Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2899-2910.doi: 10.3864/j.issn.0578-1752.2022.15.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil

ZHANG ChenXi1(),TIAN MingHui1,YANG Shuo1,DU JiaQi1,HE TangQing1,QIU YunPeng2,ZHANG XueLin1()   

  1. 1Agronomy College, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Key Laboratory of Crop Growth and Development Regulation, Ministry of Education, Zhengzhou 450002
    2College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
  • Received:2021-10-25 Accepted:2022-03-29 Online:2022-08-01 Published:2022-08-02
  • Contact: XueLin ZHANG E-mail:zcx960321@163.com;xuelinzhang1998@163.com

Abstract:

【Objective】The aim of this study was to clarify the effects of different arbuscular mycorrhizae fungi (AMF) inoculants and their diversity on maize grains yield and the absorption and accumulation of phosphorus (P) and potassium (K) in acidic soil, so as to provide a theoretical basis for the application of farmland microbial fertilizer and the improvement of crop nutrient uptake. 【Method】Four different AMF species (Funneliformis mosseae, A; Glomus tortuosum, B; Glomus versiforme, C; Funneliformis geosporum, D) were selected as experimental materials in 2019 and 2020, and a pot experiment with sixteen treatments was established during maize growth periods, including CK (non-inoculating AMF species), inoculating single AMF treatment, two AMF mixed treatments, three AMF mixed treatments, and four AMF mixed treatments. The maize grain yield, plant biomass and their P and K accumulation were analyzed. 【Result】Compared with CK, the presence of each type of AMF species could increase maize grain yield and their P and K accumulation. Compared with CK, the presence of A, B, C and D increased maize grain yield by 57.9%, 26.9%, 40.5% and 32.9%, respectively, increased the maize grain P accumulation by 77.8%, 48.2%, 26.2% and 75.8%, respectively and increased maize grain K accumulation by 85.5%, 62.1%, 59.0% and 63.5%, respectively. With AMF inoculant diversities increasing, the average values of maize grain yield showed an increasing tendency, with four AMF mixed treatments>three AMF mixed treatments>two AMF mixed treatments>single AMF treatments, and the average grain yield of four AMF mixed treatments was 12.3% higher than that of the single AMF treatments. The tendency of grain P accumulation among the AMF diversity treatments was two AMF mixed treatments>four AMF mixed treatments>three AMF mixed treatments>single AMF treatments, and the average grain P accumulation for two AMF mixed treatments was 23.2% higher than that of single AMF treatments. However, there was no significant difference of grain K accumulation among AMF diversity treatments. 【Conclusion】In acidic soil, the inoculation of different AMF species could significantly increase maize grain yield and their P and K accumulation, and the effects of Funneliformis mosseae was best on improving maize grain yield and their P and K accumulation among four AMF species. The increase of AMF inoculant diversities could significantly improve maize grain yield and their P accumulation, while the four mixed AMF showed a better effect on grain yield, and on grain nutrient uptake for two mixed AMF. All of these indicated that, according to the purposes of high grain yield or high grain quality in production, the suitable types of AMF species should be selected to inoculate their host, and the mix of different types of AMF species should matched reasonably.

Key words: arbuscular mycorrhizal fungi, inoculant diversity, maize yield, phosphorus accumulation, potassium accumulation

Table 1

Composition of inoculum diversities under different treatments"

丛枝菌根真菌菌剂多样性
AMF inoculant diversities
处理
Treatment
种类
Species
0 CK
1 A Funneliformis mosseae
B Glomus tortuosum
C Glomus versiforme
D Funneliformis geosporum
2 A+B Funneliformis mosseae, Glomus tortuosum
A+C Funneliformis mosseae, Glomus versiforme
A+D Funneliformis mosseae, Funneliformis geosporum
B+C Glomus tortuosum, Glomus versiforme
B+D Glomus tortuosum, Funneliformis geosporum
C+D Glomus versiforme, Funneliformis geosporum
3 A+B+C Funneliformis mosseae, Glomus tortuosum, Glomus versiforme
A+B+D Funneliformis mosseae, Glomus tortuosum, Funneliformis geosporum
A+C+D Funneliformis mosseae, Glomus versiforme, Funneliformis geosporum
B+C+D Glomus tortuosum, Glomus versiforme, Funneliformis geosporum
4 A+B+C+D Funneliformis mosseae, Glomus tortuosum, Glomus versiforme, Funneliformis geosporum

