Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 391-404.doi: 10.3864/j.issn.0578-1752.2023.02.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose

SHEN LongXian1(),WANG LiTing1(),HE Ke1,DU Xue1,YAN FeiFei1,CHEN WeiHu2,LÜ YaoPing3,WANG Han1,ZHOU XiaoLong1(),ZHAO AYong1()   

  1. 1College of Animal Science and Technology/College of Veterinary Medicine, Zhejiang A&F University, Lin’an 311300, Zhejiang
    2Xiangshan County Agricultural and Rural Bureau in Ningbo City, Xiangshan 315700, Zhejiang
    3College of Ecology, Lishui University, Lishui 323000, Zhejiang
  • Received:2021-10-15 Accepted:2022-10-28 Online:2023-01-16 Published:2023-02-07

Abstract:

【Background】 At present, the research on melatonin (MLT) is mostly focused on the reproductive function of poultry, and there is little research on the mechanism of action related to muscle development in poultry. At the same time, MLT and nicotinamide mononucleotide (NMN) have similar functions and are related to circadian rhythm. The previous study found that the single treatment of MLT and NMN had limited effect on cell senescence, while the effect of co-treatment was more significant, there are also related reports on the effects of skeletal muscle on mitochondrial function and skeletal muscle aging, but there is no report on the mechanism of skeletal muscle growth and development. 【Objective】 This study aimed to explore the molecular mechanism of MLT and NMN participating in the proliferation of skeletal muscle satellite cells of East Zhejiang White Goose. 【Method】 The goose skeletal muscle satellite cells were isolated and cultured by dissecting goose embryos, and the specific proteins Pax7 and Desmin of skeletal muscle satellite cells were subjected to immunofluorescence staining to identify cells. The cells were treated with 1 ng·mL-1 MLT and 1 μg·mL-1 NMN alone or in combination for 24 h in vitro mature culture, and then CCK-8 was used to detect the cell viability. In order to explore the clear mechanism of how MLT regulated the proliferation of goose skeletal muscle satellite cells, MLT receptor genes (MTNR1A, MTNR1B) were constructed, and then the cells were co-treated with 1 ng·mL-1 MLT, after that qRT-PCR and Western blot experiments were used to study whether overexpression of MTNR1A and MTNR1B affected the promotion of MLT on proliferation genes. In order to further explore the effects of MLT and NMN on the goose skeletal muscle satellite cell proliferation-related genes were detected by qRT-PCR and Western blot experiments to detect the expression changes of skeletal muscle cell proliferation-related genes. 【Result】 Pax7 and Desmin who were the specific marker proteins of skeletal muscle satellite cells were positive for green fluorescence in the nucleus and cytoplasm. The results showed that the cells used in the experiment were skeletal muscle satellite cells. The results of CCK-8 assay indicated that 1 ng·mL-1 MLT and 1 μg·mL-1 NMN could promote the activity of goose skeletal muscle satellite cells. The results of qRT-PCR and Western blot showed that compared with the control group, after overexpressed MLT receptor gene MTNR1A and MTNR1B, the mRNA and protein expressions of the proliferation marker gene Pax7 were significantly up-regulated (P<0.05), and the mRNA and protein expressions of the proliferation-inhibiting marker gene MSTN were significantly down-regulated (P<0.05). In addition, after co-treatment of goose skeletal muscle satellite cells with 1 ng·mL-1 MLT and 1 μg·mL-1 NMN, the mRNA and protein expressions of the proliferation marker gene Pax7 were significantly up-regulated (P<0.05), and the mRNA and protein expressions of the proliferation-inhibiting marker gene MSTN were significantly down-regulated (P<0.05), the change of which was more significant than that of NMN and MLT alone. 【Conclusion】 MLT promoted the proliferation of skeletal muscle satellite cells through its receptors, and the co-treatment of NMN and MLT could enhance the promoting effect of MLT on the proliferation of goose skeletal muscle satellite cells, and also provided a new idea for the application of MLT and NMN in the actual production of poultry.

