 陈霁菲. 亏缺灌溉与有机肥结合对夏玉米水分及产量影响. 水土保持学报, 2020, 34(2): 165-172. doi: 10.13870/j.cnki.stbcxb.2020.02.024.
doi: 10.13870/j.cnki.stbcxb.2020.02.024
SU S S, FENG H, WU S F, HU Y J, CHEN G J, CHEN J F. Effect of deficit irrigation combined with organic fertilizer on water content and yield of summer maize. Journal of Soil and Water Conservation, 2020, 34(2): 165-172. doi: 10.13870/j.cnki.stbcxb.2020.02.024. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2020.02.024
[8] 张永清, 苗果园. 水分胁迫条件下有机肥对小麦根苗生长的影响. 作物学报, 2006, 32(6): 811-816. doi: 10.3321/j.issn:0496-3490.2006.06.004.
doi: 10.3321/j.issn:0496-3490.2006.06.004
ZHANG Y Q, MIAO G Y. Effects of manure on root and shoot growth of winter wheat under water stress. Acta Agronomica Sinica, 2006, 32(6): 811-816. doi: 10.3321/j.issn:0496-3490.2006.06.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.06.004
[9] XU C L, TAO H B, TIAN B J, GAO Y B, REN J H, WANG P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Research, 2016, 196: 268-275. doi: 10.1016/j.fcr.2016.07.009.
doi: 10.1016/j.fcr.2016.07.009
[10] SHARP R E, HSIAO T C, SILK W K. Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology, 1990, 93(4): 1337-1346. doi: 10.1104/pp.93.4.1337.
doi: 10.1104/pp.93.4.1337
[11] 邓忠, 翟国亮, 宗洁, 吕谋超, 李迎, 冯俊杰, 蔡九茂, 张文正. 干旱区水氮调控对棉花根、冠生长特性及产量的影响. 中国土壤与肥料, 2015(6): 57-64. doi: 10.11838/sfsc.20150609.
doi: 10.11838/sfsc.20150609
DENG Z, ZHAI G L, ZONG J, LÜ M C, LI Y, FENG J J, CAI J M, ZHANG W Z. Effects of water and nitrogen regulation on root and shoot growth characteristics and yield of cotton in arid area. Soils and Fertilizers Sciences in China, 2015(6): 57-64. doi: 10.11838/sfsc.20150609. (in Chinese)
doi: 10.11838/sfsc.20150609
[12] 王宁, 李继光, 娄翼来, 王义东, 李忠芳, 宋吉青, 张晓军. 作物根系形态对施肥措施的响应. 中国农学通报, 2020, 36(3): 53-58.
WANG N, LI J G, LOU Y L, WANG Y D, LI Z F, SONG J Q, ZHANG X J. Response of crop root morphology to fertilization measures. Chinese Agricultural Science Bulletin, 2020, 36(3): 53-58. (in Chinese)
[13] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
doi: 10.3864/j.issn.0578-1752.2019.01.004
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.004
[14] 王秀波, 上官周平. 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控. 麦类作物学报, 2017, 37(6): 820-827. doi: 10.7606/j.issn.1009-1041.2017.06.014.
doi: 10.7606/j.issn.1009-1041.2017.06.014
WANG X B, SHANGGUAN Z P. Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress. Journal of Triticeae Crops, 2017, 37(6): 820-827. doi: 10.7606/j.issn.1009-1041.2017.06.014. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2017.06.014
[15] 谢志良, 田长彦, 卞卫国. 膜下滴灌水氮对棉花根系构型的影响. 棉花学报, 2009, 21(6): 508-514.
XIE Z L, TIAN C Y, BIAN W G. Effects of water and nitrogen on cotton root architecture under film drip irrigation. Cotton Science, 2009, 21(6): 508-514. (in Chinese)
[16] 余炳凤, 王海江, 侯振安, 温鹏飞, 张强, 朱鹏, 吕新. 膜下滴灌水氮对不同生育期棉花根系与产量影响. 石河子大学学报(自然科学版), 2015, 33(3): 265-269. doi: 10.13880/j.cnki.65-1174/n.2015.03.001.