Fig. 1

Effects of different treatments of AMF on maize root colonization in 2019 and 2020 Different lowercase letters indicated a statistically significant difference among treatments at P<0.05. The same as below"

Table 2

Effects of different treatments of AMF on maize grain, stem, leaf, other parts and root biomass in 2019 and 2020"

处理
Treatment
籽粒
Grain (g/plant)

Stem (g/plant)

Leaf (g/plant)
其他
Other parts (g/plant)

Root (g/plant)
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
CK 57.9±1.5k 74.0±0.2b 65.1±0.2b 74.5±1.3d 35.5±0.4c 45.9±0.2e 23.9±1.2b 27.7±3.0b 24.9±0.3a 30.5±0.9b
A 110.5±1.8a 97.8±1.6a 70.3±0.1ab 79.1±0.4cd 40.7±0.6abc 56.0±0.2a 24.6±0.2ab 33.7±2.8ab 25.7±1.0a 40.6±0.8a
B 81.6±3.4ij 93.6±2.1ab 69.1±2.4ab 80.5±2.5bcd 37.3±2.7bc 51.8±0.5bcd 25.8±0.5ab 31.7±1.3ab 25.3±0.9a 40.4±0.1a
C 82.9±1.0ij 84.4±7.3ab 73.2±4.3ab 87.5±4.7abc 42.8±1.4ab 52.4±0.6bc 27.7±0.6ab 32.9±2.2ab 25.5±0.9a 38.6±1.9a
D 96.0±1.7cdef 89.4±8.3ab 71.4±1.8ab 83.7±4.9bcd 42.1±1.0ab 48.8±0.4de 24.8±1.0ab 32.4±1.2ab 25.1±1.4a 38.1±2.7a
A+B 101.8±0.1bcd 86.8±7.8ab 73.4±1.8ab 91.0±1.6ab 41.6±0.5ab 51.5±1.6bcd 27.5±0.5ab 32.3±2.1ab 26.1±0.8a 37.8±3.8a
A+C 87.7±2.3fghi 95.7±5.3ab 66.5±1.7ab 81.8±2.7bcd 41.9±0.9ab 51.4±1.0bcd 28.0±1.3ab 29.2±1.8ab 25.6±0.4a 42.4±1.9a
A+D 106.6±0.9ab 92.7±1.8ab 70.4±2.2ab 88.1±3.3abc 44.5±4.1a 52.1±1.4bcd 29.2±1.3a 32.1±2.3ab 25.3±0.9a 41.4±3.8a
B+C 85.3±1.4ghij 91.3±3.0ab 75.3±1.1ab 83.0±3.7bcd 41.4±1.3abc 49.5±0.9cd 29.0±0.8ab 34.2±2.2ab 26.1±0.4a 40.6±2.1a
B+D 78.6±4.7j 102.4±9.6a 76.5±8.2a 87.8±3.4abc 40.2±1.1abc 53.6±1.5ab 26.2±1.8ab 35.6±2.7a 26.3±0.6a 39.8±3.3a
C+D 85.6±5.8ghij 98.0±7.4a 71.5±2.8ab 89.1±5.2abc 38.7±1.2abc 52.5±0.6bc 25.4±2.2ab 33.5±2.2ab 25.2±0.8a 45.5±1.6a
A+B+C 98.3±2.2bcde 91.0±1.9ab 72.4±3.0ab 94.5±2.5a 41.0±1.6abc 52.9±1.2abc 26.6±3.1ab 31.4±1.3ab 25.4±0.2a 41.3±2.3a
A+B+D 93.5±2.6defg 99.4±9.4a 72.0±0.8ab 85.2±1.1abc 42.8±0.9ab 51.7±1.1bcd 27.2±1.5ab 31.7±3.1ab 27.1±1.1a 43.1±0.9a
A+C+D 92.0±1.5efgh 92.6±11.2ab 69.3±3.3ab 87.2±3.3abc 40.2±2.7abc 51.2±1.8bcd 27.3±1.6ab 29.6±2.0ab 24.7±0.2a 40.5±3.1a
B+C+D 83.9±2.8hij 96.6±9.0a 68.8±3.3ab 88.0±3.0abc 42.1±2.1ab 51.6±1.5bcd 26.6±2.2ab 30.4±1.2ab 25.6±1.2a 40.9±2.7a
A+B+C+D 103.0±3.7abc 103.7±2.3a 70.6±1.6ab 86.5±0.5abc 40.9±0.5abc 49.8±0.7cd 28.5±1.0ab 29.6±2.5ab 24.9±0.6a 40.7±1.3a

