Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2837-2853.doi: 10.3864/j.issn.0578-1752.2023.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits

ZHANG YiZhong1,2(), ZHANG XiaoJuan1,2, LIANG Du1,2, GUO Qi1,2, FAN XinQi1,2, NIE MengEn3, WANG HuiYan1,2, ZHAO WenBo1,2, DU WeiJun4(), LIU QingShan2()   

  1. 1 Sorghum Research Institute, Shanxi Agricultural University/Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Yuci 030600, Shanxi
    2 State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Taiyuan 030031
    3 Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
    4 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2023-03-07 Accepted:2023-04-27 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 The present study analyzed the genetic variation of phenotypic traits and genetic diversity of sorghum breeding materials. Additionally, the study explored a comprehensive method for the evaluation of germplasm materials and screening of excellent sorghum germplasm to provide an important basis for sorghum germplasm innovation and variety selection.【Method】 In total, 263 sorghum germplasms from different sources were used as the test materials, and 17 phenotypic traits were identified under different environments for two years. Genetic diversity of the phenotypic traits was calculated based on the Shannon-Wiener information diversity index. The sorghum germplasms were comprehensively evaluated using the correlation analysis, principal component analysis, cluster analysis, and stepwise regression. Excellent sorghum germplasms were screened according to the phenotypic comprehensive evaluation value (F value) and target traits.【Result】 Sorghum breeding materials exhibited high genetic diversity. The diversity index distribution of different traits ranged from 0.497 to 2.075, with the diversity index of spike shape being the smallest and that of spike stalk length being the largest. The coefficient of variation of seven plant height, stem diameter, panicle length, panicle stalk length, grain weight per spike, thousand grain weight, period of duration varied in different years; the smallest variation was observed in the period of duration, followed by the panicle length, whereas the largest variation was observed in grain weight per spike, followed by stem diameter. A comprehensive evaluation of the breeding materials showed that when the cumulative contribution percentage was >80%, the number of the total principal components was 11. F value of the sorghum breeding materials was calculated using the membership function method. The average F value was found to be 0.464, with the restorer line L28 having the highest F value (0.581) and the maintainer line 72B/DORADO having the lowest the F value (0.330). Through stepwise regression, a regression equation was established, with 12 traits (main vein color, ear type, ear shape, awn character, glume coating degree, grain shape, plant type, stem diameter, ear length, grain weight per ear, 1000-grain weight, and growth period) as independent variables. The equation could be used for a comprehensive evaluation of the phenotypic traits of breeding materials of sorghum breeding materials. Based on F value clustering, 263 materials were divided into six groups. Among these, 33 materials in group Ⅳ exhibited excellent agronomic characteristics and high F value, which could be used as parent materials for material innovation and cross breeding.【Conclusion】 Sorghum phenotypic traits exhibit rich genetic variation and high genetic diversity. A total of 33 excellent germplasms were obtained. Using multivariate statistical analysis is a feasible approach to comprehensively evaluate sorghum germplasm.

Key words: sorghum, phenotypic traits, genetic diversity, comprehensive evaluation

Table 1

Value-determined criteria of 10 quality traits in sorghum materials"

性状
Traits
赋值标准Value-determined criteria
1 2 3 4 5 6 7
分蘖性T 无None 弱Weak 中Medium
主脉色MVC 白脉White 黄脉Yellow 蜡脉Wax
穗型PAT 紧Compact 中紧
Semi-compact
中散
Semi-loose
侧散
Side drooping
周散
Spreading drooping
穗形PS 纺锤形
Fusiform
牛心形
Cordate
圆筒形
Cylindrical
棒形
Clavate
杯形
Cup-shaped
球形
Globular
伞形
Umbelliform
颖壳色GC 白色White 黄色Yellow 灰色Grey 红色Red 褐色Brown 黑色Black
芒性A 无芒Awnless 有芒Awned
颖壳包被度
GRCV
包被1/4
Covered 1/4
包被1/2
Covered 1/2
包被3/4
Covered 3/4
粒色GRCL 白White 灰白Grey-white 浅黄Light yellow 黄Yellow 橙Orange 红Red 黑Black
粒形GS 圆形
Globose
椭圆形
Elliptic
卵形
Ovate
长圆形
Long-globose
株型PLT 平展型
Flat exhibition
中间型
Intermediate
紧凑型
Compact type