Key words: East Zhejiang White Goose, melatonin, nicotinamide mononucleotides, overexpression vector, skeletal muscle

Table 1

Primer sequences for qRT-PCR"

名称 Name 引物序列 Primer sequence (5′—3′) 用途 Purpose 参考序列 Reference sequence
Pax7 F:CCTGGGCGACAAAGGTAA qRT-PCR XM_013187867.1
R:GCTCAGCGGTGAAAGTGG
MyoD F:GGCTCAGCAAGGTCAACG qRT-PCR XM_013177726.1
R:TCCAGCACCGGGTAGTAAA
Myf5 F:GAGGAGGCTGAAGAAAGTGAA qRT-PCR XM_013195729.1
R:GCTCTGTCCAGGCAGGTGAT
MSTN F:GGCTCTTGATGACGGTAG qRT-PCR XM_013178647.1
R:CTTGTTCCAGACGCAGTT
MyoG F:CGCCTGAAGAAGGTGAACGAAGC qRT-PCR XM_013196590.1
R:GTCCCTCTGCTCCCGCTCCTG
Myf6 F:AGCAGGCAAATGGCTCGGACTTC qRT-PCR XM_013195738.1
R:GCTTGGGCTCGTCGGAGGAAAT
Pax3 F:AGCCATCCTACCAGCCCACCTC qRT-PCR XM_013181590.1
R:CGAAGGGAGGCTGCTTTGGTGT
GAPDH F:AGCTGATCTCCCATGTTCGTG 内参基因 MG674174.1
R:GCTCCCTCCACAATGCCAAAG

Table 2

Antibody sequence for Western blot"

抗体 Antibody 货号 Article number 厂家 Manufacturer 稀释倍数 Dilution ratio
Pax7 ab187339 Abcam, 英国 England 1:1000
MSTN A6913 ABclonal, 中国 China 1:1000
MyoD1 A16218 ABclonal, 中国 China 1:1000
β-actin AC026 ABclonal, 中国China 1:1000
山羊抗兔HRP, Goat anti rabbit IgG A21020 Abbkine, 瑞士 Switzerland 1:10000

Fig. 1

Identification of satellite cell marker gene in geese skeletal muscle by immunofluorescence staining"

Fig. 2

Cell viability assay"

Fig. 3

Construction of MTNR1A and MTNR1B overexpression vector and transfection efficiency validation A. Taking PcDNA3.1 as a vector, a pair of MTNR1A specific primers containing HindIII and XhoI restriction sites were designed; B. Agarose gel electrophoresis analysis of the MTNR1A gene fragment after double restriction digestion; C. Verifying the transfection efficiency of MTNR1A overexpression vector by qRT-PCR; D. Taking PcDNA3.1 as a vector, a pair of MTNR1B specific primers containing HindIII and XhoI restriction sites were designed; E. Agarose gel electrophoresis analysis of the MTNR1B gene fragment after double restriction digestion; F. Verifying the transfection efficiency of MTNR1B overexpression vector by qRT-PCR; M means DL2000 DNA Marker, * P<0.05, ** P<0.01, n=3"

Fig. 4

Effects of MTNR1A overexpression vector on proliferation-related genes in skeletal muscle satellite cells of East Zhejiang White Goose A: Expressions of MSTN mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; B: Expressions of Myf5 mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; C: Expressions of Myf6 mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; D: Expressions of MyoD mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; E: Expressions of MyoG mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; F: Expressions of Pax7 mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR; G: Expressions of Pax3 mRNA in cells after transfection of PcDNA3.1-MTNR1A by qRT-PCR"

Fig. 5

Expression of MSTN and Pax7 protein in skeletal muscle satellite cells of East Zhejiang White Goose after MTNR1A overexpression vector A: Expressions of MSTN and Pax7 protein in cells after transfection of PcDNA3.1-MTNR1A by Western blot; B: The expression level of MSTN protein in cells after transfection of PcDNA3.1-MTNR1A; C: The expression level of Pax7 protein in cells after transfection of PcDNA3.1-MTNR1A"

Fig. 6

Effects of MTNR1B overexpression vector on proliferation-related genes in skeletal satellite muscle cells of East Zhejiang White Goose A: Expressions of MSTN mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; B: Expressions of Myf5 mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; C: Expressions of Myf6 mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; D: Expressions of MyoD mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; E: Expressions of MyoG mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; F: Expressions of Pax7 mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR; G: Expressions of Pax3 mRNA in cells after transfection of PcDNA3.1-MTNR1B by qRT-PCR"