Table 3

Effects of different treatments of AMF on P accumulation of maize grain, stem, leaf, other parts and root in 2019 and 2020"

处理
Treatment
籽粒
Grain (mg/plant)

Stem (mg/plant)

Leaf (mg/plant)
其他
Other parts (mg/plant)

Root (mg/plant)
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
CK 251.2±5.7i 312.6±2.8c 124.3±2.0b 178.8±1.6ghi 83.0±1.4e 131.7±1.6h 74.7±5.2d 101.5±12.6b 52.2±1.4e 79.3±3.2f
A 506.1±7.2cd 496.2±7.0ab 162.2±13.1a 212.2±4.1defg 113.4±4.4d 215.4±7.0ab 76.9±1.3cd 123.7±7.9ab 54.5±2.8e 104.9±3.2e
B 493.2±20.6cdef 497.8±10.1ab 164.4±11.1a 155.0±8.0i 148.1±10.2ab 201.5±5.0bcde 92.0±3.9abcd 119.7±5.6ab 68.7±4.3d 120.0±3.4de
C 410.4±3.9gh 425.5±46.5bc 150.1±7.1ab 215.5±9.3def 117.9±2.5cd 164.2±5.3g 94.0±1.6abcd 120.9±7.3ab 77.0±4.0cd 125.9±2.8cde
D 370.1±10.3h 341.6±30.2c 171.6±6.3a 167.1±15.3hi 142.4±2.5abc 184.4±2.9defg 92.9±6.5abcd 128.6±5.1ab 73.3±4.7cd 124.4±8.7de
A+B 637.2±8.9a 561.4±45.7ab 166.7±3.5a 243.8±10.2abcd 136.7±3.5abc 189.4±9.1def 98.3±7.2abc 117.9±7.3ab 79.3±5.0bcd 133.1±13.2abcde
A+C 500.1±17.2cde 564.3±55.9ab 145.5±4.9ab 198.3±11.3efgh 140.3±3.0abcd 192.4±3.6cdef 99.6±4.1ab 112.2±6.8ab 76.3±5.3cd 130.3±8.4bcde
A+D 589.3±4.0ab 525.3±6.0ab 178.2±5.3a 188.8±2.3fghi 166.8±21.5a 203.5±7.6bcd 109.4±2.6a 128.6±11.3ab 68.6±1.1d 123.7±15.1de
B+C 517.8±6.8cd 571.1±23.6ab 159.1±4.4a 199.4±10.4efgh 126.4±3.3abc 187.4±7.7def 108.7±3.3a 134.8±7.4a 69.7±1.1d 119.3±6.1de
B+D 458.0±2.9defg 619.3±92.6a 172.6±25.2a 233.2±19.2bcde 134.9±2.7abc 212.3±11.1abc 92.2±6.5abcd 134.8±11.2a 70.1±1.4d 110.3±8.1e
C+D 422.6±39.1fgh 576.8±56.3ab 176.5±10.0a 265.0±16.7ab 133.7±11.0abc 180.3±4.1efg 94.2±9.6abcd 132.2±12.0ab 76.0±2.7cd 120.2±2.3de
A+B+C 512.8±27.6cd 483.7±33.3ab 176.2±9.2a 242.4±9.2abcd 126.3±4.0abc 202.6±2.2bcd 106.5±13.9a 133.3±7.5a 97.4±4.8a 160.8±12.4a
A+B+D 490.1±50.5cdef 496.2±67.0ab 163.7±2.6a 217.3±1.7cdef 140.9±17.7abcd 189.5±4.1def 106.4±4.4a 131.9±12.0ab 72.2±3.1cd 157.5±5.9ab
A+C+D 605.6±17.7a 621.4±65.2a 175.4±12.9a 271.7±15.7a 121.3±2.3abc 184.3±10.9defg 107.8±7.0a 120.5±8.7ab 80.6±1.5bcd 141.9±10.7abcd
B+C+D 431.0±18.7efgh 503.8±49.3ab 167.5±5.5a 253.1±10.8abc 128.6±6.1abc 228.4±7.3a 84.0±9.8bcd 112.9±8.9ab 89.7±6.6ab 153.7±14.3abc
A+B+C+D 532.5±36.3bc 546.0±39.2ab 160.5±8.8a 231.5±11.1bcde 126.7±2.8abc 173.7±1.7fg 101.4±5.0ab 114.5±11.2ab 84.7±4.2bc 152.8±4.0abc