Table 2

Variation and distribution characteristics of qualitative traits of 263 sorghum materials"

性状
Traits
分类
Type
百分比
Percentage (%)
多样性指数
H
性状
Traits
分类
Type
百分比
Percentage (%)
多样性指数
H
分蘖性
T
无None 62.7 0.844 颖壳色
GC
白色White 0.4 1.452
弱Weak 30.1 黄色Yellow 3.8
中Medium 7.2 灰色Grey 29.3
主脉色
MVC
白脉White 32.3 1.324 红色Red 28.1
黄脉Yellow 41.8 褐色Brown 28.1
蜡脉Wax 25.9 黑色Black 10.3
芒性
A
无芒Awnless 62.7 0.660
穗型
PAT
紧Compact 36.5 1.183 有芒Awned 37.3
中紧Semi-compact 41.1 颖壳包被度
GRCV
包被1/4 Covered 1/4 69.6 0.705
中散Semi-loose 18.6 包被1/2 Covered 1/2 27.8
侧散Side drooping 0.4 包被3/4 Covered 3/4 2.6
周散Spreading drooping 3.4 粒色
GRCL
白White 19.8 1.051
穗形
PS
纺锤形Fusiform 89.7 0.497 灰白Grey-white 6.5
牛心形Cordate 1.9 浅黄Light yellow 1.1
圆筒形Cylindrical 1.9 黄Yellow 0.4
棒形Clavate 3.4 橙Orange 4.2
杯形Cup-shaped 0.4 红Red 66.1
球形Globular 1.9 黑Black 1.9
伞形Umbelliform 0.8 粒形
GS
圆形Globose 38.8 1.313
株型
PLT
平展型Flat exhibition 64.6 0.872 椭圆形Elliptic 13.3
中间型Intermediate 24.0 卵形Ovate 19.8
紧凑型Compact type 11.4 长圆形Long-globose 28.1

Table 3

Variation and distribution characteristics of quantitative traits of 263 sorghum materials"

性状
Traits
平均值
Mean
标准差
SD
最大值
Maxnus
最小值
Minnus
中间值
Medium
变异系数
CV (%)
Shapiro-Wilk正态性检验 W 正态性检验PPw F
F-value
多样性指数
H
株高 PH (cm) 125.29 27.52 268.83 69.50 125.15 21.97 0.946 0.0001 145.64** 1.671
茎粗 SD (cm) 1.66 0.37 2.83 0.67 1.67 22.29 0.997 0.9504 24.81** 1.944
穗长 PAL (cm) 26.59 3.87 40.58 14.98 26.10 14.55 0.971 0.0001 33.36** 1.806
穗柄长PEL (cm) 33.37 6.46 49.17 17.26 33.00 19.36 0.989 0.0443 17.35** 2.075
单穗粒重GWPS (g) 66.95 18.59 124.87 25.15 65.82 27.77 0.991 0.085 10.64** 1.899
千粒重 TGW (g) 28.54 5.57 45.13 15.87 28.10 19.52 0.994 0.325 355.08** 2.025
生育期 PD (d) 120.82 6.77 142.00 101.00 121.00 5.60 0.990 0.067 46.63** 1.895

Fig. 1

Distribution diagram of 7 quantitative traits of 263 sorghum breeding materials"

Table 4

Comparison of quantitative trait of sorghum materials among different types"