Fig. 7

Expression of MSTN and Pax7 protein in skeletal muscle satellite cells of East Zhejiang White Goose after MTNR1B overexpression vector A: Expressions of MSTN and Pax7 protein in cells after transfection of PcDNA3.1-MTNR1B by Western blot; B: The expression level of MSTN protein in cells after transfection of PcDNA3.1-MTNR1B; C: The expression level of Pax7 protein in cells after transfection of PcDNA3.1-MTNR1B"

Fig. 8

Effects of NMN and MLT treatment on proliferation-related genes in skeletal muscle satellite cells of East Zhejiang White Goose A: Expressions of MSTN mRNA in cells by qRT-PCR; B: Expressions of Myf5 mRNA in cells by qRT-PCR; C: Expressions of Myf6 mRNA in cells by qRT-PCR; D: Expressions of MyoD mRNA in cells by qRT-PCR; E: Expressions of MyoG mRNA in cells by qRT-PCR; F: Expressions of Pax7 mRNA in cells by qRT-PCR; G: Expressions of Pax3 mRNA in cells by qRT-PCR"

Fig. 9

Expression of MSTN and Pax7 protein in skeletal muscle satellite cells of East Zhejiang White Goose after NMN and MLT treatment A: Expressions of MSTN and Pax7 protein in cells by Western blot; B: The expression level of MSTN protein in cell; C: The expression level of Pax7 protein in cells"