Table 4

Effects of different treatments of AMF on K accumulation of maize grain, stem, leaf, other parts and root in 2019 and 2020"

处理
Treatment
籽粒
Grain (mg/plant)

Stem (mg/plant)

Leaf (mg/plant)
其他
Other parts (mg/plant)

Root (mg/plant )
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
CK 183.8±8.8f 248.1±16.7d 218.0±15.1g 274.7±12.8f 144.3±3.8c 222.5±10.2e 80.0±4.3c 100.8±13.6d 68.0±4.2c 87.1±4.3e
A 429.7±14.9a 371.5±16.1abc 273.5±17.0defg 361.1±12.5e 190.8±8.7ab 330.9±0.7a 82.5±1.9c 131.3±7.4abcd 74.6±5.0bc 124.5±2.9cd
B 316.8±8.6cde 389.3±15.1abc 339.2±28.6abcd 424.7±23.5bcde 200.1±15.4ab 280.2±9.5cd 96.7±4.0bc 124.1±7.3abcd 94.7±7.1ab 148.9±4.4abcd
C 307.2±16.1de 393.0±41.0abc 391.4±22.2a 472.0±48.7abcd 198.6±9.5ab 275.1±7.4cd 119.2±2.6ab 151.2±7.9a 85.6±9.7abc 115.4±10.0de
D 347.1±4.3bcd 339.6±31.7c 289.4±19.0cdef 420.1±8.3bcde 200.0±17.8ab 278.0±6.3cd 94.6±9.4bc 128.8±5.8abcd 89.5±9.9abc 148.7±7.3abcd
A+B 368.7±9.1b 371.0±39.4abc 331.6±18.6abcde 471.8±16.5abcd 217.1±2.4a 303.4±9.3abc 118.4±1.9ab 149.2±13.6ab 87.4±6.7abc 131.4±19.8bcd
A+C 308.9±5.4de 341.5±21.4c 338.1±3.1abcde 482.4±32.2abc 210.5±5.1ab 290.6±11.8bcd 125.9±5.2a 141.4±8.8abc 83.2±3.6abc 141.1±1.5abcd
A+D 357.6±12.2bc 352.1±16.3abc 271.3±9.6efg 409.5±20.1cde 206.8±25.1ab 280.4±12.7cd 113.5±4.5ab 139.1±12.9abc 85.0±6.6abc 148.4±11.6abcd
B+C 347.2±18.6bcd 443.3±31.8a 331.9±22.7abcde 385.0±9.5e 212.2±9.3ab 286.0±10.5bcd 113.1±10.2ab 129.9±8.4abcd 97.4±1.8a 158.6±5.1abc
B+D 284.7±17.9e 435.0±34.6ab 350.8±32.6abc 465.5±11.9abcd 198.8±5.2ab 294.3±9.9bc 100.9±11.2abc 135.3±10.2abcd 98.3±8.6a 154.0±7.6abc
C+D 277.9±9.7e 369.3±10.2abc 369.4±12.4ab 535.4±35.7a 173.7±9.0bc 275.0±16.0cd 95.8±11.7bc 131.7±14.7abcd 89.3±3.8abc 168.2±16.8a
A+B+C 372.1±22.1b 441.0±12.1a 313.6±19.1bcde 485.7±12.9ab 218.2±11.0a 317.0±2.9ab 95.3±16.2bc 122.3±6.2abcd 92.7±3.7ab 157.5±16.1abc
A+B+D 362.3±12.9bc 343.0±32.4c 311.5±8.1bcde 408.2±24.4de 190.1±3.7ab 256.6±11.2d 103.4±3.4abc 125.9±4.4abcd 93.4±9.8ab 159.7±9.3abc
A+C+D 308.1±3.1de 361.9±41.9abc 274.7±38.3defg 382.6±16.1e 180.1±15.3abc 278.2±15.4cd 101.4±3.4abc 115.8±8.8bcd 87.9±7.2abc 159.1±15.8abc
B+C+D 289.7±24.2e 354.1±26.6abc 234.2±10.6fg 404.7±14.9de 212.1±19.0ab 277.1±5.0cd 93.5±4.1bc 112.0±6.8cd 93.4±3.9ab 151.4±9.2abc
A+B+C+D 373.4±22.1b 345.5±6.3bc 325.1±2.6bcde 458.7±9.8bcd 217.8±2.9a 299.3±10.2abc 114.2±8.5ab 127.1±16.8abcd 98.5±2.2a 163.7±4.8ab

Fig. 2

The relationships between AMF diversities and the biomass of maize grain, stem, leaf, other parts, root and their P or K accumulation in 2019 and 2020 P<0.05 is significant correlation, P<0.01 is extremely significant correlation"