类型
Type
性状
Traits
株高
PH (cm)
茎粗
SD (cm)
穗长
PAL (cm)
穗柄长
PEL (cm)
单穗粒重
GWPS (g)
千粒重
TGW (g)
生育期
PD (d)
地方品种Landrace (17) 平均值Mean 151.30 1.29 25.08 37.08 55.42 26.81 118.62
标准差SD 55.57 0.30 4.00 6.89 15.58 5.03 10.24
变异系数
CV (%)
36.73 23.26 15.95 18.58 28.11 18.76 8.63
变幅Range 80.83—268.83 0.85—2.00 14.98—30.90 21.50—46.45 32.30—96.71 18.18—35.33 103—142
恢复系Restorer (163) 平均值Mean 129.46 1.67 25.46 31.32 69.98 28.78 121.52
标准差SD 24.37 0.34 2.86 5.52 19.06 5.53 6.47
变异系数
CV (%)
18.82 20.36 11.23 17.62 27.24 19.21 5.32
变幅Range 69.70—210.00 0.82—2.45 18.90—33.50 17.30—47.90 25.15—124.87 15.90—45.10 102—139
保持系Maintainer (83) 平均值Mean 111.96 1.73 29.13 36.69 62.94 28.46 119.53
标准差SD 17.22 0.39 4.10 6.48 16.41 5.65 6.28
变异系数
CV (%)
15.38 22.54 14.07 17.66 26.07 19.85 5.25
变幅Range 69.50—146.00 0.67—2.83 19.90—40.58 19.76—49.17 25.33—121.07 15.92—43.90 101—138

Table 5

Genetic variation and distribution of quantitative traits in 2015-2016"

性状
Traits
2015 2016
平均值 Mean 标准差 SD 变异系数 CV (%) 平均值 Mean 标准差 SD 变异系数 CV (%)
株高PH (cm) 124.39 26.30 21.14 126.18 30.35 24.05
茎粗SD (cm) 1.69 0.47 27.81 1.64 0.37 22.56
穗长PAL (cm) 25.96 4.25 16.37 27.20 3.94 14.49
穗柄长PEL (cm) 32.74 6.88 21.01 33.98 7.08 20.83
单穗粒重GWPS (g) 64.30 21.76 33.84 69.60 21.99 31.59
千粒重TGW (g) 27.91 5.88 21.07 29.16 6.76 23.18
生育期PD (d) 120.18 7.04 5.86 121.15 7.02 5.79

Table 6

Correlation coefficient of 17 agronomic traits in sorghum breeding materials"

性状
Trait
分蘖性T 主脉色MVC 穗型
PAT
穗形
PS
颖壳色GC 芒性
A
颖壳包被度GRCV 粒色GRCL 粒形
GS
株型
PLT
株高
PH
茎粗
SD
穗长PAL 穗柄长PEL 单穗
粒重GWPS
千粒重TGW
主脉色MVC -0.052
穗型PAT 0.152* -0.071
穗形PS -0.011 0.087 0.142*
颖壳色GC 0.076 0.131* -0.017 -0.140*
芒性A 0.093 -0.048 0.059 0.060 -0.054
颖壳包被度GRCV 0.003 -0.017 0.149* 0.017 -0.076 0.159*
粒色GRCL 0.056 -0.087 0.121* 0.079 0.140* 0.166* 0.114
粒形GS -0.042 0.028 -0.058 -0.141* 0.109 0.009 -0.066 0.238*
株型PLT 0.094 -0.184* 0.158* -0.084 -0.040 -0.082 -0.056 -0.022 0.052
株高PH 0.252** -0.099 0.192* -0.001 0.072 0.181** 0.044 -0.024 0.019 0.069
茎粗SD -0.154* 0.107 -0.131* -0.056 0.147* -0.136* -0.066 -0.148* 0.070 -0.113 0.029
穗长PAL 0.003 0.042 0.077 -0.064 0.095 -0.219* -0.118 -0.264** -0.090 -0.066 0.027 0.379**
穗柄长PEL 0.133* 0.064 0.072 -0.008 -0.024 -0.104 0.055 -0.228* -0.093 0.012 0.136* -0.026 0.358**
单穗粒重GWPS -0.103 0.117 -0.089 -0.043 0.103 -0.003 -0.157* -0.104 0.157* -0.035 0.321** 0.432** 0.194** 0.019
千粒重TGW -0.017 0.082 -0.183** -0.091 0.165** 0.015 -0.207** 0.005 0.284** -0.043 0.114 0.119 0.006 0.020 0.365**
生育期PD 0.081 0.159** -0.186** 0.039 0.082 -0.066 -0.094 -0.216** -0.008 0.200** 0.409** 0.369** 0.203** 0.105 0.423** 0.072

Table 7

Power vector (PV), eigenvalues (E), contribution rate (CR) and cumulative contribution rate (CCR) of first eleven principal components based on 17 agronomic traits"

