Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2899-2910.doi: 10.3864/j.issn.0578-1752.2022.15.003
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
ZHANG ChenXi1(),TIAN MingHui1,YANG Shuo1,DU JiaQi1,HE TangQing1,QIU YunPeng2,ZHANG XueLin1()
[1] | CHANG S H, SHU H Y, TONG Y P, QIN G Y, LI B, LI Z S. Isolation, function and expression analysis of two wheat phosphate transporter genes. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(10): 1779-1785. |
[2] | GARCIA K, ZIMMERMANN S D. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 2014, 5: 337. |
[3] |
WANG Y, WU W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64: 451-476.
doi: 10.1146/annurev-arplant-050312-120153 |
[4] |
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(19): 1008-1010.
doi: 10.1126/science.1182570 |
[5] |
HUANG P, ZHANG J B, ZHU A N, ZHANG C Z. Acid and alkali buffer capacity of typical fluvor-aquic soil in Huang-Huai-Hai Plain. Agricultural Science in China, 2009, 8(11): 1378-1383.
doi: 10.1016/S1671-2927(08)60350-8 |
[6] | 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018, 51(17): 3315-3324. |
WANG Q F, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of northeast China. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324. (in Chinese) | |
[7] |
YAN Z N, MA T, GUO S X, LIU R J, LI M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 2021, 280: 109933.
doi: 10.1016/j.scienta.2021.109933 |
[8] |
HU J L, LIN X G, WANG J H, DAI J, CUI X C, CHEN R R, ZHANG J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
doi: 10.1016/j.soilbio.2009.09.002 |
[9] |
张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47(8): 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050 |
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, 2021, 47(8): 1603-1615. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03050 |
|
[10] |
COUTINHO E S, BEIROZ W, BARBOSA M, XAVIER J H D, FERNANDES G W. Arbuscular mycorrhizal fungi in the rhizosphere of saplings used in the restoration of the rupestrian grassland. Ecological Restoration, 2019, 37(3): 152-162.
doi: 10.3368/er.37.3.152 |
[11] |
DOROSTKAR V, AFYUNI M, KHOSHGOFTARMANESH A H, MOSADDEGHI M R, REJALI F. Subcritical soil hydrophobicity in the presence of native and exotic arbuscular mycorrhizal species at different soil salinity levels. Archives of Agronomy and Soil Science, 2016, 62(3): 429-443.
doi: 10.1080/03650340.2015.1051471 |
[12] |
ZHANG L, XU M G, LIU Y, ZHANG F S, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist, 2016, 210(3): 1022-1032.
doi: 10.1111/nph.13838 |
[13] |
KALDORF M, KUHN A J, SCHRÖDER W H, HILDEBRANDT U, BOTHE H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 1999, 154(5): 718-728.
doi: 10.1016/S0176-1617(99)80250-8 |
[14] |
ESTRADA B, AROCA R, MAATHUIS F J M, BAREA J M, RUIZ-LOZANO J M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell and Environment, 2013, 36(10): 1771-1782.
doi: 10.1111/pce.12082 |
[15] |
WANG X X, HOFFLAND E, FENG G, KUYPER T W. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57(11): 2203-2211.
doi: 10.1111/1365-2664.13739 |
[16] |
LIU S J, XU J, HUANG H, ZHU J N, TANG J J, CHEN X. Changes in the mycorrhizal fungal community in host roots over five host generations under low and high phosphorus conditions. Plant and Soil, 2020, 456(1/2): 27-41.
doi: 10.1007/s11104-020-04694-y |
[17] |
DOBO B, ASEFA F, ASFAW Z. Diversity and abundance of arbuscular mycorrhizal fungi under different plant and soil properties in Sidama, southern Ethiopia. Agroforestry Systems, 2018, 92(1): 91-101.
doi: 10.1007/s10457-016-0017-x |
[18] | AKAY A, YORGANCILAR M, ATALAY E. Effects of different types of mycorrhiza on the development and the elemental content of lupin (lupinus albus L.). Journal of Elementology, 2016, 21(2): 327-335. |
[19] |
ZHU X Q, WANG C Y, CHEN H, TANG M. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 2014, 52(2): 247-252.
doi: 10.1007/s11099-014-0031-z |
[20] |
SMITH F A, JAKOBSEN I, SMITH S E. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist, 2000, 147(2): 357-366.
doi: 10.1046/j.1469-8137.2000.00695.x |
[21] |
JOHNSON D, VANDENKOORNHUYSE P J, LEAKE J R, GILBERT L, BOOTH R E, GRIME J P, YOUNG P W, READ D J. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161(2): 503-515.