[1] CHANG S H, SHU H Y, TONG Y P, QIN G Y, LI B, LI Z S. Isolation, function and expression analysis of two wheat phosphate transporter genes. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(10): 1779-1785.
[2] GARCIA K, ZIMMERMANN S D. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 2014, 5: 337.
[3] WANG Y, WU W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64: 451-476.
doi: 10.1146/annurev-arplant-050312-120153
[4] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(19): 1008-1010.
doi: 10.1126/science.1182570
[5] HUANG P, ZHANG J B, ZHU A N, ZHANG C Z. Acid and alkali buffer capacity of typical fluvor-aquic soil in Huang-Huai-Hai Plain. Agricultural Science in China, 2009, 8(11): 1378-1383.
doi: 10.1016/S1671-2927(08)60350-8
[6] 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018, 51(17): 3315-3324.
WANG Q F, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of northeast China. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324. (in Chinese)
[7] YAN Z N, MA T, GUO S X, LIU R J, LI M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 2021, 280: 109933.
doi: 10.1016/j.scienta.2021.109933
[8] HU J L, LIN X G, WANG J H, DAI J, CUI X C, CHEN R R, ZHANG J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
doi: 10.1016/j.soilbio.2009.09.002
[9] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47(8): 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, 2021, 47(8): 1603-1615. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03050
[10] COUTINHO E S, BEIROZ W, BARBOSA M, XAVIER J H D, FERNANDES G W. Arbuscular mycorrhizal fungi in the rhizosphere of saplings used in the restoration of the rupestrian grassland. Ecological Restoration, 2019, 37(3): 152-162.
doi: 10.3368/er.37.3.152
[11] DOROSTKAR V, AFYUNI M, KHOSHGOFTARMANESH A H, MOSADDEGHI M R, REJALI F. Subcritical soil hydrophobicity in the presence of native and exotic arbuscular mycorrhizal species at different soil salinity levels. Archives of Agronomy and Soil Science, 2016, 62(3): 429-443.
doi: 10.1080/03650340.2015.1051471
[12] ZHANG L, XU M G, LIU Y, ZHANG F S, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist, 2016, 210(3): 1022-1032.
doi: 10.1111/nph.13838
[13] KALDORF M, KUHN A J, SCHRÖDER W H, HILDEBRANDT U, BOTHE H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 1999, 154(5): 718-728.
doi: 10.1016/S0176-1617(99)80250-8
[14] ESTRADA B, AROCA R, MAATHUIS F J M, BAREA J M, RUIZ-LOZANO J M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell and Environment, 2013, 36(10): 1771-1782.
doi: 10.1111/pce.12082
[15] WANG X X, HOFFLAND E, FENG G, KUYPER T W. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57(11): 2203-2211.
doi: 10.1111/1365-2664.13739
[16] LIU S J, XU J, HUANG H, ZHU J N, TANG J J, CHEN X. Changes in the mycorrhizal fungal community in host roots over five host generations under low and high phosphorus conditions. Plant and Soil, 2020, 456(1/2): 27-41.
doi: 10.1007/s11104-020-04694-y
