Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3185-3199.doi: 10.3864/j.issn.0578-1752.2022.16.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil

YANG Jing(),ZHANG He,LI ShuangShuang,LI GuiHua(),ZHANG JianFeng()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory of Cultivated Land Cultivation Technology, Beijing 100081
  • Received:2021-07-19 Accepted:2021-09-14 Online:2022-08-16 Published:2022-08-11
  • Contact: GuiHua LI,JianFeng ZHANG E-mail:yangjing9604@163.com;liguihua@caas.cn;zhangjianfeng@caas.cn

Abstract:

【Objective】 Soil fauna is an important component of terrestrial ecosystem, therefore, the studying of the relationship between soil fauna and amendments will help reveal the mechanism of amendments to soil fauna.【Method】During 2016-2019, the characteristics of the soil fauna community in the soil surface layer (0-20 cm) of wheat and maize rotation area with different amendments were investigated. There were four treatments, including no amendment (CK), organic amendment 15 t·hm-2 (YJ), inorganic amendment 2.25 t·hm-2 (WJ) and organic amendment 15 t·hm-2+inorganic amendment 2.25 t·hm-2 (YW). 【Result】During the study period, 4 351 soil fauna belonging to 8 classes, 20 orders, 41 families, and 44 classes were collected, of which 28 families were macrofauna, and the dominant groups were Asilidae and Myrmicinae, accounting for 62.9% of the total captured soil macrofauna. In another, 14 families soil meso-and micro-fauna were collected, and the dominant groups were Acarid and Oribatida, accounting for 93.0% of the total captured soil meso- and micro-fauna. Soil fauna mainly belonged to saprozoic and omnivores. The data indicated that the total number and taxa of soil fauna collected during the experiment was the highest under WJ, and the lowest under YJ. The number of Scutigerellidae, Sejidae and Japygidae decreased and their richness index decreased, while the mites increased, and the dominance index was high under amendments comparing with CK. There were significant differences in individual number and diversity index of small and medium animal communities among different years (P<0.05), and the number of individuals showed a gradually increasing trend; but the Jaccard index (q) of soil fauna was less than 0.50 among all treatments, and the similarity of macrofauna community was lower than that of meso- and micro- community. The ecological niche widths of meso- and micro- soil fauna, such as Acarid, Oribatida, and Onychiuridae, were higher than those of macrofauna, such as Myrmicinae. However, the niche overlap index was higher than 0.97, indicating that the application of amendments increased the common resources of soil fauna. The NMDS analysis showed that the soil animal community in wheat season 2018 was significantly different from that in other years, whereas, in maize season of 2016, 2018, and 2019, there were different. The results of RDA indicated that soil TN and AK were significantly correlated with Acarid, Oribatida, Onychiuridae, Enicocephalidae, Carabidaein wheat season (P<0.05); the soil organic matter and pH were main factors influencing Acarid, Enicocephalidae, Sciaridae, and Asilidae in maize season (P<0.05). The PRC analysis showed that the relative abundance of Uropodidae peaked in October 2017, and that of Asilidae and Myrmicinae peaked in October 2016 under YJ. The relative abundance of Onychiuridae, Acarid, and Oribatida reached a peak in October 2016 under the combined application of organic and inorganic amendments, and that of Phlaeothripidae and Enicocephalidae appeared in 2019 and peaked in October 2019, demonstrating the incongruity of soil fauna groups to the amendments. 【Conclusion】The variation of soil fauna community and diversity in different years were much more profound than amendments, and the amendments modified soil fauna community and diversity mainly by changing soil pH, SOM, and TN in a fluvo-aquic sandy soil.

Key words: soil amendment, macrofauna, meso-and micro-fauna, community composition, diversity, ecological niche

Table 1

Basic physical and chemical properties of the amendments"

含水率
Water content (%)
总氮
Total N (g·kg-1)
总磷
Total P
(g·kg-1)
总钾
Total K
(g·kg-1)
pH 有机碳
SOC
(g·kg-1)
吸水率
Water absorption (%)
阳离子交换量
CEC (mol·100g-1)
有机改良剂
Organic amendment
13.2 14.70 21.05 22.88 7.75 73.74
无机改良剂
Inorganic amendment
68.50 82.30 10.55 8.40 21.96 202.0 21.96

Table 2

The composition of soil arthropod community in the study area from 2016 to 2019"

