Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2013-2025.doi: 10.3864/j.issn.0578-1752.2022.10.011

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits

HAN Xiao(),YANG HangYu,CHEN WeiKai,WANG Jun,HE Fei()   

  1. Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University/Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083
  • Received:2021-09-07 Accepted:2021-12-31 Online:2022-05-16 Published:2022-06-02
  • Contact: Fei HE E-mail:hanxiaoke55@126.com;wheyfey@cau.edu.cn

Abstract:

【Objective】Flavonoids are important metabolites of wine grapes, which have important effects on the qualities of the grape fruits and their wines. In this study, the effects of different rootstocks on the physicochemical parameters and flavonoid substances of Tannat (Vitis vinifera L.) grapes were studied to provide the theoretical basis for the selection and utilization of rootstocks.【Method】In the present research, Tannat shoots were used as scions and were greenwood grafted on four different kinds of rootstocks, including 1103P, 101-14, SO4, and Beta. On the bases of the analysis of the basic physicochemical parameters (total soluble solid content, titratable acid, pH, and 100-berry weights) of the commercial mature grape berries of these grapevines grafted on different rootstocks, the compositions and contents of the flavonoids in the corresponding grape berries were detected by using high performance liquid chromatography-mass spectrometry (HPLC-MS), in the three vintages of 2016, 2017 and 2019.【Result】 The rootstocks had little effect on the 100-berry weights of the Tannat grapes; the contents of the total soluble solids were higher in the combination of Tannat/101-14, as well as the own-rooted Tannat; the titratable acids of the grape juice of the Tannat/101-14 and the Tannat/Beta combinations were higher than the own-rooted Tannat grapes. In the part of flavonoids, the contents of anthocyanins and flavonols in the Tannat/SO4 combination was the lowest in all of these combinations; the concentrations of anthocyanins and flavonols in the Tannat/101-14 combination and the own-rooted Tannat were higher than those of other combinations; the concentrations of flavanols in the skins of the Tannat/101-14 combination was higher. In addition, the concentrations of anthocyanins and flavonols in the Tannat/ 11103P combination was lower, but the content of flavanols in the skins of the Tannat/1103P combination was relatively high. Besides, the results of two-factor ANOVA of the year and the rootstock showed that the rootstocks had significant effects on all types of anthocyanins. All the four rootstocks showed a tendency of reducing the anthocyanins of peonidin, petunitin, malvidin, non-acylation, acetylation and coumaric acylation. In the mature fruits, the quercetins were the most abundant flavonols, followed by myricetins, while syringetins and laricitrins accounted for a smaller proportion. Rootstocks had a significant effect on the myricetins and laricitrins, which reduced the contents of myricetin and laricitrin to different degrees. Through the establishment of OPLS-DA (Orthogonal Partial Least Squares Discrimination Analysis) model, it was found that the Tannat/101-14 combination was mainly distinguished by the malvidin anthocyanin compared with the own-rooted grapes. The main difference compounds of Tannat/Beta combination were anthocyanins of malvidin, delphinidin and acetylation, the total flavanols and quercetin compounds. The difference compounds of the Tannat/SO4 combination were anthocyanins of malvidin, delphinidin, acetylation, and quercetins. The Tannat/1103P combination mainly consisted of acetylated anthocyanins and quercetins.【Conclusion】 In Beijing region, all the four rootstocks (1103P, SO4, Beta, and 101-14) showed a tendency of reducing the flavonoid concentrations, including anthocyanins of peonidin, petunitin, malvidin, non-acylation, acetylation, coumaric acylation quercetins, and laricitrins. The rootstock '101-14' was beneficial to the accumulation of anthocyanins, flavonols and flavanols in fruit skins, which was conducive to the improvement of the wine quality, so it was recommended to be used. However, Tannat grapes grafted with SO4 had less flavonoid accumulation, which was not recommended to be used.