[17] DOBO B, ASEFA F, ASFAW Z. Diversity and abundance of arbuscular mycorrhizal fungi under different plant and soil properties in Sidama, southern Ethiopia. Agroforestry Systems, 2018, 92(1): 91-101.
doi: 10.1007/s10457-016-0017-x
[18] AKAY A, YORGANCILAR M, ATALAY E. Effects of different types of mycorrhiza on the development and the elemental content of lupin (lupinus albus L.). Journal of Elementology, 2016, 21(2): 327-335.
[19] ZHU X Q, WANG C Y, CHEN H, TANG M. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 2014, 52(2): 247-252.
doi: 10.1007/s11099-014-0031-z
[20] SMITH F A, JAKOBSEN I, SMITH S E. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist, 2000, 147(2): 357-366.
doi: 10.1046/j.1469-8137.2000.00695.x
[21] JOHNSON D, VANDENKOORNHUYSE P J, LEAKE J R, GILBERT L, BOOTH R E, GRIME J P, YOUNG P W, READ D J. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161(2): 503-515.
doi: 10.1046/j.1469-8137.2003.00938.x
[22] JANSA J, SMITH F A, SMITH S E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 2008, 177(3): 779-789.
doi: 10.1111/j.1469-8137.2007.02294.x
[23] CHEN S C, ZHAO H J, ZOU C C, LI Y S, CHEN Y F, WANG Z H, JIANG Y, LIU A R, ZHAO P Y, WANG M M, AHAMMED G J. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 2017, 8: 2516.
doi: 10.3389/fmicb.2017.02516
[24] EDATHIL T T, MANIAN S, UDAIYAN K. Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture, Ecosystems and Environment, 1996, 59(1/2): 63-68.
doi: 10.1016/0167-8809(96)01040-7
[25] DAFT M J, HOGARTH B G. Competitive interactions amongst four species of Glomus on maize and onion. Transactions of the British Mycological Society, 1983, 80(2): 339-345.
doi: 10.1016/S0007-1536(83)80019-9
[26] KÖHL L, VAN DER HEIJDEN M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology and Biochemistry, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019
[27] XU H W, LU Y, TONG S Y. Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates Journal of Food and Agriculture, 2018, 30(3): 199-204.
[28] COSME M, WURST S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry, 2013, 57: 436-443.
doi: 10.1016/j.soilbio.2012.09.024
[29] WANG G Z, YE C C, ZHANG J L, KOZIOL L, BEVER J D, LI X L. Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14(1): 10-20.
doi: 10.1080/17429145.2018.1550218
[30] SAWERS R J H, SVANE S F, QUAN C, GRØNLUND M, WOZNIAK B, GEBRESELASSIE M N, GONZÁLEZ-MUÑOZ E, CHÁVEZ MONTES R A, BAXTER I, GOUDET J, JAKOBSEN I, PASZKOWSKI U. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214(2): 632-643.
doi: 10.1111/nph.14403
[31] KUMAR A, SURI V K, CHOUDHARY A K, YADAV A, KAPOOR R, SANDAL S, DASS A. Growth behavior, nutrient harvest index, and soil fertility in okra-pea cropping system as influenced by AM fungi, applied phosphorus, and irrigation regimes in Himalayan acidic alfisol. Communications in Soil Science and Plant Analysis, 2015, 46(17): 2212-2233.
doi: 10.1080/00103624.2015.1069323
