Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1423-1432.doi: 10.3864/j.issn.0578-1752.2022.07.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure

PENG Xue1(),GAO YueXia1,ZHANG LinXuan1,GAO ZhiQiang2,REN YaMei1()   

  1. 1College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi
    2Chengdu College of Arts and Sciences, Chengdu 610401
  • Received:2021-07-01 Accepted:2021-09-09 Online:2022-04-01 Published:2022-04-18
  • Contact: YaMei REN E-mail:1601961692@qq.com;715189648@qq.com

Abstract:

【Objective】The aim of this study was to clarify the effects of high energy electron beam (e-beam) irradiation on potato sprouting and storage quality, and to explore the mechanism of inhibiting sprout. 【Method】By using potato tubers Zihuabai as the raw material and the non-irradiation tubers as the control, the tubers were irradiated with e-beam at 0.3, 0.4 and 0.5 kGy, then, which were packed in 0.03 mm kraft paper bags and stored at (8±1)℃ with a relative humidity of 70%-75%. During storage, the sprouting of tubers was observed and recorded every week, and the respiratory, weight loss rate, decay rate, firmness and changes in the content of nutrients (such as starch, Vc, and reducing sugar) of the tubers were determined every 25 days after storage. Besides, the changes of tuber bud morphology and cell ultrastructure at the bud eye were observed with the stereo microscope and transmission electron microscope, respectively. 【Result】All tubers did not sprouting for 200 days by irradiating with e-beam at 0.3, 0.4 and 0.5 kGy at (8±1)℃, and the dormancy period was significantly prolonged. The reductions of soluble solid, Vc and starch in tubers irradiated with e-beam were lower than that in non-irradiated tubers after 150 days storage, and had no significant effect on the soluble protein content with e-beam irradiation. The accumulation of reducing sugars in the irradiated tubers slightly higher than that in control, and the flavor, taste and color of the tubers after 200 days storage were good. The respiration intensity was inhibited by e-beam irradiated, which was beneficial to slow down its senescence process. However, unfortunately, e-beam accelerated the weight loss and firmness decrease of tuber, and aggravated positively with the increase of irradiation dose. Electron microscopy results showed that the ultrastructure of the cell at the eye of the tuber bud was damaged by e-beam irradiation, and the cell wall was distorted and plasmolysis; the shape of the nucleus changes irregularly, and the nuclear content was degraded; the endoplasmic reticulum completely degraded with the prolong of storage time, and the number of starch granules was obviously reduced and shrunk, but the integrity and stability of the mitochondrial structure were maintained. At the same time, the irradiation caused the tuber shoots to die directly, and the buds gradually wither with the storage time extension. 【Conclusion】 e-beam irradiation could completely inhibit potato tubers sprouting at (8±1)℃ for 7 months, however, it had no adverse effect on the nutritional quality of tubers, which was beneficial to maintain their good sensory and nutritional quality. It was speculated that the suppression of buds by e-beam irradiation related to the respiratory was inhibited, and the physiological activity level was weaken. At the same time, the irradiation damaged the cell structure of the bud eye, and directly caused the buds to die and dry.

Key words: potato, high-energy electron beam, storage quality, cell ultrastructure

Fig. 1

Effect of different doses of high-energy electron beam irradiation on respiration intensity of potato during storage Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Sprouting dynamics of potato irradiated with different doses of high-energy electron beams during storage From left to right, each row of potatoes were irradiated with 0, 0.3, 0.4 and 0.5 kGy, respectively"

Fig. 3

Effects of different doses of high-energy electron beam irradiation on the rate of weight loss (A) and rot (B) of potato during storage"

Fig. 4

Effects of different doses of high-energy electron beam irradiation on potato tubers hardness during storage"

Fig. 5

Sensory quality of control, 0.3 and 0.4 kGy potatoes after steaming stored to 200 days"

Table 1

Effects of different doses of high-energy electron beam irradiation on nutrient content of potato during storage"