性状
Traits
特征向量
1
PV1
特征向量
2
PV2
特征向量
3
PV3
特征向量
4
PV4
特征向量
5
PV5
特征向量
6
PV6
特征向量
7
PV7
特征向量
8
PV8
特征向量
9
PV9
特征向量10
PV10
特征向量11
PV11
分蘖性T -0.076 -0.212 0.554 -0.172 0.166 -0.428 0.008 -0.284 0.047 0.195 0.319
主脉色MVC 0.275 0.049 -0.195 0.353 0.439 -0.299 0.222 0.172 -0.524 -0.147 0.238
穗型PAT -0.273 -0.320 0.429 -0.109 0.292 0.418 0.291 0.099 -0.031 -0.195 0.129
穗形PS -0.134 -0.173 0.058 0.504 0.010 0.089 0.696 0.025 0.125 0.121 -0.182
颖壳色GC 0.264 0.276 0.132 -0.173 0.614 -0.059 -0.097 -0.382 -0.031 -0.269 -0.325
芒性A -0.229 0.191 0.450 0.391 -0.145 -0.078 -0.211 0.167 0.206 -0.458 0.301
颖壳包被度GRCV -0.304 -0.163 0.185 0.328 0.207 0.277 -0.512 0.303 -0.275 0.131 -0.212
粒色GRCL -0.368 0.496 0.274 0.081 0.346 0.219 0.076 -0.083 0.206 0.239 -0.060
粒形GS 0.127 0.608 0.137 -0.244 0.128 0.102 0.031 0.337 -0.053 0.414 0.270
株型PLT 0.198 0.066 -0.177 0.629 0.244 -0.185 -0.204 0.000 0.441 0.119 0.014
株高PH 0.304 -0.123 0.779 0.045 -0.196 0.005 -0.036 -0.047 -0.095 0.024 -0.176
茎粗SD 0.670 0.031 -0.150 0.090 0.055 0.460 -0.101 -0.128 0.027 -0.008 0.191
穗长PAL 0.521 -0.466 -0.128 -0.215 0.268 0.214 -0.023 0.071 0.331 -0.056 0.182
穗柄长PEL 0.227 -0.558 0.108 -0.195 0.220 -0.268 -0.054 0.487 0.134 0.118 -0.173
单穗粒重GWPS 0.716 0.204 0.224 0.062 -0.194 0.220 0.102 0.122 -0.068 -0.121 -0.038
千粒重TGW 0.415 0.489 0.123 -0.179 -0.047 -0.259 0.155 0.356 0.174 -0.170 -0.216
生育期PD 0.687 -0.130 0.228 0.308 -0.152 -0.071 -0.053 -0.238 -0.135 0.282 -0.019
特征值E 2.600 1.783 1.686 1.397 1.166 1.083 1.034 0.966 0.842 0.794 0.705
方差贡献率CR (%) 15.294 10.488 9.919 8.218 6.860 6.372 6.085 5.683 4.955 4.673 4.147
累计贡献率CCR (%) 15.294 25.783 35.702 43.920 50.780 57.153 63.237 68.920 73.875 78.548 82.695

Table 8

F-value of different types of representative sorghum materials"

排名
Ranking
恢复系
Restorer
F
F-value
保持系
Maintainer
F
F-value
地方品种
Landrace
F
F-value
1 L28 0.581 泸45B Lu 45B 0.572 澳洲红高粱 Australian red sorghum 0.541
2 河南R Henan R 0.579 铁10612 Tie 10612 0.571 吉林农家种 Jilin landraces 0.502
3 58R/L17R 0.574 10337B 0.567 小白高粱 Samll white sorghum 0.502
4 泸恢101/L17R
Luhui 101/L17R
0.574 XJ1B 0.567 黄粒高粱 Yellow grain sorghum 0.456
5 L17R 0.563 7B大粒/TB-2 7B Dali/TB-2 0.564 朝ZK1R Chao ZK1R 0.452
6 低秆资源/L17R
Diganziyuan/L17R
0.561 10361B 0.561 青壳洋 Qingkeyang 0.438
7 60R/L17R 0.560 2087/TB 0.558 非洲高粱2 Hegari 2 0.416
8 44F/L17R 0.555 10480B 0.548 LR418 0.404
9 304-1 0.549 L2B 0.546 黄种皮 Yellow seed coat 0.402
10 HS122 0.546 T239/2087 B 0.522 L矮-2 L low-2 0.398
11 吉16 Ji 16 0.543 7B大粒/TB-1 7B Dali/TB-1 0.520 LR417 0.395
12 吉34
Ji 34
0.543 7B大粒B//气死糜子/原8801B白
7BDaliB//Qisimizi/Yuan8801B-White
0.520 IS-1139C 0.394
13 优0-30 You 0-30 0.542 Y60B 0.506 M60826 0.385
14 R083012 0.540 2087/V4低 2087/V4-Low 0.506 LR416 0.372
15 黑恢1 Heihui 1 0.539 3268B 0.503 非洲高粱1 Hegari 1 0.362