[1] 李春霞, 朱菲菲, 张俊星, 张林林, 李新, 郭益文, 郭宏, 丁向彬. 层粘连蛋白对牛骨骼肌卫星细胞增殖分化的影响. 中国畜牧杂志, 2020, 56(7): 126-130. doi:10.19556/j.0258-7033.20190912-05.
doi: 10.19556/j.0258-7033.20190912-05
LI C X, ZHU F F, ZHANG J X, ZHANG L L, LI X, GUO Y W, GUO H, DING X B. Effects of laminin on proliferation and differentiation of bovine skeletal muscle satellite cells. Chinese Journal of Animal Science, 2020, 56(7): 126-130. doi:10.19556/j.0258-7033.20190912-05. (in Chinese)
doi: 10.19556/j.0258-7033.20190912-05
[2] COMAI S, DE GREGORIO D, POSA L C, OCHOA-SANCHEZ R, BEDINI A, GOBBI G. Dysfunction of serotonergic activity and emotional responses across the light-dark cycle in mice lacking melatonin MT2 receptors. Journal of Pineal Research, 2020, 69(1): e12653. doi:10.1111/jpi.12653.
doi: 10.1111/jpi.12653
[3] 白欣洁. 褪黑激素介导孵化期单色光照射对肉鸡卫星细胞增殖的影响及其信号通路[D]. 北京: 中国农业大学, 2017.
BAI X J. In ovo exposure to monochromatic lights affect satellite cell proliferation in the broilers: role of melatonin and its signaling pathway[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[4] LERNER A B, CASE J D, TAKAHASHI Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry, 1960, 235(7): 1992-1997. doi:10.1016/S0021-9258(18)69351-2.
doi: 10.1016/S0021-9258(18)69351-2
[5] FALCÓN J, BESSEAU L, SAUZET S, BOEUF G. Melatonin effects on the hypothalamo-pituitary axis in fish. Trends in Endocrinology & Metabolism, 2007, 18(2): 81-88. doi:10.1016/j.tem.2007.01.002.
doi: 10.1016/j.tem.2007.01.002
[6] RENUKA K, JOSHI B N. Melatonin-induced changes in ovarian function in the freshwater fish Channa punctatus (Bloch) held in long days and continuous light. General and Comparative Endocrinology, 2010, 165(1): 42-46. doi:10.1016/j.ygcen.2009.05.020.
doi: 10.1016/j.ygcen.2009.05.020
[7] UBUKA T, BENTLEY G E, TSUTSUI K. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds. Frontiers in Neuroscience, 2013, 7: 38. doi:10.3389/fnins.2013.00038.
doi: 10.3389/fnins.2013.00038 pmid: 23531789
[8] KLETTNER A, KAMPERS M, TÖBELMANN D, ROIDER J, DITTMAR M. The influence of melatonin and light on VEGF secretion in primary RPE cells. Biomolecules, 2021, 11(1): 114. doi:10.3390/biom11010114.
doi: 10.3390/biom11010114
[9] 潘红梅, 臧胜芹, 张亮, 张凤鸣, 李兴桂, 周光斌. 外源性褪黑素促进哺乳动物卵母细胞成熟的研究进展. 中国畜牧杂志, 2021, 57(12): 25-30. doi:10.19556/j.0258-7033.20201230-09.
doi: 10.19556/j.0258-7033.20201230-09
PAN H M, ZANG S Q, ZHANG L, ZHANG F M, LI X G, ZHOU G B. Research progress on the role of exogenous melatonin in mammalian oocyte maturation. Chinese Journal of Animal Science, 2021, 57(12): 25-30. doi:10.19556/j.0258-7033.20201230-09. (in Chinese)
doi: 10.19556/j.0258-7033.20201230-09
[10] 张颖, 蒋雨馨, 朱逸浩, 吴剑荣. β-烟酰胺单核苷酸合成技术研究进展. 食品科技, 2020, 45(10): 236-240. doi:10.13684/j.cnki.spkj.2020.10.038.
doi: 10.13684/j.cnki.spkj.2020.10.038
ZHANG Y, JIANG Y X, ZHU Y H, WU J R. Advance in synthesis of β-nicotinamide mononucleotide. Food Science and Technology, 2020, 45(10): 236-240. doi:10.13684/j.cnki.spkj.2020.10.038. (in Chinese)
doi: 10.13684/j.cnki.spkj.2020.10.038
[11] 陈舒然. 烟酰胺单核苷酸通过NAD+代谢通路上调SIRT3抵抗D-半乳糖诱导的HT22细胞衰老[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2020.
CHEN S R. Nicotinamide mononucleotide up-regulates SIRT3 through the NAD+ metabolic pathway to antagonize D-galactose- induced HT22 cell senescence[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2020. (in Chinese)
[12] MILLS K F, YOSHIDA S, STEIN L R, GROZIO A, KUBOTA S, SASAKI Y, REDPATH P, MIGAUD M E, APTE R S, UCHIDA K, YOSHINO J, IMAI S I. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 2016, 24(6): 795-806. doi:10.1016/j.cmet.2016.09.013.