Key words: wine grape, Tannat, rootstock, flavonoid, high-performance liquid chromatography-mass spectrometry (HPLC-MS)

Fig. 1

Meteorological data"

Table 1

The physico-chemical parameters in Tannat grape fruits of different rootstock combinations"

砧穗组合
Rootstock combination
年份
Vintage
T T/101-14 T/1103P T/Beta T/SO4
百粒重
100-berries weight (g)
2016 180.99±17.99a 180.07±21.08a 206.68±16.30a 171.37±7.80a 208.68±20.27a
2017 179.90±1.73a 177.68±9.11a 165.63±3.12ab 159.25±1.19bc 174.92±2.30ab
2019 187.97±5.23a 186.7±6.77a 174.71±3.38b 175.73±4.36b NA
可溶性固形物
Total soluble solids (°Brix)
2016 20.43±0.25a 19.93±0.60ab 18.32±1.21b 19.90±0.57ab 17.67±1.36b
2017 17.05±0.07b 18.30±0.14a 16.75±0.07b 14.65±0.07c 17.15±0.07b
2019 22.1±0.26a 22±0.1a 20.07±0.21b 19.4±0.1c NA
pH 2016 3.17±0.03ab 3.23±0.05ab 3.12±0.07b 3.27±0.11a 3.12±0.09b
2017 2.94±0.01b 3.07±0.01a 2.95±0.01b 2.87±0.20c 2.92±0.02dc
2019 3.26±0.03b 3.26±0.06b 3.41±0.04a 2.93±0.1c NA
可滴定酸
Titratableacid (g∙L-1)
2016 9.63±1.63ab 9.13±1.61b 9.07±0.72ab 9.62±0.42ab 10.07±0.75ab
2017 7.27±0.07b 8.52±0.55a 8.66±0.35a 8.44±0.04a 8.14±0.07ab
2019 7.6±0.37c 9.87±0.56b 8.15±0.2c 11.47±0.26a NA

Table 2

Anthocyanin compositions and contents (mg∙kg-1 FW) in Tannat grape of different rootstock combinations"

砧穗组合
Rootstock combination
年份
Vintage
非酰化
Non-acylation
乙酰化
Acetylation
香豆酰化
Coumaric acylation
咖啡酰化
Coffee acylation
甲基花青素类
Peonidins
甲基花翠素类
Petunitins
二甲花翠素类
Malvidins
花青素类
Cyanidins
花翠素类
Delphinidins
总花色苷
Total anthocyanins
T 2016 567.12±139.77a 226.47±51.21a 235.9±34.35bc 1.39±0.38b 87.04±29.02ab 200.43±48.12a 641.07±104.17a 32.86±14.82ab 69.48±25.45ab 1030.87±216.9a
2017 744.74±36.87a 358.3±10.43a 502.04±3.38a 7.77±0.14a 238.58±7.59a 106.67±2.18a 1050.69±26.49a 151.62±2.5a 65.28±3.81a 1612.85±46.94a
2019 981.51±54.3a 346.17±4.59a 346.83±15.31a 4.67±0.17a 229.49±6.21a 218.40±18.91a 1086.04±30a 39.95±1.38a 105.3±9.58a 1679.19±60.84a
T/101-14 2016 382.79±139.68ab 185.84±43.46ab 225.76±64.57bc 1.31±0.48b 71.89±36.35b 112.61±23.33c 535.12±162.66ab 30.48±11.95ab 45.6±13.15bcd 795.69±245.93ab
2017 650.91±46.56b 347.08±29.75a 408.52±14.47b 8.06±0.19a 230.26±2.34a 104.25±13.05a 863.18±50.28b 142.86±14.03a 74.04±11.29a 1414.57±128.66ab
2019 763.85±21.62b 289.28±8.46b 240.05±12.72b 4.53±0.25a 187.63±3.89b 186.13±17.55b 791.98±17.53c 35.07±1.19b 96.89±5.77a 1297.72±41.12b
T/1103P 2016 414.15±87.4ab 199.18±26.56ab 322.87±40.13a 2.29±0.27a 70.65±14.82b 134.30±39.18bc 668.78±67.63a 27.43±3.74ab 37.33±9.14cd 938.49±116.35ab
2017 488.72±13.71cd 268.82±10.32bc 329.47±25.82c 4.58±0.91b 152.45±14.86b 86.18±1.2b 697.44±20.56cd 105.19±5.95b 50.33±0.58b 1091.59±57.64c
2019 748.87±11.12b 240.79±3.92d 327.25±3.56a 3.92±0.07b 195.68±4.59b 149.59±3.9c 899.87±0.99b 22.12±2.64c 53.58±0.41c 1320.84±5.81b
T/Beta 2016 500.06±27.41ab 242.14±3.8a 268.68±9.5ab 1.51±0.07b 85.88±2.82ab 186.78±7.08ab 654.81±25.5a 24.71±0.38ab 60.21±1.42abc 1012.40±36.82a
2017 433.32±51.44de 223.84±33.39d 305.85±42.22c 4.43±1.02b 116.11±17.34cd 60.01±5.99d 679.16±91.75cd 79.94±4.31c 32.24±9.68c 967.44±182.54c
2019 736.9±49.46b 271.7±13.42c 272.86±49.41b 3.83±0.25b 178.17±15.64b 158.60±10.16c 859.6±69.26bc 23.49±2.49c 65.43±2.14b 1285.29±98.21b
T/SO4 2016 304.25±93.14b 134.6±53.44b 179.64±53.49c 1.08±0.45b 54.39±20.36b 106.37±31.17c 407.89±128.36b 16.5±5.14b 34.42±15.66d 619.57±199.89b
2017 365.24±36.5e 233.93±32.01cd 304.02±38.52c 2.85±0.45b 94.78±16.91d 71.22±5.91cd 633.98±77.88d 72.86±6.94c 33.2±0.16c 906.03±152c
2019 NA NA NA NA NA NA NA NA NA NA
年份 Vintages ns *** *** *** ns *** *** *** *** **
砧木 Rootstock ** * ** *** ** *** * *** ** **
年份×砧木
Vintages × Rootstock
* * ** *** ** *** * *** ns *