Table 9

Correlation coefficients between 17 agronomic traits and comprehensive value (F-value)"

性状 Traits 相关系数 Correlation coefficient 性状 Traits 相关系数 Correlation coefficient
分蘖性T -0.077 株型PLT 0.369**
主脉色MVC 0.258** 株高PH 0.251**
穗型PAT -0.004 茎粗SD 0.493**
穗形PS 0.178** 穗长PAL 0.194**
颖壳色GC 0.206** 穗柄长PEL -0.037
芒性A 0.145* 单穗粒重GWPS 0.607**
颖壳包被度GRCV 0.554** 千粒重TGW 0.468**
粒色GRCL -0.074 生育期PD 0.401**
粒形GS 0.313**

Fig. 2

Clusters of 263 accessions based on 12 traits"

Table 10

The average performance of different groups"

类群
Group
Ⅰ-1 Ⅰ-2
份数Number 83 1 4 34 33 31 77
株高PH (cm) 122.83 292.33 220.92 155.19 157.12 82.98 114.28
茎粗SD (cm) 1.61 0.93 1.20 1.44 1.49 1.24 1.33
穗长PAL (cm) 26.73 25.00 26.72 25.14 26.76 23.97 25.93
穗柄长PEL (cm) 34.39 40.67 36.88 33.84 33.94 29.03 35.46
单穗粒重GWPS (g) 83.24 69.03 61.68 68.93 99.62 44.38 54.41
千粒重TGW (g) 29.40 29.13 25.97 27.72 30.72 26.20 26.00
生育期PD (d) 123 120 130 123 126 114 119
FF-value 0.486 0.456 0.432 0.466 0.512 0.419 0.439
[1]
CHEGE P, LANTOS C, PAUK J. Retrospect on in vitro androgenesis of Sorghum (Sorghum bicolor). Plant Breeding, 2020, 139: 1043-1051.

doi: 10.1111/pbr.v139.6
[2]
CHAKRABARTY S, KRAVCOV N, SCHAFFASZ A, SNOWDON R J, WITTKOP B, WINDPASSINGER S. Genetic architecture of novel sources for reproductive cold tolerance in Sorghum. Frontiers in Plant Science, 2021, 12: 772177.

doi: 10.3389/fpls.2021.772177
[3]
王晓鸣, 邱丽娟, 景蕊莲, 任贵兴, 李英慧, 李春辉, 秦培友, 谷勇哲, 李龙. 作物种质资源表型性状鉴定评价: 现状与趋势. 植物遗传资源学报, 2022, 23(1): 12-20.

doi: 10.13430/j.cnki.jpgr.20210802001
WANG X M, QIU L J, JING R L, REN G X, LI Y H, LI C H, QIN P Y, GU Y Z, LI L. Evaluation on phenotypic traits of crop germplasm: Status and development. Journal of Plant Genetic Resources, 2022, 23(1): 12-20. (in Chinese)
[4]
李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 471-482.

doi: 10.3864/j.issn.0578-1752.2021.03.002
LI S G, LIU M, LIU F, ZOU J Q, LU X C, DIAO X M. Current status and future prospective of Sorghum production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 471-482. (in Chinese)
[5]
ASSEFA A. Genetic diversity analysis of lowland Sorghum [Sorghum bicolor (L.) Moench] landraces under moisture stress conditions and breeding for drought tolerance in North Eastern Ethiopia[D]. South Africa, Pietermaritzburg: University of KwaZulu-Natal, 2012.
[6]
MOFOKENG A M, SHIMELIS H A, LAING M D. Agromorphological diversity of South African sorghum genotypes assessed through quantitative and qualitative phenotypic traits. South African Journal of Plant and Soil, 2017, 34(5): 361-370.