doi: S1550-4131(16)30495-8 pmid: 28068222
[13] 代明鑫, 江振洲, 黄鑫. 色氨酸及代谢物的生理功能以及在疾病中的作用研究进展. 中南药学, 2021, 19(5): 909-915. doi:10.7539/j.issn.1672-2981.2021.05.021.
doi: 10.7539/j.issn.1672-2981.2021.05.021
DAI M X, JIANG Z Z, HUANG X. Advances in physiological functions of tryptophan and its metabolites and their roles in diseases. Central South Pharmacy, 2021, 19(5): 909-915. doi:10.7539/j.issn.1672-2981.2021.05.021. (in Chinese)
doi: 10.7539/j.issn.1672-2981.2021.05.021
[14] HOSSEINI L, FAROKHI-SISAKHT F, BADALZADEH R, KHABBAZ A, MAHMOUDI J, SADIGH-ETEGHAD S. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and Hippocampus. Neuroscience, 2019, 423: 29-37. doi:10.1016/j.neuroscience.2019.09.037.
doi: 10.1016/j.neuroscience.2019.09.037
[15] HOSSEINI L, VAFAEE M S, BADALZADEH R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/ reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25(3): 240-250. doi:10.1177/1074248419882002.
doi: 10.1177/1074248419882002
[16] 曾雪花. CTRP3对鹅骨骼肌细胞成肌分化的调控作用[D]. 杭州: 浙江农林大学, 2020.
ZENG X H. Regulation of CTRP3 on myo genic differentiation of geese skeletal muscle cells[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
[17] 沈龙仙, 张晨, 汪涵, 袁琼雨, 杨松柏, 周晓龙, 赵阿勇. 光照通过褪黑素影响浙东白鹅肌肉生长发育的研究. 中国畜牧杂志, 2021, 57(9): 216-222. doi:10.19556/j.0258-7033.20201012-06.
doi: 10.19556/j.0258-7033.20201012-06
SHEN L X, ZHANG C, WANG H, YUAN Q Y, YANG S B, ZHOU X L, ZHAO A Y. The Study of Light on Muscle Growth and Development of East Zhejiang White Goose via Melatonin. Chinese Journal of Animal Science, 2021, 57(9): 216-222. doi:10.19556/j.0258-7033.20201012-06. (in Chinese)
doi: 10.19556/j.0258-7033.20201012-06
[18] 沈龙仙, 王丽婷, 汪涵, 杨松柏, 李向臣, 赵阿勇, 周晓龙. 烟酰胺单核苷酸(NMN)对小鼠C2C12细胞成肌分化的影响. 农业生物技术学报, 2022, 30(4): 695-703.
SHEN L X, WANG L T, WANG H, YANG S B, LI X C, ZHAO A Y, ZHOU X L. Effects of nicotinamide mononucleotide(NMN) on myogenic differentiation of mouse(mus musculus) C2C12 cells. Journal of Agricultural Biotechnology, 2022, 30(4): 695-703. (in Chinese)
[19] YANG J J, LIU H, WANG K F, LI L, YUAN H Y, LIU X T, LIU Y J, GUAN W J. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells. Cell and Tissue Banking, 2017, 18(4): 513-525. doi:10.1007/s10561-017-9614-9.
doi: 10.1007/s10561-017-9614-9 pmid: 28255772
[20] YOSHIOKA K, KITAJIMA Y, OKAZAKI N, CHIBA K, YONEKURA A, ONO Y. A modified pre-plating method for high-yield and high-purity muscle stem cell isolation from human/mouse skeletal muscle tissues. Frontiers in Cell and Developmental Biology, 2020, 8: 793. doi:10.3389/fcell.2020.00793.
doi: 10.3389/fcell.2020.00793 pmid: 32903486
[21] BELLIN R M, HUIATT T W, CRITCHLEY D R, ROBSON R M. Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. Journal of Biological Chemistry, 2001, 276(34): 32330-32337. doi:10.1074/jbc.M104005200.
doi: 10.1074/jbc.M104005200 pmid: 11418616
[22] CHENG J H, SUN D W, HAN Z, ZENG X N. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(1): 52-61. doi:10.1111/1541-4337.12043.
doi: 10.1111/1541-4337.12043
[23] LIN Y Q, ZHOU J S, LI R W, ZHAO Y Y, ZHENG Y C. Cloning and expression patterns of MRFs and effect of replacing dietary fish oil with vegetable oils on MRFs expression in grass carp (Ctenopharyngodon idellus). Turkish Journal of Fisheries and Aquatic Sciences, 2015, 15: 255-264.
[24] 杨烜懿, 宋紫菱, 植心妍, 赵旭民, 王光辉, 迟淑艳, 谭北平. 酶解鸡肉粉替代鱼粉对珍珠龙胆石斑鱼肌肉营养品质及肌肉生长相关基因表达的影响. 动物营养学报, 2021, 33(12): 6999-7011.