编号No. 名称
Taxa
动物体型
Size
处理 Treatments 丰度Percent 优势度
Degree of dominance
功能群
Guild
CK YJ WJ YW
1 中气门亚目Mesostigmata
Acarid
中小型动物
Meso/Micro fauna
770 597 838 793 70.76 ** 腐食性
Saprozoic
2 绥螨科
Sejidae
中小型动物
Meso/Micro fauna
中小型动物
Meso/Micro fauna
2 2 1 0.12 腐食性
Saprozoic
3 尾足螨科
Uropodidae
中小型动物
Meso/Micro fauna
2 6 4 0.28 腐食性
Saprozoic
4 甲螨亚目
Oribatida
中小型动物
Meso/Micro fauna
234 222 257 231 22.27 ** 腐食性
Saprozoic
5 前气门亚目Prostigmata 跗线螨科
Tarsonemidae
中小型动物
Meso/Micro fauna
2 0.05 腐食性
Saprozoic
6 矮蒲螨科
Pygmephoridae
中小型动物
Meso/Micro fauna
1 0.02 腐食性
Saprozoic
7 弹尾目
Collembola
棘跳科
Onychiuridae
中小型动物
Meso/Micro fauna
56 51 80 46 5.50 * 杂食性
Omnivores
8 长角跳科
Entomobryidae
中小型动物
Meso/Micro fauna
3 8 3 1 0.35 杂食性
Omnivores
9 跳虫科
Poduridae
中小型动物
Meso/Micro fauna
5 5 6 2 0.42 杂食性
Omnivores
10 等节跳科
Isotomidae
中小型动物
Meso/Micro fauna
1 0.02 杂食性
Omnivores
11 综合纲
Symphyla
幺蚰科
Scutigerellidae
中小型动物
Meso/Micro fauna
1 2 0.07 腐食性
Saprozoic
12 幺蚣科
Scolopenyomidae
中小型动物
Meso/Micro fauna
1 0.88 腐食性
Saprozoic
13 双尾目
Diplura
副蛱??科
Parajapygidae
中小型动物
Meso/Micro fauna
1 0.02 杂食性Omnivores
14 蛱??科
Japygidae
中小型动物
Meso/Micro fauna
2 0.05 杂食性Omnivores
15 古蚖目
Eosentomata
古蚖科
Eosentomidae
中小型动物
Meso/Micro fauna
1 0.02 杂食性
Omnivores
16 蚖目
Acerentomata
夕蚖科
Hesperentomidae
中小型动物
Meso/Micro fauna
1 0.02 杂食性
Omnivores
17 鞘翅目成虫Coleoptera adult 步甲科
Carabidae
大型动物
Macrofauna
1 2 3 1 6.14 * 捕食性
Predators
18 葬甲科
Silphidae
大型动物
Macrofauna
1 0.88 腐食性
Saprozoic
19 拟花蚤科
Scraptidae
大型动物
Macrofauna
1 0.88 植食性
Phytophage
20 扁甲科
Cucujidae
大型动物
Macrofauna
1 0.88 菌食性
Fungivorousforms
21 隐翅甲科
Staphylinidae
大型动物
Macrofauna
1 0.88 捕食性
Predators
22 长角象甲科
Anthribidae
大型动物
Macrofauna
1 1 1.75 * 植食性
Phytophage
23 小覃甲科Mycetophagidae 大型动物
Macrofauna
1 0.88 植食性
Phytophage
编号No. 名称
Taxa
动物体型
Size
处理 Treatments 丰度Percent 优势度
Degree of dominance
功能群
Guild
CK YJ WJ YW
24 象甲科
Curculionidae
大型动物
Macrofauna
1 0.88 植食性
Phytophage
25 鞘翅目幼虫Coleoptera larvae 花萤科
Cantharidae
大型动物
Macrofauna
1 0.88 捕食性
Predators
26 阎甲科
Histeridae
大型动物
Macrofauna
1 0.88 捕食性
Predators
27 舟蛾幼虫
Notodonidae
大型动物
Macrofauna
1 0.88 植食性
Phytophage
28 食虫虻科
Asilidae
大型动物
Macrofauna
3 10 1 3 14.91 ** 捕食性
Predators
29 尖眼覃蚊科
Sciaridae
大型动物
Macrofauna
1 2 1 3.51 * 植食性
Phytophage
30 长足虻科
Dolichopodidae
大型动物
Macrofauna
1 0.88 杂食性
Omnivores
31 蜘蛛目
Araneae
光盔蛛科
Liocranidae
大型动物
Macrofauna
1 0.88 捕食性
Predators
32 捕鸟蛛科
Theraphosidae
大型动物
Macrofauna
1 0.88 捕食性
Predators
33 半翅目
Hemiptera
奇蝽科
Enicocephalidae
大型动物
Macrofauna
2 2 3.54 * 植食性
Phytophage
34 宽蝽科
Veliidae
大型动物
Macrofauna
1 0.88 捕食性
Predators
35 裂盾目
Schizomida
大型动物
Macrofauna
1 0.88 捕食性
Predators
36 膜翅目
Hymenoptera
切叶蚁亚科
Myrmicinae
大型动物
Macrofauna
20 30 4 47.37 ** 杂食性
Omnivores
37 细猛蚁亚科
Leptanillinae
大型动物
Macrofauna
1 0.88 杂食性
Omnivores
38 猛蚁亚科
Ponerinae
大型动物
Macrofauna
1 0.88 杂食性
Omnivores
39 等足目
Isopoda
瘤潮虫科
Tylidae
大型动物
Macrofauna
1 0.88 杂食性
Omnivores
40 缨翅目
Thysanoptera
管蓟马科
Phlaeothripidae
大型动物
Macrofauna
1 1 1 2.63 * 植食性
Phytophage
41 石蜈蚣目Lithobiomorpha 石蜈蚣科
Lithobiidae
大型动物
Macrofauna
1 0.88 Pr捕食性
Predators
42 端足目
Amphipoda
大型动物
Macrofauna
1 0.88 腐食性
Saprozoic
43 ??目
Psocoptera
鼠??科
Myopsocidae
大型动物
Macrofauna
1 1 1.75 * 植食性
Phytophage
44 直翅目
Orthoptera
蝗总科
Acridoidea
大型动物
Macrofauna
1 0.88 植食性
Phytophage
中小型个体数 Meso/Micro individuals 1077 895 1191 1075
中小型类群数Meso/Micro group 11 10 8 7
大型个体数 Macro individuals 13 37 45 18
大型类群数 Macro group 10 8 13 12