doi: 10.1080/02571862.2017.1319504
[7]
BOYLES R E, COOPER E A, MYERS M T, BRENTON Z, RAUH B L, MORRIS G P, KRESOVICH S. Genome-wide association studies of grain yield components in diverse Sorghum germplasm. The Plant Genome, 2016, 9(2): 1-17.
[8]
徐晓, 任根增, 赵欣蕊, 常金华, 崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价. 中国农业科学, 2022, 55(11): 2092-2108.

doi: 10.3864/j.issn.0578-1752.2022.11.002
XU X, REN G Z, ZHAO X R, CHANG J H, CUI J H. Accurate identification and comprehensive evaluation of panicle phenotypic traits of landraces and cultivars of Sorghum bicolor (L.) Moench in China. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108. (in Chinese)
[9]
赵欣蕊, 任根增, 韩永亮, 杨溥原, 徐晓, 白玉哲, 赵栋婷, 任玉双, 张玲玉, 王志博, 吴盟, 陈东明, 常金华, 崔江慧. 高粱株型表型性状精准鉴定及综合评价. 植物遗传资源学报, 2022, 23(6): 1644-1659.

doi: 10.13430/j.cnki.jpgr.20220407004
ZHAO X R, REN G Z, HAN Y L, YANG P Y, XU X, BAI Y Z, ZHAO D T, REN Y S, ZHANG L Y, WANG Z B, WU M, CHEN D M, CHANG J H, CUI J H. Accurate identification and comprehensive evaluation of phenotypic traits of sorghum plant type. Journal of Plant Genetic Resources, 2022, 23(6): 1644-1659. (in Chinese)
[10]
高旭, 冯周, 丁延庆, 徐建霞, 曹宁, 程斌, 汪灿, 张立异. 257份高粱种质资源农艺性状的遗传多样性. 西南农业学报, 2023, 36(1): 1-10.
GAO X, FENG Z, DING Y Q, XU J X, CAO N, CHENG B, WANG C, ZHANG L Y. Genetic diversity of agronomic traits of 257 sorghum germplasm resource. Southwest China Journal of Agricultural Sciences, 2023, 36(1): 1-10. (in Chinese)
[11]
赵威军, 张福耀, 常玉卉, 张阳, 邵荣峰, 李金梅. 甜高粱品系的抗倒伏性评价及相关分析. 植物遗传资源学报, 2013, 14(1): 58-64.
ZHAO W J, ZHANG F Y, CHANG Y H, ZHANG Y, SHAO R F, LI J M. Evaluation and correlation analysis of lodging resistance on sweet Sorghum lines. Journal of Plant Genetic Resources, 2013, 14(1): 58-64. (in Chinese)
[12]
陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LU P. Descriptors and Data Standard for Sorghum [Sorghum bicolor (L.) Moench]. Beijing: China Agriculture Press, 2006. (in Chinese)
[13]
TRUONG S K, MCCORMICK R F, ROONEY W L, MULLET J E. Harnessing genetic variation in leaf angle to increase productivity of Sorghum bicolor. Genetics, 2015, 201(3): 1229-1238.

doi: 10.1534/genetics.115.178608
[14]
胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38(5): 829-839.
HU B L, WAN Y, LI X, LEI J G, LUO X D, YAN W G, XIE J K. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00829
[15]
代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016, 49(19): 3694-3708.

doi: 10.3864/j.issn.0578-1752.2016.19.003
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708. (in Chinese)
[16]
陈艳丽, 田承华, 田怀东. 国内外高粱种质资源形态性状与农艺性状的多样性分析. 山西农业科学, 2015, 43(4): 378-382.
CHEN Y L, TIAN C H, TIAN H D. Diversity analysis of morphological and agronomic characters of Sorghum at home and abroad. Journal of Shanxi Agricultural Sciences, 2015, 43(4): 378-382. (in Chinese)
[17]
冯国郡, 李宏琪, 叶凯, 李桂英, 涂振东, 郭建富. 甜高粱种质资源在新疆的多样性表现及聚类分析. 植物遗传资源学报, 2012, 13(3): 398-405.