YANG X Y, SONG Z L, ZHI X Y, ZHAO X M, WANG G H, CHI S Y, TAN B P. Effects of replacing fish meal with enzyme-digested poultry by-product meal on muscle quality and expression of muscle growth-related factors of hybrid grouper(Epinephelus fuscoguttatus ♀ × e.lanceolatus ♂). Chinese Journal of Animal Nutrition, 2021, 33(12): 6999-7011. (in Chinese)
[25] 宋成创. IGF2基因来源的IGF2 AS和miR-483调控牛骨骼肌细胞增殖分化机制研究[D]. 杨凌: 西北农林科技大学, 2019.
SONG C C. IGF2 gene-derived IGF2 AS and miR-483 regulate proliferation and differentiation of bovine skeletal muscle cells[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[26] 云青, 吴国芳, 魏欢, 庞卫军, 杨公社, 沈清武. miR-143-3p促进C2C12成肌细胞分化. 中国生物化学与分子生物学报, 2013, 29(6): 569-577. doi:10.13865/j.cnki.cjbmb.2013.06.011.
doi: 10.13865/j.cnki.cjbmb.2013.06.011
YUN Q, WU G F, WEI H, PANG W J, YANG G S, SHEN Q W. miR-143-3p is implicated in C2C12 myoblasts differentiation. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(6): 569-577. doi:10.13865/j.cnki.cjbmb.2013.06.011. (in Chinese)
doi: 10.13865/j.cnki.cjbmb.2013.06.011
[27] 牛姣艳. Pax7、MyoD和MyoG基因在猪背最长肌中的发育性表达研究[D]. 太谷: 山西农业大学, 2015.
NIU J Y. Study on the developmental expression of Pax7, MyoD and MyoG genes in longissimus dorsi of pigs[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[28] 任婷. 鹅胚胎期及出生早期骨骼肌发育过程中MRFs/Pax3/Pax7和Tmem8c的表达模式和调控机制研究[D]. 杭州: 浙江农林大学, 2017.
REN T. The express pattern and regulatory mechanism of MRFs/ Pax3/Pax7 and Tmem8c during the embryonic and early postnatal stage development of goose skeletal muscle[D]. Hangzhou: Zhejiang A & F University, 2017. (in Chinese)
[29] 陈禧. 鸭Pax3/7 cDNA序列克隆及表达特性研究[D]. 雅安: 四川农业大学, 2012.
CHEN X. Characterization of duck Pax3/7and its expression patterns[D]. Yaan: Sichuan Agricultural University, 2012. (in Chinese)
[30] 毛旭东. miR-194-5p对骨骼肌卫星细胞增殖分化和过氧化氢诱导小鼠成肌细胞凋亡的影响[D]. 雅安: 四川农业大学, 2019.
MAO X D. miR-194-5p modulates skeletal muscle satellite cells proliferation, differentiation and H2O2-induced C2C12 cell apoptosis[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
[31] MONTECINO F, GONZÁLEZ N, BLANCO N, RAMÍREZ M J, GONZÁLEZ-MARTÍN A, ALVAREZ A R, OLGUÍN H. C-abl kinase is required for satellite cell function through Pax7 regulation. Frontiers in Cell and Developmental Biology, 2021, 9: 606403. doi:10.3389/fcell.2021.606403.
doi: 10.3389/fcell.2021.606403
[32] RELAIX F, MONTARRAS D, ZAFFRAN S, GAYRAUD-MOREL B, ROCANCOURT D, TAJBAKHSH S, MANSOURI A, CUMANO A, BUCKINGHAM M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. The Journal of Cell Biology, 2006, 172(1): 91-102. doi:10.1083/jcb.200508044.
doi: 10.1083/jcb.200508044
[33] 李燕, 陈明明, 张俊星, 张林林, 李新, 郭宏, 丁向彬, 刘新峰. 牛LncRNA-133a对骨骼肌卫星细胞增殖分化的影响. 中国农业科学, 2019, 52(1): 143-153.
LI Y, CHEN M M, ZHANG J X, ZHANG L L, LI X, GUO H, DING X B, LIU X F. Effects of bovine LncRNA-133a on the proliferation and differentiation of skeletal muscle satellite cells. Scientia Agricultura Sinica, 2019, 52(1): 143-153. (in Chinese)
[34] 孙多临, 冯汉卿, 赵恒, 陈胜男, 李松美, 王春生. 绵羊Pax7基因慢病毒示踪载体的构建与表达检测. 黑龙江畜牧兽医, 2020(19): 11-15, 165. doi:10.13881/j.cnki.hljxmsy.2019.12.0060.
doi: 10.13881/j.cnki.hljxmsy.2019.12.0060
SUN D L, FENG H Q, ZHAO H, CHEN S N, LI S M, WANG C S. Construction and expression detection of Pax7 gene lentiviral vector in sheep. Heilongjiang Animal Science and Veterinary Medicine, 2020(19): 11-15, 165. doi:10.13881/j.cnki.hljxmsy.2019.12.0060. (in Chinese)
doi: 10.13881/j.cnki.hljxmsy.2019.12.0060
[35] RELAIX F, ROCANCOURT D, MANSOURI A, BUCKINGHAM M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature, 2005, 435(7044): 948-953. doi:10.1038/nature03594.