Table 3

Effects of different amendments on soil fauna community composition in the study area from 2016 to 2019"

年份
Year
处理 Treatments
CK YJ WJ YW
中小型动物
Meso/Micro
fauna
个体数Individuals 2016 31.33±4.04aD 38.66±5.13aD 34.66±20.13aC 53.00±17.05aC
2017 71.33±6.50bC 103.33±15.27aB 99.33±7.63aB 108.66±1.52aA
2018 99.00±15.09aB 70.00±3.60bC 108.66±20.03aB 83.00±9.64abB
2019 128.33±14.01bA 132.00±21.07bA 172.00±20.07aA 115.33±1.52bA
类群数
Groups
2016 4.00±0.00aB 4.33±0.57aB 4.33±0.57aB 5.00±0.00aA
2017 6.33±1.52aBC 5.00±1.00aB 6.33±0.57aA 6.00±0.00aA
2018 5.33±1.15aB 5.00±0.00aB 5.66±0.57aAB 5.33±0.57aA
2019 8.00±0.00aA 8.33±1.15aA 7.33±1.52aA 5.33±0.58aA
大型动物
Macro fauna
个体数Individuals 2016 0.33±0.57aA 3.33±0.57aA 2.33±1.52aA 2.33±1.52aA
2017 0.66±0.57aA 0.33±0.57aB 1.66±2.08aA 1.66±2.88aA
2018 1.00±0.00aA 1.00±0.00aB 1.66±0.57aA 0.66±0.57aA
2019 2.00±1.00aA 2.66±0.57aA 1.66±1.52aA 1.33±1.52aA
类群数
Groups
2016 0.33±0.57aA 3.00±1.00aA 2.00±1.00aA 2.33±1.52aA
2017 0.66±0.57aA 0.33±0.57aB 1.66±2.08aA 1.66±2.88aA
2018 1.00±0.00aA 1.00±0.00aB 2.00±1.00aA 0.66±0.57aA
2019 2.00±1.00aA 2.33±0.57aA 1.33±1.15aA 1.33±1.52aA

Table 4

Effects of different amendments on the diversity of meso-and micro-fauna"