doi: 10.13430/j.cnki.jpgr.2012.03.012
FENG G J, LI H Q, YE K, LI G Y, TU Z D, GUO J F. Genetic diversity and cluster analysis of sweet Sorghum germplasm in Xinjiang. Journal of Plant Genetic Resources, 2012, 13(3): 398-405. (in Chinese)
[18]
何继红, 董孔军, 刘敏轩, 任瑞玉, 张磊, 杨天育, 陆平. 甘肃省新征集高粱地方品种资源的鉴定与遗传多样性评价. 植物遗传资源学报, 2015, 16(3): 479-484.

doi: 10.13430/j.cnki.jpgr.2015.03.007
HE J H, DONG K J, LIU M X, REN R Y, ZHANG L, YANG T Y, LU P. Identification and genetic diversity evaluation of new-collective germplasm of Sorghum in Gansu Province. Journal of Plant Genetic Resources, 2015, 16(3): 479-484. (in Chinese)
[19]
周瑜, 李泽碧, 黄娟, 吴毓, 张亚勤, 张志良, 张晓春. 高粱种质资源表型性状的遗传多样性分析. 植物遗传资源学报, 2021, 22(3): 654-664.

doi: 10.13430/j.cnki.jpgr.20200922001
ZHOU Y, LI Z B, HUANG J, WU Y, ZHANG Y Q, ZHANG Z L, ZHANG X C. Genetic diversity of Sorghum germplasms based on phenotypic traits. Journal of Plant Genetic Resources, 2021, 22(3): 654-664. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20200922001
[20]
王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42(1): 19-30.
WANG H G, JIA G Q, ZHI H, WEN Q F, DONG J L, CHEN L, WANG J J, CAO X N, LIU S C, WANG L, QIAO Z J, DIAO X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016, 42(1): 19-30. (in Chinese)

doi: 10.3724/SP.J.1006.2016.00019
[21]
刘旭, 黎裕, 李立会, 贾继增. 作物种质资源学理论框架与发展战略. 植物遗传资源学报, 2023, 24(1): 1-10.

doi: 10.13430/j.cnki.jpgr.20221127001
LIU X, LI Y, LI L H, JIA J Z. Theoretical framework and development strategy of crop germplasm resources science. Journal of Plant Genetic Resources, 2023, 24(1): 1-10. (in Chinese)
[22]
卢庆善. 高粱学. 北京: 中国农业出版社, 1999: 25-26.
LU Q S. Sorghum. Beijing: China Agriculture Press, 1999: 25-26. (in Chinese)
[23]
井赵斌, 潘大建, 曲延英, 范芝兰, 陈雨, 陈建酉, 陈芬, 李晨. AB-QTL分析法及在水稻优异基因资源发掘和利用中的应用. 分子植物育种, 2008, 6(4): 637-644.
JING Z B, PAN D J, QU Y Y, FAN Z L, CHEN Y, CHEN J Y, CHEN F, LI C. Application of AB-QTL to exploiting and utilizing the elite genes in wild rice. Molecular Plant Breeding, 2008, 6(4): 637-644. (in Chinese)
[24]
汪灿, 周棱波, 张国兵, 徐燕, 张立异, 高旭, 高杰, 姜讷, 邵明波. 酒用糯高粱资源成株期抗旱性鉴定及抗旱指标筛选. 中国农业科学, 2017, 50(8): 1388-1402.

doi: 10.3864/j.issn.0578-1752.2017.08.004
WANG C, ZHOU L B, ZHANG G B, XU Y, ZHANG L Y, GAO X, GAO J, JIANG N, SHAO M B. Drought resistance identification and drought resistance indices screening of liquor-making waxy sorghum resources at adult plant stage. Scientia Agricultura Sinica, 2017, 50(8): 1388-1402. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.08.004
[25]
宝力格, 陆平, 史梦莎, 许月, 刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定. 作物学报, 2020, 46(5): 734-753.