doi: 10.13880/j.cnki.65-1174/n.2015.03.001
YU B F, WANG H J, HOU Z N, WEN P F, ZHANG Q, ZHU P, LÜ X. Effect of water-nitrogen on cotton yield and root characteristics in different growth stage under mulching drip irrigation. Journal of Shihezi University (Natural Science), 2015, 33(3): 265-269. doi: 10.13880/j.cnki.65-1174/n.2015.03.001. (in Chinese)
doi: 10.13880/j.cnki.65-1174/n.2015.03.001
[17] 李文昊, 王振华, 朱延凯, 马东青. 水氮调控对轻度盐化土滴灌棉花根系生长的影响. 干旱地区农业研究, 2019, 37(6): 207-213. doi: 10.7606/j.issn.1000-7601.2019.06.30.
doi: 10.7606/j.issn.1000-7601.2019.06.30
LI W H, WANG Z H, ZHU Y K, MA D Q. Effects of water and nitrogen fertilization on root growth of cotton under drip irrigation in mildly salinized soil. Agricultural Research in the Arid Areas, 2019, 37(6): 207-213. doi: 10.7606/j.issn.1000-7601.2019.06.30. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2019.06.30
[18] LI R, TAO R, LING N, CHU G X. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: implications for soil biological quality. Soil and Tillage Research, 2017, 167: 30-38. doi: 10.1016/j.still.2016.11.001.
doi: 10.1016/j.still.2016.11.001
[19] 路文涛, 贾志宽, 张鹏, 蔡太义, 李儒, 侯贤清, 杨保平, 李永平. 宁南旱区有机培肥对冬小麦光合特性和水分利用效率的影响. 植物营养与肥料学报, 2011, 17(5): 1066-1074.
LU W T, JIA Z K, ZHANG P, CAI T Y, LI R, HOU X Q, YANG B P, LI Y P. Effects of organic fertilization on winter wheat photosynthetic characteristics and water use efficiency in semi-arid areas of southern Ningxia. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1066-1074. (in Chinese)
[20] 杨清龙, 刘鹏, 董树亭, 张吉旺, 赵斌, 李荣发, 任昊, 任寒, 韩祥飞. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响. 中国农业科学, 2018, 51(13): 2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004.
doi: 10.3864/j.issn.0578-1752.2018.13.004
YANG Q L, LIU P, DONG S T, ZHANG J W, ZHAO B, LI R F, REN H, REN H, HAN X F. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.004
[21] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47(1): 125-137. doi: 10.3724/SP.J.1006.2021.04077.
doi: 10.3724/SP.J.1006.2021.04077
FENG K Y, WANG N, NAN H Y, GAO J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agronomica Sinica, 2021, 47(1): 125-137. doi: 10.3724/SP.J.1006.2021.04077. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04077
[22] KUCHENBUCH R O, GERKE H H, BUCZKO U. Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant and Soil, 2009, 315(1/2): 297-314. doi: 10.1007/s11104-008-9752-8.
doi: 10.1007/s11104-008-9752-8
[23] 张志良. 植物生理学实验指导. 2版. 北京: 高等教育出版社, 1990.
ZHANG Z L. Experimental Guide for Plant Physiology. 2nd ed. Beijing: Higher Education Press, 1990. (in Chinese)
[24] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 36-46. doi: 10.3864/j.issn.0578-1752.2011.01.005.
doi: 10.3864/j.issn.0578-1752.2011.01.005
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36-46. doi: 10.3864/j.issn.0578-1752.2011.01.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.01.005
[25] 刘世全, 曹红霞, 张建青, 胡笑涛. 不同水氮供应对小南瓜根系生长、产量和水氮利用效率的影响. 中国农业科学, 2014, 47(7): 1362-1371. doi: 10.3864/j.issn.0578-1752.2014.07.013.
doi: 10.3864/j.issn.0578-1752.2014.07.013
LIU S Q, CAO H X, ZHANG J Q, HU X T. Effects of different water and nitrogen supplies on root growth, yield and water and nitrogen use efficiency of small pumpkin. Scientia Agricultura Sinica, 2014, 47(7): 1362-1371. doi: 10.3864/j.issn.0578-1752.2014.07.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.07.013
[26] 庞春花, 张紫薇, 张永清. 水磷耦合对藜麦根系生长、生物量积累及产量的影响. 中国农业科学, 2017, 50(21): 4107-4117. doi: 10.3864/j.issn.0578-1752.2017.21.005.