多样性指数
Diversity indexes
年份
Year
处理 Treatments
CK YJ WJ YW
小麦季
Wheat season
Shannon-Wiener指数
Shannon-Wiener index, H'
2016 0.50±0.04aA 0.29±0.10bB 0.58±0.05aA 0.48±0.07aA
2017 0.53±0.03abA 0.57±0.05aA 0.54±0.01abA 0.48±0.04bA
2018 0.32±0.04bB 0.28±0.00bB 0.41±0.05aB 0.43±0.04aA
2019 0.55±0.05aA 0.57±0.06aA 0.34±0.03bC 0.51±0.07aA
Pielou均匀度指数
Pielou index, E
2016 0.66±0.05aA 0.58±0.06aA 0.64±0.06aA 0.64±0.08aA
2017 0.58±0.07aA 0.62±0.05aA 0.58±0.09aA 0.56±0.08aA
2018 0.43±0.05bB 0.43±0.09bB 0.55±0.06abA 0.58±0.05aA
2019 0.32±0.07aB 0.36±0.02aB 0.25±0.04aB 0.35±0.08aB
Margalef丰富度指数
Margalef index, D
2016 0.30±0.04aC 0.34±0.09aB 0.50±0.26aA 0.36±0.10aA
2017 0.48±0.01aB 0.32±0.09bB 0.49±0.05aA 0.31±0.06bA
2018 0.35±0.02aC 0.44±0.14aAB 0.35±0.12aA 0.34±0.04aA
2019 0.63±0.13aA 0.63±0.13aA 0.38±0.00aA 0.47±0.15aA
Simpson优势度指数
Simpson index, C
2016 0.43±0.03aB 0.51±0.15aA 0.50±0.16aA 0.45±0.06aA
2017 0.43±0.04aB 0.42±0.05aA 0.40±0.04aA 0.47±0.02aA
2018 0.61±0.07aA 0.55±0.09aA 0.49±0.06aA 0.50±0.03aA
2019 0.54±0.06aA 0.47±0.07aA 0.47±0.08aA 0.47±0.09aA
玉米季
Maize season
Shannon-Wiener指数
Shannon-Wiener index, H'
2016 0.51±0.02aAB 0.55±0.06aAB 0.50±0.06aA 0.60±0.04aA
2017 0.46±0.08aAB 0.48±0.02aB 0.52±0.06aA 0.55±0.04aA
2018 0.61±0.07aA 0.64±0.05aA 0.56±0.05aA 0.60±0.01aA
2019 0.32±0.12bB 0.60±0.08aAB 0.49±0.05abA 0.43±0.06abB
Pielou均匀度指数
Pielou index, E
2016 0.68±0.02aB 0.65±0.07aA 0.59±0.10aA 0.56±0.04aA
2017 0.44±0.08aB 0.55±0.09aA 0.49±0.06aB 0.47±0.08aAB
2018 0.50±0.03bA 0.52±0.04bA 0.62±0.05aA 0.51±0.05bA
2019 0.38±0.10aB 0.49±0.02aA 0.42±0.01aB 0.40±0.06aB
Margalef丰富度指数
Margalef index, D
2016 0.34±0.04aB 0.38±0.07aB 0.37±0.08aB 0.44±0.03aB
2017 0.51±0.18aB 0.38±0.09aB 0.42±0.02aB 0.52±0.07aB
2018 0.47±0.09aB 0.49±0.16aB 0.42±0.06aB 0.44±0.07aB
2019 0.89±0.05aA 0.90±0.02aA 0.84±0.04aA 0.90±0.03aA
Simpson优势度指数
Simpson index, C
2016 0.42±0.02aA 0.41±0.02aA 0.45±0.04aA 0.39±0.03aA
2017 0.47±0.09aA 0.46±0.07aA 0.46±0.04aA 0.51±0.09aA
2018 0.42±0.05aA 0.46±0.09aA 0.41±0.09aA 0.48±0.10aA
2019 0.54±0.10aA 0.44±0.05aA 0.52±0.02aA 0.54±0.04aA

Table 5

The niche width and niche overlap index of prominent soil fauna under different amendments"

名称
Taxa
小麦季Wheat season 玉米季Maize season
CK YJ WJ YW CK YJ WJ YW
螨Acarid 0.996 0.987 0.964 0.987 0.972 1.000 0.987 0.998
甲螨亚目Oribatida 0.998 0.952 0.955 0.992 0.991 0.808 0.994 0.952
棘跳科Onychiuridae 0.887 0.934 0.983 0.803 0.978 0.906 0.967 0.994
食虫虻科Asilidae 0.631 0.985 0.000 0.000 0.000 1.000 0.631
切叶蚁亚科Myrmicinae 0.000 0.296 0.631 0.631 0.296 0.631
生态位重叠指数 Niche overlap 0.983 0.972 0.982 0.985 0.991 0.979 0.985 0.993