doi: 10.3724/SP.J.1006.2020.94138
BAO L G, LU P, SHI M S, XU Y, LIU M X. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages. Acta Agronomica Sinica, 2020, 46(5): 734-753. (in Chinese)

doi: 10.3724/SP.J.1006.2020.94138
[26]
余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 王蒂, 张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018, 44(1): 63-74.
YU B, YANG H Y, WANG L, LIU Y H, BAI J P, WANG D, ZHANG J L. Genetic diversity analysis and comprehensive assessment of phenotypic traits in introduced potato germplasm resources in arid and semi-arid area. Acta Agronomica Sinica, 2018, 44(1): 63-74. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00063
[27]
杨涛, 黄雅婕, 李生梅, 任丹, 崔进鑫, 庞博, 于爽, 高文伟. 海岛棉种质资源表型性状的遗传多样性分析及综合评价. 中国农业科学, 2021, 54(12): 2499-2509.

doi: 10.3864/j.issn.0578-1752.2021.12.002
YANG T, HUANG Y J, LI S M, REN D, CUI J X, PANG B, YU S, GAO W W. Genetic diversity and comprehensive evaluation of phenotypic traits in sea-island cotton germplasm resources. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.12.002
[28]
白羿雄, 郑雪晴, 姚有华, 姚晓华, 吴昆仑. 青稞种质资源表型性状的遗传多样性分析及综合评价. 中国农业科学, 2019, 52(23): 4201-4214.

doi: 10.3864/j.issn.0578-1752.2019.23.002
BAI Y X, ZHENG X Q, YAO Y H, YAO X H, WU K L. Genetic diversity analysis and comprehensive evaluation of phenotypic traits in hulless barley germplasm resources. Scientia Agricultura Sinica, 2019, 52(23): 4201-4214. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.23.002
[29]
周福平, 柳青山, 张一中, 张晓娟, 邵强. 优质糯高粱杂交种晋糯3号的选育. 中国种业, 2021(2): 89-91.
ZHOU F P, LIU Q S, ZHANG Y Z, ZHANG X J, SHAO Q. Breeding of high-quality waxy sorghum hybrid Jinnuo 3. China Seed Industry, 2021(2): 89-91. (in Chinese)
[30]
王海. 红糯16号高粱在淮北地区夏播生产表现及高产栽培技术. 安徽农学通报, 2020, 26(24): 106-107, 117.
WANG H. Production performance and high-yield and high-efficiency cultivation techniques of Hongnuo 16 Sorghum in Huaibei area. Anhui Agricultural Science Bulletin, 2020, 26(24): 106-107, 117. (in Chinese)
[31]
邵强, 周福平, 张晓娟, 张一中, 乔婧, 柳青山. 晋杂32号的选育及栽培技术要点. 山西农业科学, 2013, 41(12): 1305-1306, 1309.
SHAO Q, ZHOU F P, ZHANG X J, ZHANG Y Z, QIAO J, LIU Q S. Selection and cultivation technology of Sorghum hybrid Jinza 32. Journal of Shanxi Agricultural Sciences, 2013, 41(12): 1305-1306, 1309. (in Chinese)
[32]
倪先林, 赵甘霖, 刘天朋, 胡炯凌, 李元, 陈国民, 汪小楷, 丁国祥. 优质高配合力糯质高粱不育系45A的选育与应用. 园艺与种苗, 2014, 34(11): 11-14.
NI X L, ZHAO G L, LIU T P, HU J L, LI Y, CHEN G M, WANG X K, DING G X. Breeding and application of high quality and high combining ability glutinous Sorghum sterile line 45A. Horticulture & Seed, 2014, 34(11): 11-14. (in Chinese)
[33]
李春辉, 王天宇, 黎裕. 基于地方品种的种质创新: 现状及展望. 植物遗传资源学报, 2019, 20(6): 1372-1379.

doi: 10.13430/j.cnki.jpgr.20190516001
LI C H, WANG T Y, LI Y. Germplasm innovation of landraces: Current status and future prospect. Journal of Plant Genetic Resources, 2019, 20(6): 1372-1379. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20190516001
[1] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[2] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[3] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[6] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[7] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[8] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[9] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[10] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[11] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[12] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[13] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[14] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[15] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!