doi: 10.1046/j.1469-8137.2003.00938.x |
[22] |
JANSA J, SMITH F A, SMITH S E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 2008, 177(3): 779-789.
doi: 10.1111/j.1469-8137.2007.02294.x |
[23] |
CHEN S C, ZHAO H J, ZOU C C, LI Y S, CHEN Y F, WANG Z H, JIANG Y, LIU A R, ZHAO P Y, WANG M M, AHAMMED G J. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 2017, 8: 2516.
doi: 10.3389/fmicb.2017.02516 |
[24] |
EDATHIL T T, MANIAN S, UDAIYAN K. Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture, Ecosystems and Environment, 1996, 59(1/2): 63-68.
doi: 10.1016/0167-8809(96)01040-7 |
[25] |
DAFT M J, HOGARTH B G. Competitive interactions amongst four species of Glomus on maize and onion. Transactions of the British Mycological Society, 1983, 80(2): 339-345.
doi: 10.1016/S0007-1536(83)80019-9 |
[26] |
KÖHL L, VAN DER HEIJDEN M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology and Biochemistry, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019 |
[27] | XU H W, LU Y, TONG S Y. Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates Journal of Food and Agriculture, 2018, 30(3): 199-204. |
[28] |
COSME M, WURST S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry, 2013, 57: 436-443.
doi: 10.1016/j.soilbio.2012.09.024 |
[29] |
WANG G Z, YE C C, ZHANG J L, KOZIOL L, BEVER J D, LI X L. Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14(1): 10-20.
doi: 10.1080/17429145.2018.1550218 |
[30] |
SAWERS R J H, SVANE S F, QUAN C, GRØNLUND M, WOZNIAK B, GEBRESELASSIE M N, GONZÁLEZ-MUÑOZ E, CHÁVEZ MONTES R A, BAXTER I, GOUDET J, JAKOBSEN I, PASZKOWSKI U. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214(2): 632-643.
doi: 10.1111/nph.14403 |
[31] |
KUMAR A, SURI V K, CHOUDHARY A K, YADAV A, KAPOOR R, SANDAL S, DASS A. Growth behavior, nutrient harvest index, and soil fertility in okra-pea cropping system as influenced by AM fungi, applied phosphorus, and irrigation regimes in Himalayan acidic alfisol. Communications in Soil Science and Plant Analysis, 2015, 46(17): 2212-2233.
doi: 10.1080/00103624.2015.1069323 |
[32] |
LIU M H, SUN J, LI Y, XIAO Y. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere, 2017, 167: 204-211.
doi: 10.1016/j.chemosphere.2016.09.145 |
[33] |
HART M M, READER R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 2002, 153(2): 335-344.
doi: 10.1046/j.0028-646X.2001.00312.x |
[34] |
NEWSHAM K K, FITTER A H, WATKINSON A R. Multi- functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 1995, 10(10): 407-411.
doi: 10.1016/S0169-5347(00)89157-0 |
[35] | XU H W, LU Y, ZHU X C. Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of northeast China. Brazilian Archives of Biology and Technology, 2016, 59: e16160392. |
[36] |
CHAN W F, LI H, WU F Y, WU S C, WONG M H. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2013, 262: 1116-1122.
doi: 10.1016/j.jhazmat.2012.08.020 |
[37] |
PARVIN S, VAN GEEL M, YEASMIN T, VERBRUGGEN E, HONNAY O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30(4): 431-444.
doi: 10.1007/s00572-020-00957-9 |
[38] |
ORTAS I, SARI N, AKPINAR C, YETISIR H. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae, 2011, 128(2): 92-98.
doi: 10.1016/j.scienta.2010.12.014 |
[39] |
BEVER J D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244(1/2): 281-290.
doi: 10.1023/A:1020221609080 |
[40] |
PEARSON J N, JAKOBSEN I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 1993, 124: 489-494.
doi: 10.1111/j.1469-8137.1993.tb03840.x |
[41] |
GANGE A C, BROWN V K, APLIN D M. Ecological specificity of arbuscular mycorrhizae: Evidence from foliar- and seed-feeding insects. Ecology, 2005, 86(3): 603-611.
doi: 10.1890/04-0967 |
[42] | 僧珊珊. 气候变化对玉米生产的影响与应对措施模拟研究-以河南为例[D]. 中国农业科学院, 2019. |
SENG S S. Study on simulation of climatic factors on potential productivity and cultivation measures-A case study on Henan province[D]. Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[43] |
TAI A P K, VAL MARTIN M, HEALD C L. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 2014, 4(9): 817-821.