Table 3

Flavonol compositions and concentrations (mg∙kg-1 FW) in Tannat grape of different rootstock combinations"

砧穗组合
Rootstock combination
年份
Vintage
杨梅酮类
Myricetins
山奈酚类
Kaempferols
槲皮素类
Quercetins
西伯利亚落叶松黄酮
Laricitrins
丁香亭类
Syringetins
异鼠李素
Isorhamnetins
总黄酮醇
Total flavonol concentrations
T 2016 14.37±3.69ab 6.12±0.98b 78.08±10.65ab 7.17±0.82b 7.42±0.54ab 3.08±0.8bcd 116.24±14.77ab
2017 25±1.62a 15.82±1.12a 90.41±4.00a 8.49±0.22abc 9.28±1.06a 4.23±0.67a 152.06±10.01a
2019 22.37±1.03a 5.66±1.78a 105.79±4.83a 5.49±0.48a 1.44±0.04a 16.92±0.34b 157.66±5.85a
T/101-14 2016 13.72±5.02ab 8.25±2.67ab 67.32±28.75ab 8.51±1.94ab 9.84±2.98ab 2.51±0.54cd 110.15±40.6ab
2017 21.25±0.88b 14.04±0.95a 75.08±1.51b 8.26±0.16abc 8.17±0.04ab 4.18±0.20a 131.51±4.53ab
2019 23.38±0.15a 5.16±0.20a 105.4±1.01a 5.08±0.3ab 1.24±0.08b 20.46±0.55a 160.71±0.27a
T/1103P 2016 13.94±2.45ab 8.72±1.00ab 68.88±13.68ab 8.69±1.02ab 11.46±2.42a 2.12±0.61d 113.81±15.92ab
2017 15.04±1.04c 8.91±0.69b 59.95±3.71c 7.61±0.25bc 8.24±0.16ab 3.93±0.11ab 102.78±7.66cd
2019 17.07±0.42b 6±0.32a 93.14±2.62b 4.61±0.23bc 1.16±0.04bc 14.73±0.05d 136.71±2.29b
T/Beta 2016 15.61±0.83ab 10.28±0.26ab 81.42±1.82a 10.96±0.63a 10.79±1.07a 4±0.32ab 133.07±2.02a
2017 10.99±0.30e 6.81±0.30c 58.57±3.34c 7.34±0.55c 8.91±0.58a 2.93±0.15c 96.38±7.09cd
2019 16.41±2.88b 4.48±0.24a 71.42±7.14c 4.23±0.41c 1.07±0.06c 15.63±0.56c 113.23±11.16c
T/SO4 2016 10.83±5.76b 6.59±3.31b 47.94±11.96b 5.871.72b 7.82.01ab 2.06±0.81d 81.11±25.12b
2017 12.13±1.54de 9.41±1.64b 46.41±5.91d 7.19±0.92c 8.44±1.6ab 3.49±0.27b 85.17±16.14d
2019 NA NA NA NA NA NA NA
年份 Vintage ns ns ** *** ns ns ns
砧木 Rootstock ns * ** ** ns ns ns
年份×砧木
Vintages × Rootstocks
** ns ** ** ns * ns