[32] LIU M H, SUN J, LI Y, XIAO Y. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere, 2017, 167: 204-211.
doi: 10.1016/j.chemosphere.2016.09.145
[33] HART M M, READER R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 2002, 153(2): 335-344.
doi: 10.1046/j.0028-646X.2001.00312.x
[34] NEWSHAM K K, FITTER A H, WATKINSON A R. Multi- functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 1995, 10(10): 407-411.
doi: 10.1016/S0169-5347(00)89157-0
[35] XU H W, LU Y, ZHU X C. Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of northeast China. Brazilian Archives of Biology and Technology, 2016, 59: e16160392.
[36] CHAN W F, LI H, WU F Y, WU S C, WONG M H. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2013, 262: 1116-1122.
doi: 10.1016/j.jhazmat.2012.08.020
[37] PARVIN S, VAN GEEL M, YEASMIN T, VERBRUGGEN E, HONNAY O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30(4): 431-444.
doi: 10.1007/s00572-020-00957-9
[38] ORTAS I, SARI N, AKPINAR C, YETISIR H. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae, 2011, 128(2): 92-98.
doi: 10.1016/j.scienta.2010.12.014
[39] BEVER J D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244(1/2): 281-290.
doi: 10.1023/A:1020221609080
[40] PEARSON J N, JAKOBSEN I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 1993, 124: 489-494.
doi: 10.1111/j.1469-8137.1993.tb03840.x
[41] GANGE A C, BROWN V K, APLIN D M. Ecological specificity of arbuscular mycorrhizae: Evidence from foliar- and seed-feeding insects. Ecology, 2005, 86(3): 603-611.
doi: 10.1890/04-0967
[42] 僧珊珊. 气候变化对玉米生产的影响与应对措施模拟研究-以河南为例[D]. 中国农业科学院, 2019.
SENG S S. Study on simulation of climatic factors on potential productivity and cultivation measures-A case study on Henan province[D]. Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[43] TAI A P K, VAL MARTIN M, HEALD C L. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 2014, 4(9): 817-821.
doi: 10.1038/nclimate2317
[44] 杨平, 张丽娟, 赵艳霞, 姜蓝齐, 乔赛男, 张晓慧. 黄淮海地区夏玉米干旱风险评估与区划. 中国生态农业学报, 2015, 23(1): 110-118.
YANG P, ZHANG L J, ZHAO Y X, JIANG L Q, QIAO S N, ZHANG X H. Risk assessment and zoning of drought for summer maize in the Huang-Huai-Hai region. Chinese Journal of Eco-Agriculture, 2015, 23(1): 110-118. (in Chinese)
[45] TILMAN D, KNOPS J, WEDIN D, REICH P, RITCHIE M, SIEMANN E. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277(5330): 1330-1332.
[46] CROSSAY T, MAJOREL C, REDECKER D, GENSOUS S, MEDEVIELLE V, DURRIEU G, CAVALOC Y, AMIR H. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 2019, 29(4): 325-339.
doi: 10.1007/s00572-019-00898-y
[47] WALLER L P, HAHN P G, MARON J L, LEKBERG Y. Trait differences in responses to arbuscular mycorrhizal fungi are stronger and more consistent than fixed differences among populations of Asclepias speciosa. American Journal of Botany, 2018, 105(2): 207-214.
doi: 10.1002/ajb2.1038
[48] HART M M, FORSYTHE J, OSHOWSKI B, BÜCKING H, JANSA J, TOBY KIERS E. Hiding in a crowd-does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis, 2013, 59: 47-56.
