Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3343-3354.doi: 10.3864/j.issn.0578-1752.2022.17.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field

XIA QianWei1(),CHEN Hao3,YAO YuTian4,DA Da5,CHEN Jian2,SHI ZhiQi1,2()   

  1. 1College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
    2Institute of Quality Safety and Nutrition of Agricultural Products, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    3Nanjing F-zone Biotechnology Co., Ltd, Nanjing 210014
    4Jiangsu Coast Agricultural Development Co., Ltd, Nanjing 210014
    5Nanjing New City Science Park Headquarters, Nanjing 210014
  • Received:2022-02-28 Accepted:2022-04-11 Online:2022-09-01 Published:2022-09-07
  • Contact: ZhiQi SHI;


【Objective】 In view of the fertilizer-pesticide reduction approaches in rice production, the rice good quality standard system (GQS) was developed independently in the early stage. The objective of this study is to analyze the rice yield, rice contaminant content and soil quality characteristics under GQS application, evaluate the effect of applying GQS in agricultural practices, and to provide scientific basis for the reasonable design and timely adjustment of GQS.【Method】 The fixed-point rice growing areas with continuous application of GQS for 1-5 years in Jiangsu and Shanghai were selected. The adjacent areas with conventional rice cultivation system (CCS) were taken as control. The rice samples and soil samples were collected at harvest stage for analysis. The rice yield was measured. The contents of pesticide residues and toxic heavy metals were determined by SGS. Soil fertility was evaluated by using Nemerow index method. The activity of dehydrogenase, urease, and sucrase in soil was determined by using TTC reduction method, indophenol blue colorimetric method, and 3,5-dinitrosalicylic acid colorimetric method, respectively. Soil microbial diversity was analyzed using 16S rDNA high-throughput sequencing.【Result】 Compared with the CCS, the application of nitrogen fertilizer was reduced by 46.8% in GQS with organic fertilizer, EM bacteria agent, foliar fertilizer, and zinc fertilizer as alternatives. The high safety standard of rice in GQS was ensured by using biological agents and chemical pesticides with low toxicity and low residues. Applying GQS significantly increased soil total nitrogen and organic matter content without compromised rice yield and quality. The comprehensive score of soil fertility of the GQS was higher than that of the CCS after 1-4 years of continuous implementation, but the comprehensive score of soil fertility of the GQS was lower than that of the CCS at the fifth year. Applying GQS for two consecutive years resulted in the increase of urease, dehydrogenase and sucrase activity in rice paddy soil than CCS, and it was also found that the diversity and abundance of bacterial community increased in rice paddy soil with the application of GQS. Bacteroidetes and Chloroflexi showed repeated changes in the increasing ratio of soil bacterial richness after the one-year and the five consecutive years application of GQS. Terrimonas and Flavobacterium were the dominant genera. Correlation analysis showed that the abundances of Bacteroidetes and Chloroflexi were positively correlated with soil pH fertility index and total P fertility index after one-year implementation of GQS. Soil pH fertility index was positively correlated with the abundance of Bacteroidetes and Chloroflexi, respectively, after five consecutive years implementation of GQS. In addition, soil dehydrogenase activity was positively correlated with the abundance of Bacteroidetes and Chloroflexi, respectively.【Conclusion】 The application of GQS was helpful for the restoration of rice soil fertility by effectively improving the soil quality and the diversity of soil bacterial community without compromised rice yield and safety.

Key words: good quality standard system, rice yield and quality, soil fertility, soil enzyme activity, soil microbial diversity

Table 1

Fertilizer application in conventional system and good quality standard system"

时期Stage 施用肥料量Amount of fertilizer applied (kg·hm-2)
常规体系 Conventional system 优标体系 Good quality standard system
基肥Base fertilizer
复合肥Compound fertilizer 15-15-15 600 复合肥Compound fertilizer 15-15-15 450
46%尿素Urea 225 有机肥Organic fertilizer 3000
返青肥Resume growth fertilizer
46%尿素Urea 112.5 46%尿素Urea 112.5
EM菌剂EM bacteria agent 37.5
分蘖肥Tiller fertilizer 46%尿素Urea 112.5 46%尿素Urea 75
拔节期 Jointing stage 磷酸二氢钾KH2PO4 1.5
锌肥Zinc fertilizer 2.25
Rupturing stage (Before heading stage)
磷酸二氢钾KH2PO4 1.5
齐穗期Full heading stage 46%尿素Urea 75 大量元素水溶肥Water soluble fertilizer 2.25
灌浆期Filling stage 海藻叶面肥Seaweed foliar fertilizer 3000
化学肥料总量Total chemical fertilizer N:331.5,P:90,K:90 N:176.25,P:68.18,K:68.36