Table 4

Flavanol compositions and contents in Tannat grapes of different rootstock combinations (mg∙kg-1 FW)"

砧穗组合
Rootstock combination
年份
Vintage
游离单元
Free unit (%)
延伸单元
Extension unit (%)
末端单元
End unit (%)
总含量
Total content
T 2016 0.33±0.06ab 97.64±0.18a 2.03±0.15b 2407.87±737.78ab
2017 0.41±0.07a 95.23±0.97b 2.18±0.45a 1739.7±537.72a
2019 0.35±0.08ab 96.21±0.34a 3.07±0.52a 3105.94±526.06a
T/101-14 2016 0.28±0.05b 97.59±0.23a 2.13±0.28b 3133.13±284.96a
2017 0.3±0.09bc 96.56±0.16a 1.58±0.12b 2039.73±431.15a
2019 0.4±0.04a 96.09±0.04a 3.37±0.25a 2992.87±254.77a
T/1103P 2016 0.3±0.05ab 94.8±2.34ab 4.9±2.39a 1723.59±612.61b
2017 0.25±0.01bcd 95.81±0.19ab 1.97±0.09ab 2033.97±129.38a
2019 0.19±0.07b 96.45±0.06a 3.21±0.09a 2944.9±61.53a
T/Beta 2016 0.35±0.06ab 97.57±0.30a 2.08±0.24b 2131.93±112.34ab
2017 0.33±0.06ab 94.97±0.79b 2.35±0.36a 1901.87±211.11a
2019 0.4±0.14a 95.65±0.15b 3.53±0.16a 3411.52±43.98a
T/SO4 2016 0.35±0.14ab 97.26±0.35a 2.4±0.41b 2308.82±116.85ab
2017 0.31±0.07abc 95.56±0.43ab 2.06±0.24ab 1729.58±619.48a
2019 NA NA NA NA
年份 Vintage *** ** * *
砧木 Rootstock *** ns ns ns
年份×砧木 Vintage × Rootstock * ns ns ns

Fig. 2

OPLS-DA distribution of flavonoids in Tannat grapes of different rootstock combinations A-D represent OPLS-DA distribution in T&101-14, T&1103P, T&Beta, T&SO4 OPLS-DA, resepectively"

Table 5

Parameters of OPLS-DA models based on concentrations of flavonoids"