Fig. 1

Soil fauna community composition in different years"

Fig. 2

Sequence diagram for redundant analysis of soil fauna and soil physicochemical property factors"

Fig. 3

Principle respond curve of different amendments to treat dominant soil fauna multiple degrees"

[1] 孙蓟锋, 王旭. 土壤调理剂的研究和应用进展. 中国土壤与肥料, 2013(1): 1-7.
SUN J F, WANG X. Advance in research and application of soil conditioner. Soil and Fertilizer Sciences in China, 2013(1): 1-7. (in Chinese)
[2] 杨丽丽, 董肖杰, 郑伟. 土壤改良剂的研究利用现状. 河北林业科技, 2012(2): 27-30, 37.
YANG L L, DONG X J, ZHENG W. Current status of research and utilization of soil conditioner. The Journal of Hebei Forestry Science and Technology, 2012(2): 27-30, 37. (in Chinese)
[3] DONG W H, YIN X Q. Transformation of carbon and nitrogen by earthworms in the decomposition processes of broad-leaved litters. Chinese Geographical Science, 2007, 17(2): 166-172.
doi: 10.1007/s11769-007-0166-y
[4] FÖRSTER B, VAN GESTEL C A M, KOOLHAAS J E, NENTWIG G, RODRIGUES J M L, SOUSA J P, JONES S E, KNACKER T. Ring-testing and field-validation of a terrestrial model ecosystem (TME) - an instrument for testing potentially harmful substances: effects of carbendazim on organic matter breakdown and soil fauna feeding activity. Ecotoxicology, 2004, 13(1): 129-141.
doi: 10.1023/B:ECTX.0000012410.99020.97
[5] BIRKHOFER K, DIEKÖTTER T, BOCH S, FISCHER M, MÜLLER J, SOCHER S, WOLTERS V. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biology and Biochemistry, 2011, 43(10): 2200-2207.
doi: 10.1016/j.soilbio.2011.07.008
[6] MULDER C, BOIT A, BONKOWSKI M, DE RUITER P C, MANCINELLI G, VAN DER HEIJDEN M G A, VAN WIJNEN H J, VONK J A, RUTGERS M. A belowground perspective on Dutch agroecosystems:how soil organisms interact to support ecosystem services. Advances in Ecological Research. Amsterdam: Elsevier, 2011: 277-357.
[7] UGARTE C M, ZABORSKI E R, WANDER M M. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biology and Biochemistry, 2013, 64: 103-113.
doi: 10.1016/j.soilbio.2013.03.035
[8] 姚远, 巫厚长, 司友斌. 稻田节肢动物群落对3种土壤改良剂的响应. 中国生态农业学报, 2011, 19(2): 372-376.
doi: 10.3724/SP.J.1011.2011.00372
YAO Y, WU H Z, SI Y B. Response of arthropod community in rice field to soil ameliorates. Chinese Journal of Eco-Agriculture, 2011, 19(2): 372-376. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00372
[9] LÓPEZ-HERNÁNDEZ D, ARAUJO Y, LÓPEZ A, HERNÁNDEZ- VALENCIA I, HERNÁNDEZ C. Changes in soil properties and earthworm populations induced by long-term organic fertilization of a sandy soil in the venezuelan Amazonia. Soil Science, 2004, 169(3): 188-194.
doi: 10.1097/01.ss.0000122524.03492.b7
[10] 李媛媛, 许子乾, 徐涵湄, 陈月琴, 阮宏华. 施肥对陆地生态系统土壤动物影响的研究述评. 南京林业大学学报(自然科学版), 2018, 42(5): 179-184.
LI Y Y, XU Z Q, XU H M, CHEN Y Q, RUAN H H. Review of the effect of fertilizer application on the soil fauna in soil ecosystems. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(5): 179-184. (in Chinese)
[11] 吴宪, 张婷, 孔云, 李刚, 赵建宁, 杨殿林, 张贵龙, 王丽丽, 修伟明. 配施有机物料对华北小麦-玉米轮作体系土壤节肢动物的影响. 生态学杂志, 2019, 38(12): 3689-3696.