Table 2

Pesticide application in conventional system and good quality standard system (a.i)"

用药量Amount of pesticides applied (/hm2)
常规体系 Conventional system 优标体系 Good quality standard system
25%咪鲜胺乳油30 mL兑水75 L,浸种45—60 kg 25% Prochloraz EC 30 mL with 75 L water, and then soaked
45-60 kg seed
25%氰烯菌酯300 mL兑水1500 L,浸种1500 kg
25% Phenamacril 300 mL with 1500 L water, and then soaked 1500 kg seed
0.136%碧护300 g兑水1500 L,浸种1500 kg
0.136% Bihu 300 g with 1500 L water, and then soaked 1500 kg seed
Jointing stage
10%阿维菌素Avermectin 75 g 40%甲氧茚虫威Methoxyfenozide-indoxacarb 300 g
35%己唑嘧菌酯Hexaconazole+Azoxystrobin 300 g 15%井冈噻呋 Validamycin-thifluzamide 750 g
70%吡虫啉Imidacloprid 75 g 20%呋虫胺Dinotefuran 300 g
Rupturing stage
2.5%溴氰菊酯Deltamethrin 450 g 5%甲维盐Emamectin benzoate 75 g
40%稻瘟灵Isoprothiolane 1125 g 2%春雷霉素Kasugamycin 1500 g
45%马拉硫磷Malathion 1500 g 50%烯啶虫胺Nitenpyram 150 g
8%井冈霉素Validamycin 1500 g 24%井冈霉素Validamycin A 600 g
Full heading stage
90%杀虫单Monosultap 900 g 3.2%苏云金杆菌Bt 1500 g
40%三环唑Tricyclazole 750 g 2%春雷霉素Kasugamycin 1500 g
50%吡蚜酮Pymetrozine 150 g
1%蛇床子素Osthole 450 g
30%苄嘧·丙草胺Benzyl pyrimethole·prochlor 1500 g+2.4%
五氟磺草胺Penoxsulam 300 g+40%氰氟草酯Cyhalofop-
butyl 300 g
30%苄嘧·丙草胺Benzyl pyrimethole·prochlor 1500 g+2.4%五氟磺草胺Penoxsulam 300 g+氰氟草酯Cyhalofop-butyl 300 g

Table 3

Sample collecting sites"

Application time
采样地区Sampling site 试验田面积
Test plot area (hm2)
1年 One year 江苏
淮安市淮阴区马头镇双闸村Shuangzha, Matou, Huaiyin, Huaian 10
2年Two years 盐城市亭湖区黄建港镇新洋港闸北Zhabei, Xinyanggang, Huangjiangang, Tinghu, Yancheng 20
3年Three years 上海
浦东新区书院镇里灶村Lizao, Shuyuan, Pudong 10
4年Four years 浦东新区书院镇李雪村Lixue, Shuyuan, Pudong 8
5年Five years 浦东新区书院镇石南村Shinan, Shuyuan, Pudong 7.33

Table 4

Grading criterion for various soil properties in the Nemerow grading method"

Soil property
Classification index of Nemorow
xa xe xp
有机质SOM (g·kg-1) 10 20 30
全氮TN (g·kg-1) 0.75 1.5 2
全磷TP (g·kg-1) 0.4 0.6 1
碱解氮AN (mg·kg-1) 60 120 18
速效磷AP (mg·kg-1) 5 10 20
速效钾AK (mg·kg-1) 50 100 200
pH≤7 4.5 5.5 6.5
pH>7 9 8 7

Fig. 1

Actual yield of rice"

Table 5

Rice safety SGS test"

检测项目Test item 限量标准Limit standard SGS检测结果SGS test result
520项农药残留520 pesticide residues GB 2763—2021 未检出Not detected
重金属-镉Heavy metal-Cadmium ≤0.2 mg·kg-1(GB 2762—2017)
≤0.4 mg·kg-1(出口标准Export standard)
0.032 mg·kg-1
重金属-铅Heavy metal-Plumbum ≤0.2 mg·kg-1(GB 2762—2017) 未检出Not detected
重金属-铬Heavy metal-Chromium ≤1.0 mg·kg-1(GB 2762—2017) 未检出Not detected
重金属-无机砷Heavy metal-Inorganic arsenic ≤0.2 mg·kg-1(GB 2762—2017) 未检出Not detected
重金属-汞Heavy metal-Hydrargyrum ≤0.2 mg·kg-1(GB 2762—2017) 未检出Not detected