比较组
Comparison
成分
Component
R2X R2Y Q2Y 200次置换检验 Permutation tests (200 times)
R2Y intercept Q2Y intercept
T vs T/Beta 1+6 0.999 0.958 0.656 0.633 -1.75
T vs T/SO4 1+4 0.995 0.989 0.901 0.733 -1.73
T vs T/1103P 1+5 0.997 0.966 0.761 0.467 -1.44
T vs T/101-14 1+5 0.998 0.929 0.659 0.623 -1.34
[1] BASHIR S, KAUR N, ARORA N K. Dynamics of partitioning of major sugars, total phenols and flavonoids in the juice of seven wine grape (Vitis spp.) cultivars during different stages of berry development. Plant Physiology Reports, 2019, 24(1): 112-118. doi: 10.1007/s40502-018-0409-1.
doi: 10.1007/s40502-018-0409-1
[2] GOUOT J C, SMITH J P, HOLZAPFEL B P, WALKER A R, CELIA B. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 2018, 70(2): 397-423.
doi: 10.1093/jxb/ery392
[3] TANAKA T, IUCHI A, HARADA H, HASHIMOTO S. Potential beneficial effects of wine flavonoids on allergic diseases. Diseases, 2019, 7(1): 8-8. doi: 10.3390/diseases7010008.
doi: 10.3390/diseases7010008
[4] GEORGIEV V, ANANGA A, TSOLOVA V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 2014, 6(1): 391-415. doi: 10.3390/nu6010391.
doi: 10.3390/nu6010391
[5] 张欣珂, 赵旭, 成池芳, 齐梦瑶, 石英. 葡萄酒中的酚类物质I: 种类、结构及其检测方法研究进展. 食品科学, 2019, 40(15): 255-268. doi: 10.7506/spkx1002-6630-20180916-159.
doi: 10.7506/spkx1002-6630-20180916-159
ZHANG X K, ZHAO X, CHENG C F, QI M Y, SHI Y. Phenolics in wines I: A review of categories, structures and detection methods. Food Science, 2019, 40(15): 255-268. doi: 10.7506/spkx1002-6630-20180916-159. (in Chinese)
doi: 10.7506/spkx1002-6630-20180916-159
[6] SOMKUWAR R G, BHANGE M A, OULKAR D P, SHARMA A K, AHAMMED SHABEER T P. Estimation of polyphenols by using HPLC-DAD in red and white wine grape varieties grown under tropical conditions of India. Journal of Food Science and Technology, 2018, 55(12): 4994-5002. doi: 10.1007/s13197-018-3438-x.
doi: 10.1007/s13197-018-3438-x
[7] YUE Q Y, XU L L, XIANG G G, YU X, YAO Y X. Characterization of gene expression profile, phenolic composition, and antioxidant capacity in red-fleshed grape berries and their wines. Journal of Agricultural and Food Chemistry, 2018, 66(27): 7190-7199.
doi: 10.1021/acs.jafc.8b01323
[8] MELNYK C W, MEYEROWITZ E M. Plant grafting. Current Biology, 2015, 25(5): 183-188.
[9] CARRASCO-QUIROZ M, MARTÍNEZ-GIL A M, GUTIÉRREZ-GAMBOA G, Y MORENO-SIMUNOVI C. Effect of rootstocks on volatile composition of Merlot wines. Journal of the Science of Food and Agriculture, 2020, 100(8): 3517-3524. doi: 10.1002/jsfa.10395.
doi: 10.1002/jsfa.10395
[10] SAVOI S, EITLE M W, BERGER H, CURTO M, MEIMBERG H, GRIESSER M, FORNECK A. Comparative transcriptome analysis of two root-feeding grape Phylloxera (D. vitifoliae) lineages feeding on a rootstock and V. vinifera. Insects, 2020, 11(10): 691.
doi: 10.3390/insects11100691
[11] BLANCQUAERT E H, OBERHOLSTER A, RICARDO-DA-SILVA J M, DELOIRE A J. Effects of abiotic factors on phenolic compounds in the grape Nerry-A review. South African Journal of Enology and Viticulture, 2019, 40(1): 1-14.
[12] 綦伟, 厉恩茂, 翟衡, 王晓芳, 杜远鹏, 谭皓. 部分根区干旱对不同砧木嫁接玛瓦斯亚葡萄生长的影响. 中国农业科学, 2007, 40(4): 794-799. doi: 10.3321/j.issn:0578-1752.2007.04.020.
doi: 10.3321/j.issn:0578-1752.2007.04.020
QI W, LI E M, ZHAI H, WANG X F, DU Y P, TAN H. Effects of partial rootzone drying on the growth of Vitis vinifera cv. malvasia grafted on varied rootstocks. Scientia Agricultura Sinica, 2007, 40(4): 794-799. doi: 10.3321/j.issn:0578-1752.2007.04.020. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.04.020