WU X, ZHANG T, KONG Y, LI G, ZHAO J N, YANG D L, ZHANG G L, WANG L L, XIU W M. Effects of organic material application on soil arthropods in wheat-maize rotation system in North China. Chinese Journal of Ecology, 2019, 38(12): 3689-3696. (in Chinese)
[12] 战丽莉, 许艳丽, 韩晓增, 裴希超, 赵刚, 王建华. 施肥方式对土壤甲螨群落结构影响. 华北农学报, 2013, 28(2): 214-218.
ZHAN L L, XU Y L, HAN X Z, PEI X C, ZHAO G, WANG J H. Effect of fertilization on oribatid mite community in farmland. Acta Agriculturae Boreali-Sinica, 2013, 28(2): 214-218. (in Chinese)
[13] 朱新玉, 朱波. 不同施肥方式对紫色土农田土壤动物主要类群的影响. 中国农业科学, 2015, 48(5): 911-920.
ZHU X Y, ZHU B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Scientia Agricultura Sinica, 2015, 48(5): 911-920. (in Chinese)
[14] 杨劲松, 余世鹏, 刘广明, 李冬顺. 黄淮海平原高水肥改良中低产田耕地质量动态评估. 干旱地区农业研究, 2009, 27(3): 232-238, 266.
YANG J S, YU S P, LIU G M, LI D S. Assessment of farmland quality in the improvement process of mid-low yield lands under high water-fertilizer treatments in Huang-Huai-Hai Plain. Agricultural Research in the Arid Areas, 2009, 27(3): 232-238, 266. (in Chinese)
[15] CHAPMAN S, SWIFT M J, HEAL O W, ANDERSON J M. Decomposition in terrestrial ecosystems. studies in ecology vol. 5. The Journal of Ecology, 1981, 69(1): 350.
[16] GONZÁLEZ G, SEASTEDT T R. Comparison of the abundance and composition of litter fauna in tropical and subalpine forests. Pedobiologia, 2000, 44(5): 545-555.
doi: 10.1078/S0031-4056(04)70070-0
[17] 马克平. 生物群落多样性的测度方法Ⅰα多样性的测度方法(上). 生物多样性, 1994, 2(3): 162-168.
MA K P. Measurement of biotic diversityⅠαdiversity (part Ⅰ). Chinese Biodiversity, 1994, 2(3): 162-168. (in Chinese)
[18] 张贺, 杨静, 周吉祥, 李桂花, 张建峰. 连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响. 植物营养与肥料学报, 2021, 27(5): 791-801.
ZHANG H, YANG J, ZHOU J X, LI G H, ZHANG J F. Effects of organic and inorganic amendments on aggregation and crop yields in sandy fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 791-801. (in Chinese)
[19] 周吉祥, 张贺, 杨静, 李桂花, 张建峰. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响. 中国农业科学, 2020, 53(16): 3307-3318.
ZHOU J X, ZHANG H, YANG J, LI G H, ZHANG J F. Effects of continuous application of soil amendments on FluvoAquic soil fertility and active organic carbon components. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318. (in Chinese)
[20] 王文东, 红梅, 刘鹏飞, 美丽, 赵乌英嘎, 赵巴音那木拉, 李志新. 施用有机肥对黑土区农田大型土壤动物群落的影响. 中国农业大学学报, 2019, 24(5): 174-184.
WANG W D, HONG M, LIU P F, MEI L, ZHAO W, ZHAO B, LI Z X. Effect of application of organic manure on soil macrofauna community in black soil area. Journal of China Agricultural University, 2019, 24(5): 174-184. (in Chinese)
[21] 林英华, 黄庆海, 刘骅, 彭畅, 朱平, 张树清, 张夫道. 长期耕作与长期定位施肥对农田土壤动物群落多样性的影响. 中国农业科学, 2010, 43(11): 2261-2269.
LIN Y H, HUANG Q H, LIU H, PENG C, ZHU P, ZHANG S Q, ZHANG F D. Effect of long-term cultivation and fertilization on community diversity of cropland soil animals. Scientia Agricultura Sinica, 2010, 43(11): 2261-2269. (in Chinese)
[22] OWOJORI O J, REINECKE A J, VOUA-OTOMO P, REINECKE S A. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia, 2009, 52(6): 351-360.
doi: 10.1016/j.pedobi.2008.12.002
[23] SCHRADER G, METGE K, BAHADIR M. Importance of salt ions in ecotoxicological tests with soil arthropods. Applied Soil Ecology, 1998, 7(2): 189-193.