doi: 10.1007/s13199-012-0197-8
[49] ENGELMOER D J P, BEHM J E, TOBY KIERS E. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology, 2014, 23(6): 1584-1593.
doi: 10.1111/mec.12451
[50] JONES M D, SMITH S E. Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 2004, 82(8): 1089-1109.
doi: 10.1139/b04-110
[51] ZHOU J C, CHAI X F, ZHANG L, GEORGE T S, WANG F, FENG G. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems, 2020, 5(6): e00929-20.
[1] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[2] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[3] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[4] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[5] YunPeng HOU,LiChun WANG,Qian LI,CaiXia YIN,YuBo QIN,Meng WANG,YongJun WANG,LiLi KONG. Research on Optimum Phosphorus Fertilizer Rate Based on Maize Yield and Phosphorus Balance in Soil Under Film Mulched Drip Irrigation Conditions [J]. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584.
[6] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[7] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
[8] WU Yang, JIA ZhiKuan, BIAN ShaoFeng, WANG YongJun. Regulation Effects of Different Mulching Patterns During the Whole Season on Soil Water and Temperature in the Maize Field of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885.
[9] WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645.
[10] LI Yu-ling, ZHANG Peng, ZHANG Yan, JIA Qian-min, LIU Dong-hua, DONG Zhao-yun, JIA Zhi-kuan, HAN Qing-fang, REN Xiao-long. Effects of Rainfall Harvesting Planting on Temporal and Spatial Changing of Soil Water and Temperature, and Yield of Spring Maize (Zea mays L.) in Semi-Arid Areas [J]. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096.
[11] XIE Jun, ZHAO Ya-nan, CHEN Xuan-jing, LI Dan-ping, XU Chun-li, WANG Ke, ZHANG Yue-qiang, SHI Xiao-jun. Nitrogen of Organic Manure Replacing Chemical Nitrogenous Fertilizer Improve Maize Yield and Nitrogen Uptake and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943.
[12] ZHANG Xue-lin, XU Jun, AN Ting-ting, HOU Xiao-pan, LI Chao-hai. Relationship Between Rhizosphere Soil Properties and Yield of Maize at Different Nitrogen Levels [J]. Scientia Agricultura Sinica, 2016, 49(14): 2687-2699.
[13] XIE Jun-hong, CHAI Qiang, LI Ling-ling, ZHANG Ren-zhi, NIU Yi-ning, LUO Zhu-zhu, CAI Li-qun. The Time Loading Limitation of Continuous Cropping Maize Yield Under Different Plastic Film Mulching Modes in Semi-Arid Region of Loess Plateau of China [J]. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568.
[14] . Effect of long-term application of K fertilizer on spring maize yield and soil K in northeast China [J]. Scientia Agricultura Sinica, 2007, 40(10): 2234-2240 .
[15] ,,. Modelling the relationship between summer maize NPK uptake and yield on the basis of the soil fertility indices [J]. Scientia Agricultura Sinica, 2005, 38(09): 1834-1840 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!