Fig. 2

Comparison of various soil fertility values"

Fig. 3

Comprehensive evaluation of soil fertility"

Fig. 4

Changes of soil enzyme activity"

Fig. 5

Differences in Alpha diversity index between groups"

Fig. 6

Microbial community composition at the phylum and genus levels"

Fig. 7

Correlation analysis of high abundance microorganism (phylum) with soil fertility and soil enzyme activity for 1 year"

Fig. 8

Correlation analysis of high abundance microorganism (phylum) with soil fertility and soil enzyme activity for 5 years"

[1] 李杰, 杨洪建, 邓建平. 江苏水稻生产现状和新形势下绿色可持续发展的技术对策. 中国稻米, 2017, 23(2): 41-44.
doi: 10.3969/j.issn.1006-8082.2017.02.010
LI J, YANG H J, DENG J P. Current situation of rice production in Jiangsu Province and technical countermeasures for green and sustainable development under the new circumstances. China Rice, 2017, 23(2): 41-44. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2017.02.010
[2] ALI W, MAO K, ZHANG H, JUNAID M, XU N, RASOOL A, FENG X, YANG Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397: 122720.
doi: 10.1016/j.jhazmat.2020.122720
[3] 中华人民共和国国家统计局. 2021年粮食和稻谷产量.稻谷. [2022-02-28].
National Bureau of Statistics of the People’s Republic of China. Grain and rice production in 2021.稻谷. [2022-02-28]. (in Chinese)
[4] Our world in data. Arable land use per person in different countries from 1961 to 2018. [2022-02-28].
[5] 张福锁. 提高土壤质量实现高产、高效与环保. 中国农资, 2013(7): 23.
ZHANG F S. Improving soil quality for high yield, efficiency and environmental protection. China Agri-Production News, 2013(7): 23. (in Chinese)
[6] 张福锁. 我国农田土壤酸化现状及影响. 民主与科学, 2016(6): 26-27.
ZHANG F S. Status and impact of soil acidification on agricultural land in China. Democracy and Science, 2016(6): 26-27. (in Chinese)
[7] HUANG P, XU J, KLOEPPER J W. Plant-microbe-soil fertility interaction impacts performance of a Bacillus-containing bioproduct on bell pepper. Journal of Basic Microbiology, 2020, 60(1): 27-36.
doi: 10.1002/jobm.201900435
[8] Our world in data. Use of pesticides and fertilizers in different countries from 2002 to 2017. [2022-02-28].
[9] AHMED M, RAUF M, AKHTAR M, MUKHTER Z, SAEED N A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research, 2020, 27: 17661-17670.
doi: 10.1007/s11356-020-08236-y
[10] 中华人民共和国国家统计局. 2017年耕地面积.全国耕地面积. [2022-02-28].
National Bureau of Statistics of the People’s Republic of China. Cultivated land area of 2017.全国耕地面积. [2022-02-28]. (in Chinese)
[11] 洪婷. 浅谈微生物肥料研究进展. 南方农业, 2019, 13(35): 157-158.
HONG T. An introduction to the progress of microbial fertilizer research. South China Agriculture, 2019, 13(35): 157-158. (in Chinese)
[12] 杨丽辉, 张希子, 韩建鑫. 肥料配施对土壤养分含量的影响. 肥料与健康, 2020, 47(6): 14-20.
YANG L H, ZHANG X Z, HAN J X. Effect of combined application of fertilizers on soil nutrient content. Fertilizer and Health, 2020, 47(6): 14-20. (in Chinese)
[13] 夏波. 耕地土壤安全问题及保护和修复措施. 辽宁农业科学, 2020(6): 64-65.
XIA B. Soil safety of arable land and measures for its protection and restoration. Liaoning Agricultural Sciences, 2020(6): 64-65. (in Chinese)
[14] THOMAS G, WITHALL D, BIRKETT M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microbial Biotechnology, 2020, 13(5): 1366-1376.
doi: 10.1111/1751-7915.13645
[15] SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3(3): 430-439.
doi: 10.1038/s41559-018-0793-y
[16] 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异. 经济地理, 2018, 38(10): 201-210, 240.
KONG F B, GUO Q L, PAN D. Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China. Economic Geography, 2018, 38(10): 201-210, 240. (in Chinese)
[17] 张田野. 化肥零增长行动实施效果及问题研究[D]. 北京: 中国农业科学院, 2020