doi: 10.1016/S0929-1393(97)00035-8
[24] 王桂苓, 马友华, 江云, 赵艳萍, 韩效钊. 凹凸棒土在土壤改良和新型肥料开发上的应用. 磷肥与复肥, 2008, 23(3): 77-78.
WANG G L, MA Y H, JIANG Y, ZHAO Y P, HAN X Z. Application of attapulgite in soil improvement and new type fertilizer development. Phosphate & Compound Fertilizer, 2008, 23(3): 77-78. (in Chinese)
[25] 殷秀琴, 安静超, 陶岩, 辛未冬, 蒋云峰, 王富斌. 拉萨河流域健康湿地与退化湿地大型土壤动物群落比较研究. 资源科学, 2010, 32(9): 1643-1649.
YIN X Q, AN J C, TAO Y, XIN W D, JIANG Y F, WANG F B. Community changes of soil macrofauna in native and degenerative wetlands of the Lhasa river. Resources Science, 2010, 32(9): 1643-1649. (in Chinese)
[26] 王嘉元, 秦富仓, 杨振奇, 任小同, 芳菲, 张颖. 黄土残塬沟壑区不同土地利用方式下土壤动物群落特征. 中国农业科技导报, 2021, 23(3): 156-165.
doi: 10.13304/j.nykjdb.2020.0564
WANG J Y, QIN F C, YANG Z Q, REN X T, FANG F, ZHANG Y. Characteristics of soil animal communities under different land use in gully area of loess plateau. Journal of Agricultural Science and Technology, 2021, 23(3): 156-165. (in Chinese)
doi: 10.13304/j.nykjdb.2020.0564
[27] 罗梦娇, 李松松, 强大宏, 刘长海. 南泥湾湿地土壤动物群落组成与土壤理化性质的关系. 生态环境学报, 2018, 27(8): 1432-1439.
LUO M J, LI S S, QIANG D H, LIU C H. Relationship between soil animal community composition and soil physical and chemical properties in Nanniwan wetland. Ecology and Environmental Sciences, 2018, 27(8): 1432-1439. (in Chinese)
[28] 贺倩, 周英, 刘星科, 李上官, 王文娟, 李西, 孙凌霞, 黄玉梅. 彭州市不同土地利用类型的土壤动物群落特征. 四川农业大学学报, 2020, 38(5): 596-608.
HE Q, ZHOU Y, LIU X K, LI S G, WANG W J, LI X, SUN L X, HUANG Y M. Community characteristics of soil animals under different land use types in Pengzhou city. Journal of Sichuan Agricultural University, 2020, 38(5): 596-608. (in Chinese)
[29] 刘洁. 东北黑土区农田地表大型节肢动物多样性格局研究[D]. 长春: 吉林大学, 2019.
LIU J. Diversity pattern of ground-dwelling soil macro-arthropod in black soil cropland, northeast China[D]. Changchun: Jilin University, 2019. (in Chinese)
[30] 肖红梅, 刘新民. 内蒙古农牧交错区土壤动物与土壤环境要素相关性研究. 内蒙古科技与经济, 2008(2): 26-27.
XIAO H M, LIU X M. Study on the correlation between soil fauna and soil environmental factors in agro-pastoral interlaced area of Inner Mongolia. Inner Mongolia Science Technology & Economy, 2008(2): 26-27. (in Chinese)
[31] QUINN M A, HOWER A A. Effects of root nodules and taproots on survival and abundance of Sitona hispidulus (Coleoptera: Curculionidae) on Medicago sativa. Ecological Entomology, 1986, 11(4): 391-400.
doi: 10.1111/j.1365-2311.1986.tb00318.x
[32] 周泓杨, 张丹桔, 张捷, 赵燕波, 赵波, 魏大平, 张健. 马尾松人工林郁闭度对大型土壤动物功能群的影响. 应用生态学报, 2017, 28(6): 1860-1868.
doi: 10.13287/j.1001-9332.201706.029
ZHOU H Y, ZHANG D J, ZHANG J, ZHAO Y B, ZHAO B, WEI D P, ZHANG J. Effects of canopy density on the functional group of soil macro fauna in Pinus massoniana plantations. Chinese Journal of Applied Ecology, 2017, 28(6): 1860-1868. (in Chinese)
doi: 10.13287/j.1001-9332.201706.029
[33] 胡静, 杨效东. 热带次生林2种不同捕食策略地表蜘蛛的种内、种间竞争强度及土壤N的调节作用. 中国农学通报, 2012, 28(22): 59-65.
HU J, YANG X D. The competition of different strategy spiders and the regulating effect of soil N in tropical secondary forest. Chinese Agricultural Science Bulletin, 2012, 28(22): 59-65. (in Chinese)