[13] WALKER R R, BLACKMORE D H, CLINGELEFFER P R, HOLT H, PEARSON W, FRANCIS I L. Effect of rootstock on yield, grape composition and wine sensory attributes of Shiraz grown in a moderately saline environment. Australian Journal of Grape and Wine Research, 2019, 25(4): 414-429. doi: 10.1111/ajgw.12409.
doi: 10.1111/ajgw.12409
[14] SUAREZ D L, CELIS N, ANDERSON R G, SANDHU D. Grape rootstock response to salinity, water and combined salinity and water stresses. Agronomy, 2019, 9(6): 321. doi: 10.3390/agronomy9060321.
doi: 10.3390/agronomy9060321
[15] GUTIÉRREZ-GAMBOA G, CARRASCO-QUIROZ M, MARTÍNEZ- GIL A M, PÉREZ-ÁLVAREZ E P, GARDE-CERDÁN T, MORENO-SIMUNOVIC Y. Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock. Food Research International, 2018, 105: 344-352. doi: 10.1016/j.foodres.2017.11.021.
doi: 10.1016/j.foodres.2017.11.021
[16] 崔鹏飞, 魏灵珠, 程建徽, 向江, 李明山, 吴江. 不同砧木对天工翠玉葡萄生长和果实品质的影响. 浙江农业学报, 2021, 33(1): 52-61. doi: 10.3969/j.issn.1004-1524.2021.01.07.
doi: 10.3969/j.issn.1004-1524.2021.01.07
CUI P F, WEI L Z, CHENG J H, XIANG J, LI M S, WU J. Effects of different rootstocks on growth and fruit quality of Tiangong Cuiyu grape. Acta Agriculturae Zhejiangensis, 2021, 33(1): 52-61. doi: 10.3969/j.issn.1004-1524.2021.01.07. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2021.01.07
[17] 白世践, 户金鸽, 蔡军社, 赵荣华, 陈光. 砧木对极端干旱区马瑟兰葡萄光合及酿酒特性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(3): 129-137. doi: 10.13207/j.cnki.jnwafu.2021.03.015.
doi: 10.13207/j.cnki.jnwafu.2021.03.015
BAI S J, HU J G, CAI J S, ZHAO R H, CHEN G. Effects of rootstocks on photosynthesis and vinification characteristics of Marselan grape in extreme arid region. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(3): 129-137. doi: 10.13207/j.cnki.jnwafu.2021.03.015. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2021.03.015
[18] 韩晓, 王海波, 王孝娣, 冀晓昊, 史祥宾, 王宝亮, 郑晓翠, 王志强, 刘凤之. 不同砧木对‘87-1’葡萄光合特性及荧光特性的影响. 中国农业科学, 2018, 51(10): 1972-1981. doi: 10.3864/j.issn.0578-1752.2018.10.016.
doi: 10.3864/j.issn.0578-1752.2018.10.016
HAN X, WANG H B, WANG X D, JI X H, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z. Effects of different rootstocks on ‘87-1’ grape photosynthetic and chlorophyll fluorescence characteristics. Scientia Agricultura Sinica, 2018, 51(10): 1972-1981. doi: 10.3864/j.issn.0578-1752.2018.10.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.10.016
[19] KOUNDOURAS S, HATZIDIMITRIOU E, KARAMOLEGKOU M, DIMOPOULOU E, KALLITHRAKA S, TSIALTAS J T. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. Journal of Agricultural and Food Chemistry, 2009, 57: 7805-7813.
doi: 10.1021/jf901063a
[20] JENSEN P J, MAKALOWSKA I, ALTMAN N, FAZIO G, PRAUL C, MAXIMOVA S N, CRASSWELLER R M, TRAVIS J W, MCNELLIS T W. Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics & Genomes, 2010, 6(1): 57-72. doi: 10.1007/s11295-009-0228-7.
doi: 10.1007/s11295-009-0228-7
[21] HOOVER E E, HEMSTAD P, LARSON D, MACKENZIE J, PROPSOM F. Rootstock influence on scion vigor, hardiness, yield, and fruit composition of St. Pepin grape. Acta Horticulturae, 2004, 640: 201-206.
[22] SOMKUWAR R G, SATISHA J, RAMTEKE S D, SHARMA J. Effect of rootstocks and pre-harvest treatments on storage life of Thompson seedless grapes. Acta Horticulturae, 2008, 785(785): 441-446. doi: 10.17660/actahortic.2008.785.58.