ZHANG T Y. Study on the effect and problems of zero growth action of chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[18] 许祥富, 林明义. 我国新型肥料的研究现状及在水稻上的应用进展. 安徽农业科学, 2021, 49(7): 17-19, 29.
XU X F, LIN M Y. Research status of new fertilizers in China and its application in rice. Journal of Anhui Agricultural Science, 2021, 49(7): 17-19, 29. (in Chinese)
[19] 郭利京, 王颖. 我国水稻生产中农药过量施用研究: 基于社会和私人利益最大化的视角. 生态与农村环境学报, 2018, 34(5): 401-407.
GUO L J, WANG Y. Study on overdose of pesticides in rice production in China: Based on the perspective of maximizing social and private interests. Journal of Ecology and Rural Environment, 2018, 34(5): 401-407. (in Chinese)
[20] 杨欣, 胡继连. 粮食作物农药施用减量管理调查研究. 山东农业大学学报(社会科学版), 2019, 21(1): 74-78.
YANG X, HU J L. Investigation and research on pesticide application reduction management of grain crops. Journal of Shandong Agricultural University (Social Science Edition), 2019, 21(1): 74-78. (in Chinese)
[21] 陈德来, 刘长仲, 张挺峰. 近10年来绿色防控技术在我国植物保护中的应用. 安徽农业科学, 2019, 47(5): 29-32.
CHEN D L, LIU C Z, ZHANG T F. Application of green prevention and control technology in plant protection in China in recent 10 years. Journal of Anhui Agricultural Sciences, 2019, 47(5): 29-32. (in Chinese)
[22] 秦士娇. 绿色防控技术推广应用存在的问题及对策. 农业科技与信息, 2020(10): 83, 87.
QIN S J. Problems and countermeasures in the promotion and application of green prevention and control technology. Agricultural Science-Technology and Information, 2020(10): 83, 87. (in Chinese)
[23] 张亮, 杨玉民.我国稻米标准体系现状分析. 安徽农业科学, 2014, 42(31): 11118-11119.
ZHANG L, YANG Y M. Analysis of current quality standards of Chinese rice. Journal of Anhui Agricultural Sciences, 2014, 42(31): 11118-11119. (in Chinese)
[24] 周伟, 王文杰, 张波, 肖路, 吕海亮, 何兴元. 长春城市森林绿地土壤肥力评价. 生态学报, 2017, 37(4): 1211-1220.
ZHOU W, WANG W J, ZHANG B, XIAO L, LÜ H L, HE X Y. Soil fertility evaluation for urban forests and green spaces in Changchun City. Acta Ecologica Sinica, 2017, 37(4): 1211-1220. (in Chinese)
[25] 张洪程, 王夫玉. 中国水稻群体研究进展. 中国水稻科学, 2001, 15(1): 51-56.
ZHANG H C, WANG F Y. Recent progress on research of rice population in China. Chinese Journal of Rice Science, 2001, 15(1): 51-56. (in Chinese)
[26] 王玉雯, 郭九信, 孔亚丽, 张瑞卿, 宋立新, 刘振刚, 张俊, 王建中, 郭世伟. 氮肥优化管理协同实现水稻高产和氮肥高效. 植物营养与肥料学报, 2016, 22(5): 1157-1166.
WANG Y W, GUO J X, KONG Y L, ZHANG R Q, SONG L X, LIU Z G, ZHANG J, WANG J Z, GUO S W. Nitrogen optimize management achieves high grain yield and enhances nitrogen use efficiency of rice. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1157-1166. (in Chinese)
[27] 叶英聪, 孙波, 刘绍贵, 李文西, 杨帆. 中国水稻土酸化时空变化特征及其对氮素盈余的响应. 农业机械学报, 2021, 52(2): 246-256.
YE Y C, SUN B, LIU S G, LI W X, YANG F. Spatial-temporal variation of paddy soil acidification and its response to nitrogen surplus in China. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 246-256. (in Chinese)
[28] CHEN Z, WANG Q, MA J, ZOU P, JIANG L. Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system. Scientific Reports, 2020, 10(1): 10432.
doi: 10.1038/s41598-020-67110-6
[29] YANG Y, LI M, WU J, PAN X, GAO C, TANG D W S. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat. Frontiers in Plant Science, 2022, 12: 788651.
doi: 10.3389/fpls.2021.788651
[30] 许江, 戴慧敏, 刘国栋, 宋运红. 不同土地利用方式下土壤酶活性的变化研究. 地质与资源, 2020, 29(6): 579-584.
XU J, DAI H M, LIU G D, SONG Y H. Study on the changes of soil enzyme activity under different land use types. Geology and Resources, 2020, 29(6): 579-584. (in Chinese)
[31] 熊明彪, 田应兵, 雷孝章, 宋光煜, 曹叔尤. 小麦生长期内土壤养分与土壤酶活性变化及其相关性研究. 水土保持学报, 2003, 17(4): 27-30.