[34] 林琳. 不同管理措施的耕作黑土土壤动物与微生物群落关系研究[D]. 哈尔滨: 哈尔滨师范大学, 2014.
LIN L. Relationships between soil fauna and soil microorganism communities in farming black soil with different interventions[D]. Harbin: Harbin Normal University, 2014. (in Chinese)
[35] 卢炜丽. 重庆四面山植物群落结构及物种多样性研究[D]. 北京: 北京林业大学, 2009.
LU W L. Studies on forest plant community structure and biodiversity in Chongqing Simian mountain[D]. Beijing: Beijing Forestry University, 2009. (in Chinese)
[36] 刘淑燕, 余新晓, 陈丽华. 北京山区天然林乔木树种种间联结与生态位研究. 西北林学院学报, 2009, 24(5): 26-30, 81.
LIU S Y, YU X X, CHEN L H. Interspecific association and niche research of natural forest in Beijing mountainous area. Journal of Northwest Forestry University, 2009, 24(5): 26-30, 81. (in Chinese)
[37] 曹丹丹, 嵇保中, 刘曙雯, 陈晓明, 张新慰, 杨锦锦, 刘佳佳. 松材线虫病死木皮下节肢动物生态位及跟随性评价. 生态学杂志, 2013, 32(11): 3015-3021.
CAO D D, JI B Z, LIU S W, CHEN X M, ZHANG X W, YANG J J, LIU J J. Niches and following performance evaluation of arthropod populations under the barks of dead pine trees caused by Bursaphelenchus xylophilus. Chinese Journal of Ecology, 2013, 32(11): 3015-3021. (in Chinese)
[38] 王京, 刘丹丹, 黄勇杰, 金屿淞, 李慧仁, 刘芳蕊, 刘学爽, 王立中, 林英华. 大兴安岭重度火烧迹地地表土壤节肢动物群落特征. 动物学杂志, 2018, 53(6): 878-889.
WANG J, LIU D D, HUANG Y J, JIN Y S, LI H R, LIU F R, LIU X S, WANG L Z, LIN Y H. Characteristic of ground-dwelling soil arthropods community in severely burned sites in the Daxing' anling range. Chinese Journal of Zoology, 2018, 53(6): 878-889. (in Chinese)
[39] 付和平, 武晓东, 杨泽龙. 不同干扰条件下荒漠啮齿动物生态位特征. 生态学报, 2005, 25(10): 2637-2643.
FU H P, WU X D, YANG Z L. Niche characteristics of rodents by diverse disturbance in Alashan Desert, Inner Mongolia. Acta Ecologica Sinica, 2005, 25(10): 2637-2643. (in Chinese)
[40] TALLEY T S, LEVIN L A. Macrofaunal succession and community structure in Salicornia marshes of southern California. Estuarine, Coastal and Shelf Science, 1999, 49(5): 713-731.
doi: 10.1006/ecss.1999.0553
[41] ZAITSEV A S, WOLTERS V, WALDHARDT R, DAUBER J. Long-term succession of oribatid mites after conversion of croplands to grasslands. Applied Soil Ecology, 2006, 34(2/3): 230-239.
doi: 10.1016/j.apsoil.2006.01.005
[42] 马晓焉, 刘明, 李忠佩. 不同猪粪施用量下红壤水稻土表层水氮磷动态. 土壤, 2015, 47(2): 289-296.
MA X Y, LIU M, LI Z P. Dynamics of N and P in surface water of paddy soil in subtropical China under different rates of swine manure application. Soils, 2015, 47(2): 289-296. (in Chinese)
[43] 刘继亮, 李锋瑞, 牛瑞雪, 刘长安, 刘七军. 黑河中游干旱绿洲土壤盐渍化对大型土壤动物群落的影响. 应用生态学报, 2012, 23(6): 1551-1561.
LIU J L, LI F R, NIU R X, LIU C A, LIU Q J. Influence of soil salinization on soil animal community in an arid oasis of middle Heihe River basin. Chinese Journal of Applied Ecology, 2012, 23(6): 1551-1561. (in Chinese)
[44] ROTHERAY T D, BODDY L, JONES T H. Collembola foraging responses to interacting fungi. Ecological Entomology, 2009, 34(1): 125-132.
doi: 10.1111/j.1365-2311.2008.01050.x
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[11] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[12] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[13] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[14] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!