doi: 10.17660/actahortic.2008.785.58
[23] VRSIC S, PULKO B, KOCSIS L. Factors influencing grafting success and compatibility of grape rootstocks. Scientia Horticulturae, 2015, 181: 168-173.
doi: 10.1016/j.scienta.2014.10.058
[24] JIN Z X, SUN H, SUN T Y, WANG Q J, YAO Y X. Modifications of ‘Gold Finger’ grape berry quality as affected by the different rootstocks. Journal of Agricultural and Food Chemistry, 2016, 64(21): 4189-4197. doi: 10.1021/acs.jafc.6b00361.
doi: 10.1021/acs.jafc.6b00361
[25] LI M M, GUO Z J, JIA N, YUAN J W, HAN B, YIN Y G, SUN Y, LIU C J, ZHAO S J. Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines. Scientia Horticulturae, 2019, 248: 58-61. doi: 10.1016/j.scienta.2018.12.050.
doi: 10.1016/j.scienta.2018.12.050
[26] DE SOUZA LEÃO P, DE MELO CHAVES A R. Training systems and rootstocks on yield and agronomic performance of ‘Syrah’ grapevine in the Brazilian semiarid. Ciência e Agrotecnologia, 2019, 43. doi: 10.1590/1413-7054201943005719.
doi: 10.1590/1413-7054201943005719
[27] WANG Y, CHEN W K, GAO X T, HE L, YANG X H, HE F, DUAN C Q, WANG J. Rootstock-mediated effects on Cabernet Sauvignon performance: Vine growth, berry ripening, flavonoids, and aromatic profiles. International Journal of Molecular Sciences, 2019, 20(2): 401.
doi: 10.3390/ijms20020401
[28] GUTIÉRREZ-GAMBOA G, GÓMEZ-PLAZA E, BAUTISTA-ORTÍN A B, GARDE-CERDÁN T, MORENO-SIMUNOVIC Y, MARTÍNEZ- GIL A M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. Journal of the Science of Food and Agriculture, 2019, 99(6): 2846-2854.
doi: 10.1002/jsfa.9496
[29] NEDELKOVSKI D, CVETKOVIĆ J, BELESKI K, POPOSKA H. Phenolic composition of Vranec grapevine cultivar (Vitis vinifera L.) grafted on different rootstock. Bulgarian Journal of Agricultural Science, 2017, 23(3): 389-395.
[30] HARBERTSON J F, KELLER M. Rootstock effects on deficit- irrigated wine grapes in a dry climate: grape and wine composition. American journal of enology and viticulture, 2012, 63(1): 40-48.
doi: 10.5344/ajev.2011.11079
[31] DOWNEY M O, MARICA M, KRSTIC M P. Development of a stable extract for anthocyanins and flavonols from grape skin. American Journal of Enology and Viticulture, 2007, 58(3): 358-364.
[32] 胡丽, 彭文婷, 卢浩成, 王军. 不同酿酒葡萄果实类黄酮及香气物质差异分析. 食品科学, 2020, 41(14): 225-233. doi: 10.7506/spkx1002-6630-20190625-310.
doi: 10.7506/spkx1002-6630-20190625-310
HU L, PENG W T, LU H C, WANG J. Analysis on differences in flavonoids and aroma compounds of different wine grape varieties. Food Science, 2020, 41(14): 225-233. doi: 10.7506/spkx1002-6630-20190625-310. (in Chinese)
doi: 10.7506/spkx1002-6630-20190625-310
[33] 李敏敏, 袁军伟, 刘长江, 韩斌, 黄家珍, 郭紫娟, 赵胜建. 砧木对河北昌黎产区赤霞珠葡萄生长和果实品质的影响. 应用生态学报, 2016, 27(1): 59-63. doi: 10.13287/j.1001-9332.201601.003.
doi: 10.13287/j.1001-9332.201601.003
LI M M, YUAN J W, LIU C J, HAN B, HUANG J Z, GUO Z J, ZHAO S J. Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei Province, China. Chinese Journal of Applied Ecology, 2016, 27(1): 59-63. doi: 10.13287/j.1001-9332.201601.003. (in Chinese)
doi: 10.13287/j.1001-9332.201601.003
[34] 华晓雨, 陶爽, 孙盛楠, 郭娜, 阎秀峰, 蔺吉祥. 植物次生代谢产物-酚类化合物的研究进展. 生物技术通报, 2017, 33(12): 22-29. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546
HUA X Y, TAO S, SUN S N, GUO N, YAN X F, LIN J X. Research progress on phenolic compounds of plant secondary metabolites. Biotechnology Bulletin, 2017, 33(12): 22-29. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546