doi: 10.3864/j.issn.0578-1752.2017.21.005
[28] 郑福丽, 刘苹, 李国生, 张柏松, 李燕, 魏建林, 谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应. 中国农业科学, 2020, 53(21): 4355-4364. doi: 10.3864/j.issn.0578-1752.2020.21.005.
doi: 10.3864/j.issn.0578-1752.2020.21.005
ZHENG F L, LIU P, LI G S, ZHANG B S, LI Y, WEI J L, TAN D S. Organic-inorganic coordinated regulation to wheat-maize double crop yield and soil fertility. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364. doi: 10.3864/j.issn.0578-1752.2020.21.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.21.005
[29] 李絮花, 杨守祥, 于振文, 余松烈. 有机肥对小麦根系生长及根系衰老进程的影响. 植物营养与肥料学报, 2005, 11(4): 467-472. doi: 10.3321/j.issn:1008-505X.2005.04.007.
doi: 10.3321/j.issn:1008-505X.2005.04.007
LI X H, YANG S X, YU Z W, YU S L. Effects of organic manure application on growth and senescence of root in winter wheat. Plant Nutrition and Fertilizer Science, 2005, 11(4): 467-472. doi: 10.3321/j.issn:1008-505X.2005.04.007. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2005.04.007
[30] 陈伟, 周波, 束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学, 2013, 46(18): 3850-3856. doi: 10.3864/j.issn.0578-1752.2013.18.014.
doi: 10.3864/j.issn.0578-1752.2013.18.014
CHEN W, ZHOU B, SHU H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis rehd. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856. doi: 10.3864/j.issn.0578-1752.2013.18.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.18.014
[31] 王兴龙, 朱敏, 杨帆, 豆攀, 张嘉莉, 马晓君, 袁继超, 孔凡磊. 配施有机肥减氮对川中丘区土壤微生物量与酶活性的影响. 水土保持学报, 2017, 31(3): 271-276. doi: 10.13870/j.cnki.stbcxb.2017.03.045.
doi: 10.13870/j.cnki.stbcxb.2017.03.045
WANG X L, ZHU M, YANG F, DOU P, ZHANG J L, MA X J, YUAN J C, KONG F L. Effects of reducing nitrogen and applying organic fertilizers on soil microbial biomass carbon and enzyme activity in the hilly area of central Sichuan Basin. Journal of Soil and Water Conservation, 2017, 31(3): 271-276. doi: 10.13870/j.cnki.stbcxb.2017.03.045. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2017.03.045
[32] LYNCH J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13. doi: 10.1104/pp.109.1.7.
doi: 10.1104/pp.109.1.7
[33] 张合理, 罗宏海, 李璐, 张亚黎, 张旺锋. 膜下滴灌高产棉花根、冠生物量累积特性研究. 棉花学报, 2015, 27(5): 427-434. doi: 10.11963/issn.1002-7807.201505006.
doi: 10.11963/issn.1002-7807.201505006
ZHANG H L, LUO H H, LI L, ZHANG Y L, ZHANG W F. Characteristics of root and shoot biomass accumulation in high-yield cotton fields with mulch-drip irrigation. Cotton Science, 2015, 27(5): 427-434. doi: 10.11963/issn.1002-7807.201505006. (in Chinese)
doi: 10.11963/issn.1002-7807.201505006
[34] 王素芳, 薛惠云, 张志勇, 汤菊香. 棉花根系生长与叶片衰老的协调性. 作物学报, 2020, 46(1): 93-101. doi: 10.3724/SP.J.1006.2020.94043.
doi: 10.3724/SP.J.1006.2020.94043
WANG S F, XUE H Y, ZHANG Z Y, TANG J X. Coordination of root growth and leaf senescence in cotton. Acta Agronomica Sinica, 2020, 46(1): 93-101. doi: 10.3724/SP.J.1006.2020.94043. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94043
[35] 王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46(19): 4007-4017.
WANG F F, ZHANG S P, SHAO L J, LI G, CHEN X L, LIU P, ZHAO B Q, DONG S T, ZHANG J W, ZHAO B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Scientia Agricultura Sinica, 2013, 46(19): 4007-4017. (in Chinese)
[36] WALECKA-HUTCHISON C M, WALWORTH J L. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel. Biodegradation, 2007, 18(2): 133-144. doi: 10.1007/s10532-006-9049-7.
doi: 10.1007/s10532-006-9049-7
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[6] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!