doi: 10.1038/nature03594
[36] WANG Y, WANG X L, MENG X Y, WANG H D, JIANG Z Q, QIU X M. Identification of two SNPs in myostatin (MSTN) gene of Takifugu rubripes and their association with growth traits. Molecular and Cellular Probes, 2014, 28(4): 200-203. doi:10.1016/j.mcp.2014.03.006.
doi: 10.1016/j.mcp.2014.03.006
[37] LEE S J, LEHAR A, LIU Y W, LY C H, PHAM Q M, MICHAUD M, RYDZIK R, YOUNGSTROM D W, SHEN M M, KAARTINEN V, GERMAIN-LEE E L, RANDO T A. Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49): 30907-30917. doi:10.1073/pnas.2019263117.
doi: 10.1073/pnas.2019263117
[38] 姬改革, 胡艳, 陶志云, 刘宏祥, 朱春红, 李慧芳. 蛋内注射T3对鸭胚骨骼肌发育和MSTN mRNA表达的影响. 江苏农业学报, 2016, 32(1): 164-169.
JI G G, HU Y, TAO Z Y, LIU H X, ZHU C H, LI H F. Effects of in ovo injecting triiodothyronine into egg on embryonic skeletal muscle development and expression of myostatin mRNA in duck. Jiangsu Journal of Agricultural Sciences, 2016, 32(1): 164-169. (in Chinese)
[39] 彭兴, 谢炳坤, 唐中林, 周荣, 敖红, 黄生强, 李奎. miR-21靶向猪TSC1和PPP3CA基因的初步鉴定. 畜牧兽医学报, 2013, 44(6): 985-992.
PENG X, XIE B K, TANG Z L, ZHOU R, AO H, HUANG S Q, LI K. Preliminary identification of miR-21 targeted TSC1 and PPP3CA genes of pigs. Acta Veterinarian et Zootechnica Sinica, 2013, 44(6): 985-992. (in Chinese)
[40] 张续勐, 付梦思, 蔡颖宇, 王金辉, 李秀金, 黄运茂, 田允波. 肌肉生长抑制素研究进展及其在家禽育种中的应用前景. 广东畜牧兽医科技, 2021, 46(4): 11-15.
ZHANG X M, FU M S, CAI Y Y, WANG J H, LI X J, HUANG Y M, TIAN Y B. Research progresses and application prospect of Myostatin in poultry breeding. Guangdong Journal of Animal and Veterinary Science, 2021, 46(4): 11-15. (in Chinese)
[41] AMTHOR H, HUANG R J, MCKINNELL I, CHRIST B, KAMBADUR R, SHARMA M, PATEL K. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Developmental Biology, 2002, 251(2): 241-257. doi:10.1006/dbio.2002.0812.
doi: 10.1006/dbio.2002.0812 pmid: 12435355
[42] KIM C H, KIM K H, YOO Y M. Melatonin-induced autophagy is associated with degradation of MyoD protein in C2C12 myoblast cells. Journal of Pineal Research, 2012, 53(3): 289-297. doi:10.1111/j.1600-079X.2012.00998.x.
doi: 10.1111/j.1600-079X.2012.00998.x pmid: 22582971
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[6] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[7] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[8] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[9] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[10] LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153.
[11] BIAN FengE, XIAO QiuHong, HAO GuiMei, SUN YongJiang, LU WenLi, DU YuanPeng, ZHAI Heng. Effect of Root-Applied Melatonin on Endogenous Melatonin and Chlorophyll Fluorescence Characteristics in Grapevine Under NaCl Stress [J]. Scientia Agricultura Sinica, 2018, 51(5): 952-963.
[12] SUN XiePing, LUO YouJin, ZHOU GuangWen. Effects of Selenium on Melatonin Content and Glutathione Redox Cycle in Sweet Cherry Leaves [J]. Scientia Agricultura Sinica, 2017, 50(22): 4373-4381.
[13] ZHAO YiWen, ZHAO Jia, PANG QuanHai. Effect of Melatonin on Insulin and Gαi/o Expression in Rat Insulinoma Cell Line [J]. Scientia Agricultura Sinica, 2017, 50(17): 3429-3438.
[14] YANG XiaoLong, XU Hui, LI TianLai, WANG Rui. Effects of Exogenous Melatonin on Photosynthesis of Tomato Leaves Under Drought Stress [J]. Scientia Agricultura Sinica, 2017, 50(16): 3186-3195.
[15] GONG Biao, SHI QingHua. Review of Melatonin in Horticultural Crops [J]. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!