营养物质含量
Nutrients content
辐照剂量
Irradiation dose (kGy)
贮藏时间 Storage time (d)
0 25 50 75 100 125 150
VC含量
Vc (mg/100 g)
0 14.07±0.29a 13.19±0.06a 11.65±0.22b 9.92±0.11b 8.60±0.25d 5.79±0.12c 4.99±0.20c
0.3 14.07±0.29a 12.95±0.15a 12.95±0.15a 12.76±0.06a 11.53±0.31c 11.11±0.16ab 10.59±0.13b
0.4 14.07±0.29a 13.40±0.46a 12.74±0.17a 13.38±0.31a 12.45±0.17b 11.49±0.21a 10.54±0.22b
0.5 14.07±0.29a 13.15±0.11a 13.05±0.17a 14.16±1.43a 13.00±0.06a 11.05±0.25b 11.61±0.14a
淀粉含量
Starch (%)
0 26.20±0.01a 25.18±0.01ab 24.36±0.13a 22.73±0.01b 19.29±0.01c 18.54±0.00c 17.70±0.00c
0.3 26.20±0.01a 22.87±0.01b 23.24±0.01a 23.78±0.00b 22.59±0.00b 21.12±0.00b 20.96±0.00b
0.4 26.20±0.01a 25.98±0.18a 24.24±0.02a 23.92±0.01b 23.31±0.01b 24.71±0.01a 24.19±0.01a
0.5 26.20±0.01a 25.97±0.01a 26.17±0.00a 25.99±0.01a 26.19±0.01a 25.69±0.01a 23.63±0.01a
可溶性蛋白
Soluble protein (mg∙g-1)
0 2.46±0.18a 2.33±0.01a 2.50±0.08c 2.51±0.23b 2.31±0.07a 2.46±0.01a 2.47±0.49a
0.3 2.46±0.18a 2.67±0.12a 2.64±0.03bc 2.31±0.10b 2.46±0.07a 2.49±0.19a 2.56±0.00a
0.4 2.46±0.18a 2.55±0.34a 2.80±0.04ab 2.60±0.034b 2.46±0.31a 2.57±0.06a 2.70±0.06a
0.5 2.46±0.18a 2.47±0.07a 2.86±0.17a 3.20±0.18a 2.60±0.01a 2.55±0.06a 2.54±0.04a
还原糖
Reducing sugar (g/100 g)
0 0.52±0.00a 0.65±0.00b 0.89±0.00a 0.64±0.01b 0.63±0.01c 0.73±0.00b 0.45±0.01c
0.3 0.52±0.00a 0.77±0.00a 0.76±0.00b 0.76±0.01a 0.91±0.01b 1.15±0.02a 0.75±0.01ab
0.4 0.52±0.00a 0.63±0.00b 0.79±0.00b 0.80±0.01a 0.85±0.01bc 0.71±0.00b 0.83±0.00a
0.5 0.52±0.00a 0.49±0.00c 0.58±0.00c 0.83±0.01a 1.31±0. 01a 0.97±0.00ab 0.62±0.01b

Fig. 6

Effects of different doses of high-energy electron beam irradiation on the morphology of potato buds (4×) A1-A4, B1-B4 were control, 0.3, 0.4, and 0.5 kGy potato tubers bud morphology at 50 days and 75 days, respectively"

Fig. 7

The ultrastructure of bud eye cells of control and 0.3 kGy high-energy electron beam irradiated potatoes for 25 d A1-A6: Control, 0 kGy; B1-B6: 0.3 kGy. St: Starch granules (1900×); N: Nucleus (10000×); Nu: Nucleoli; ER: Endoplasmic reticulum (25000×); IH: Intercellular hyaline; M: Mitochondria (30000×); CW: Cell walls (8000×); IL: Intercellular layer; PM: Plasma membrane; Cyt: Protoplasm. The same as below"

Fig. 8

The ultrastructure of bud eye cells of potatoes in different treatment groups stored to 100 d A1-A5: Control; B1-B5: 0.3 kGy; C1-C5: 0.4 kGy; D1-D5: 0.5 kGy. N: Nucleus (30000×); ER: Endoplasmic reticulum (23000×); M: Mitochondria (49000×); CW: Cell walls (9300×)"