doi: 10.1038/nclimate2317 |
[44] | 杨平, 张丽娟, 赵艳霞, 姜蓝齐, 乔赛男, 张晓慧. 黄淮海地区夏玉米干旱风险评估与区划. 中国生态农业学报, 2015, 23(1): 110-118. |
YANG P, ZHANG L J, ZHAO Y X, JIANG L Q, QIAO S N, ZHANG X H. Risk assessment and zoning of drought for summer maize in the Huang-Huai-Hai region. Chinese Journal of Eco-Agriculture, 2015, 23(1): 110-118. (in Chinese) | |
[45] | TILMAN D, KNOPS J, WEDIN D, REICH P, RITCHIE M, SIEMANN E. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277(5330): 1330-1332. |
[46] |
CROSSAY T, MAJOREL C, REDECKER D, GENSOUS S, MEDEVIELLE V, DURRIEU G, CAVALOC Y, AMIR H. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 2019, 29(4): 325-339.
doi: 10.1007/s00572-019-00898-y |
[47] |
WALLER L P, HAHN P G, MARON J L, LEKBERG Y. Trait differences in responses to arbuscular mycorrhizal fungi are stronger and more consistent than fixed differences among populations of Asclepias speciosa. American Journal of Botany, 2018, 105(2): 207-214.
doi: 10.1002/ajb2.1038 |
[48] |
HART M M, FORSYTHE J, OSHOWSKI B, BÜCKING H, JANSA J, TOBY KIERS E. Hiding in a crowd-does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis, 2013, 59: 47-56.
doi: 10.1007/s13199-012-0197-8 |
[49] |
ENGELMOER D J P, BEHM J E, TOBY KIERS E. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology, 2014, 23(6): 1584-1593.
doi: 10.1111/mec.12451 |
[50] |
JONES M D, SMITH S E. Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 2004, 82(8): 1089-1109.
doi: 10.1139/b04-110 |
[51] | ZHOU J C, CHAI X F, ZHANG L, GEORGE T S, WANG F, FENG G. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems, 2020, 5(6): e00929-20. |
[1] | LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750. |
[2] | ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012. |
[3] | KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083. |
[4] | ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989. |
[5] | YunPeng HOU,LiChun WANG,Qian LI,CaiXia YIN,YuBo QIN,Meng WANG,YongJun WANG,LiLi KONG. Research on Optimum Phosphorus Fertilizer Rate Based on Maize Yield and Phosphorus Balance in Soil Under Film Mulched Drip Irrigation Conditions [J]. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. |
[6] | YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572. |
[7] | SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242. |
[8] | WU Yang, JIA ZhiKuan, BIAN ShaoFeng, WANG YongJun. Regulation Effects of Different Mulching Patterns During the Whole Season on Soil Water and Temperature in the Maize Field of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885. |
[9] | WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645. |
[10] | LI Yu-ling, ZHANG Peng, ZHANG Yan, JIA Qian-min, LIU Dong-hua, DONG Zhao-yun, JIA Zhi-kuan, HAN Qing-fang, REN Xiao-long. Effects of Rainfall Harvesting Planting on Temporal and Spatial Changing of Soil Water and Temperature, and Yield of Spring Maize (Zea mays L.) in Semi-Arid Areas [J]. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096. |
[11] | XIE Jun, ZHAO Ya-nan, CHEN Xuan-jing, LI Dan-ping, XU Chun-li, WANG Ke, ZHANG Yue-qiang, SHI Xiao-jun. Nitrogen of Organic Manure Replacing Chemical Nitrogenous Fertilizer Improve Maize Yield and Nitrogen Uptake and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943. |
[12] | ZHANG Xue-lin, XU Jun, AN Ting-ting, HOU Xiao-pan, LI Chao-hai. Relationship Between Rhizosphere Soil Properties and Yield of Maize at Different Nitrogen Levels [J]. Scientia Agricultura Sinica, 2016, 49(14): 2687-2699. |
[13] | XIE Jun-hong, CHAI Qiang, LI Ling-ling, ZHANG Ren-zhi, NIU Yi-ning, LUO Zhu-zhu, CAI Li-qun. The Time Loading Limitation of Continuous Cropping Maize Yield Under Different Plastic Film Mulching Modes in Semi-Arid Region of Loess Plateau of China [J]. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568. |
[14] | . Effect of long-term application of K fertilizer on spring maize yield and soil K in northeast China [J]. Scientia Agricultura Sinica, 2007, 40(10): 2234-2240 . |
[15] | ,,. Modelling the relationship between summer maize NPK uptake and yield on the basis of the soil fertility indices [J]. Scientia Agricultura Sinica, 2005, 38(09): 1834-1840 . |
|