XIONG M B, TIAN Y B, LEI X Z, SONG G Y, CAO S Y. Dynamics of soil nutrition and soil enzyme activity and their relationships during wheat grow. Journal of Soil and Water Conservation, 2003, 17(4): 27-30. (in Chinese)
[32] WANG X, TENG Y, REN W, LI Y, YANG T, CHEN Y, ZHAO L, ZHANG H, KURAMAE E E. Variations of bacterial and diazotrophic community assemblies throughout the soil profile in distinct paddy soil types and their contributions to soil functionality. mSystems, 2022, 7(2): e0104721.
doi: 10.1128/msystems.01047-21
[33] 胡柯鑫, 罗尊长, 董春华, 洪曦, 孙梅, 谢宜, 周旋, 刘杰, 孙耿. 化肥减施有机肥施用及秸秆还田下双季稻产量变化及光合特征研究. 华北农学报, 2020, 35(5): 107-114.
HU K X, LUO Z C, DONG C H, HONG X, SUN M, XIE Y, ZHOU X, LIU J, SUN G. Study on yield changes and photosynthetic characteristics of double-cropping rice under organic fertilizer application and straw returning under reduced chemical fertilizer application. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 107-114. (in Chinese)
[34] ZHOU G, QIU X, ZHANG J, TAO C. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting. Bioresource Technology, 2019, 286: 121375.
doi: 10.1016/j.biortech.2019.121375
[35] 王洪杰, 倪俊, 张怡, 张玲, 辛越勇. 新型固碳途径—3-羟基丙酸循环的研究进展. 微生物学通报, 2013, 40(2): 304-315.
WANG H J, NI J, ZHANG Y, ZHANG L, XIN Y Y. The progress of studies on a unique carbon dioxide pathway: 3-hydroxypropionic cycle. Microbiology China, 2013, 40(2): 304-315. (in Chinese)
[36] 孟建宇, 冀锦华, 郭慧琴, 陶羽, 冯福应, 赵鸿彬. 常温纤维素降解细菌的筛选及其复合系的构建. 生物学杂志, 2020, 37(3): 86-90.
MENG J Y, JI J H, GUO H Q, TAO Y, FENG F Y, ZHAO H B. Isolation of room temperature cellulose-degrading bacteria and construction of degrading consortia. Journal of Biology, 2020, 37(3): 86-90. (in Chinese)
[1] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[2] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[3] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[4] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[5] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[6] ZHENG FuLi,LIU Ping,LI GuoSheng,ZHANG BoSong,LI Yan,WEI JianLin,TAN DeShui. Organic-Inorganic Coordinated Regulation to Wheat-Maize Double Crop Yield and Soil Fertility [J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.
[7] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[8] ZHANG WeiLi,KOLBE H,ZHANG RenLian. Research Progress of SOC Functions and Transformation Mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331.
[9] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
[10] WANG JinSong,DONG ErWei,WU AiLian,BAI WenBin,WANG Yuan,JIAO XiaoYan. Responses of Fertilization on Sorghum Grain Yield, Quality and Nutrient Utilization to Soil Fertility [J]. Scientia Agricultura Sinica, 2019, 52(22): 4166-4176.
[11] LI WenGuang,YANG XiaoXiao,HUANG ChunGuo,XUE NaiWen,XIA Qing,LIU XiaoLi,ZHANG XiaoQi,YANG Si,YANG ZhenPing,GAO ZhiQiang. Effects of Rapeseed Green Manure on Soil Fertility and Bacterial Community in Dryland Wheat Field [J]. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677.
[12] LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil [J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315.
[13] WeiFu PENG, WeiSheng LÜ, Shan HUANG, YongJun ZENG, XiaoHua PAN, QingHua SHI. Effects of Soil Fertility on Rice Yield and Nitrogen Use Efficiency in a Red Paddy Soil [J]. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624.
[14] WEN YanChen, ZHANG YueDong, YUAN Liang, LI Wei1, LI YanQing, LIN ZhiAn, ZHAO BingQiang. Crop Yield and Soil Fertility Response to Commercial Organic Fertilizer Substituting Chemical Fertilizer [J]. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142.
[15] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
Full text



No Suggested Reading articles found!