[35] GRASSI D, AGGIO A, ONORI L, CROCE G, TIBERTI S, FERRI C, FERRI L, DESIDERI G. Tea, flavonoids, and nitric oxide-mediated vascular reactivity. The Journal of Nutrition, 2008, 138(8): 1554-1560. doi: 10.1093/jn/138.8.1554S.
doi: 10.1093/jn/138.8.1554S
[36] HE F, MU L, YAN G L, LIANG N N, PAN Q H, WANG J, REEVES M J, DUAN C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15(12): 9057. doi: 10.3390/MOLECULES15129057.
doi: 10.3390/MOLECULES15129057
[37] SURIANO S, ALBA V, DI GENNARO D, SURIANO M S, SAVINO M, TARRICONE L. Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n.(Vitis vinifera L.). Scientia Horticulturae, 2016, 209: 309-315.
doi: 10.1016/j.scienta.2016.07.004
[38] MIJOWSKA K, OCHMIAN I, OSZMIAŃSKI J. Rootstock effects on polyphenol content in grapes of ‘Regent’cultivated under cool climate condition. Journal of Applied Botany and Food Quality, 2017, 90: 159-164.
[39] JOGAIAH S, OULKAR D P, BANERJEE K, SHARMA J, PATIL A G, MASKE S R, SOMKUWAR R G. Biochemically induced variations during some phenological stages in Thompson seedless grapevines grafted on different rootstocks. South African Journal of Enology and Viticulture, 2016, 34(1): 36-45. doi: 10.21548/34-1-1079.
doi: 10.21548/34-1-1079
[40] MARASCO R, ROLLI E, FUSI M, MICHOUD G, DAFFONCHIO D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, 6(1): 3. doi: 10.1186/s40168-017-0391-2.
doi: 10.1186/s40168-017-0391-2
[1] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[2] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[3] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[4] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[5] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
[6] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[7] MuKang LUO,XuChao JIA,RuiFen ZHANG,Lei LIU,LiHong DONG,JianWei CHI,YaJuan BAI,MingWei ZHANG. Phenolic Content, Bioavailability and Antioxidant Activity of Carambola [J]. Scientia Agricultura Sinica, 2020, 53(7): 1459-1472.
[8] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[9] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[10] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[11] LI WanPing,LIU Min,WANG JieXing,YAO Heng,CHENG ZhengLong,DOU JunXia,ZHOU XiaoMing,FANG YuLin,SUN XiangYu. Influence of Anti-transpirant on Photosynthesis Characteristic and Qualities of Wines in Hot Climate [J]. Scientia Agricultura Sinica, 2019, 52(17): 3008-3019.
[12] DONG Jun, WANG Jing, LIANG Wei, MA BaiQuan, DONG LiJuan, MA FengWang, FU XuanChang, LI CuiYing. QTL Fine Mapping and Candidate Gene Prediction for Growth     Traits in G.41×Malus sieversii [J]. Scientia Agricultura Sinica, 2018, 51(11): 2155-2163.
[13] Xiao HAN, HaiBo WANG, XiaoDi WANG, XiaoHao JI, XiangBin SHI, BaoLiang WANG, XiaoCui ZHENG, ZhiQiang WANG, FengZhi LIU. Effects of Different Rootstocks on ‘87-1’ Grape Photosynthetic and Chlorophyll Fluorescence Characteristics [J]. Scientia Agricultura Sinica, 2018, 51(10): 1972-1981.
[14] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[15] ZHANG ZhiHuan, HAN Min, ZHANG Yi, WANG Yun, LIU CanYu, CAO BiLi, XU Kun. Effect of Water Stress on Development and H2O and CO2 Exchange in Leaves of Tomato Grafted with Different Drought Resistant Rootstocks [J]. Scientia Agricultura Sinica, 2017, 50(2): 391-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!