[1] 平华, 马智宏, 李杨, 李冰茹. 不同发芽天数及芽周不同深度马铃薯中α-茄碱含量变化规律. 食品科技, 2017, 42(1):55-59. doi: 10.13684/j.cnki.spkj.2017.01.014.
doi: 10.13684/j.cnki.spkj.2017.01.014
PING H, MA Z H, LI Y, LI B R. Regularity of α-solanine content changes in germinated potato on different days and depths. Food Science and Technology, 2017, 42(1):55-59. doi: 10.13684/j.cnki.spkj.2017.01.014. (in Chinese)
doi: 10.13684/j.cnki.spkj.2017.01.014
[2] GOUSETI O, BRIDDON A, SAUNDERS S, STROUD G, FRYER P J, CUNNINGTON A, BAKALIS S. CIPC vapour for efficient sprout control at low application levels. Postharvest Biology and Technology, 2015, 110:239-246. doi: 10.1016/j.postharvbio.2015.07.024.
doi: 10.1016/j.postharvbio.2015.07.024
[3] SMITH M J, BUCHER G. Tools to study the degradation and loss of the N-phenyl carbamte chlorpropham-A comprehensive review. Environment Interational, 2012, 49:38-50.
[4] 王迪轩, 吴艳梅. 植物生长调节物质在马铃薯生产上的应用. 西北园艺(蔬菜专刊), 2008(1):39.
WANG D X, WU Y M. Application of plant growth regulators in potato production. Northwest Horticulture, 2008(1):39. (in Chinese)
[5] DANIELS LAKE B J, LIEW C L, WALSH J R, DEAN P, COFFIN R, PRANGE R K, PAGE R T, KALT W. Using ethylene as a sprout control agent in stored ‘Russet Burbank' potatoes. Journal of the American Society for Horticultural Science, 1998, 123(3):463-469. doi: 10.21273/JASHS.123.3.463.
doi: 10.21273/JASHS.123.3.463
[6] DANIELS-LAKE B J, PRANGE R K, NOWAK J, ASIEDU S K, WALSH J R. Sprout development and processing quality changes in potato tubers stored under ethylene: 1. Effects of ethylene concentration. American Journal of Potato Research, 2005, 82(5):389-397. doi: 10.1007/BF02871969.
doi: 10.1007/BF02871969
[7] COSTA E SILVA M, GALHANO C I C, MOREIRA DA SILVA A M G. A new sprout inhibitor of potato tuber based on carvone/β- cyclodextrin inclusion compound. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57(1/2/3/4):121-124. doi: 10.1007/s10847-006-9210-2.
doi: 10.1007/s10847-006-9210-2
[8] OWOLABI M S, OLOWU R A, LAJIDE L, OLADIMEJI M O, PADILLA-CAMBEROS E, FLORES-FERNÁNDEZ J M. Inhibition of potato tuber sprouting during storage by the controlled release of essential oil using a wick application method. Industrial Crops & Products, 2013, 45:83-87. doi: 10.1016/j.indcrop.2012.11.043.
doi: 10.1016/j.indcrop.2012.11.043
[9] 葛霞, 田世龙, 田甲春, 李梅, 李守强, 程建新. 香芹酮处理对马铃薯微型薯发芽调控及田间种植的影响. 中国马铃薯, 2019, 33(3):175-183. doi: 10.3969/j.issn.1672-3635.2019.03.009.
doi: 10.3969/j.issn.1672-3635.2019.03.009
GE X, TIAN S L, TIAN J C, LI M, LI S Q, CHENG J X. Effects of carvone on minituber sprout regulation and field planting. Chinese Potato Journal, 2019, 33(3):175-183. doi: 10.3969/j.issn.1672-3635.2019.03.009. (in Chinese)
doi: 10.3969/j.issn.1672-3635.2019.03.009
[10] MAHTO R, DAS M. Effect of γ irradiation on the physico-mechanical and chemical properties of potato (Solanum tuberosum L.), cv. ‘Kufri Chandramukhi' and ‘Kufri Jyoti', during storage at 12℃. Radiation Physics and Chemistry, 2015, 107(2):12-18.
doi: 10.1016/j.radphyschem.2014.08.021
[11] GHOSH S, DAS M K. Optimization of the effect of gamma radiation on textural properties of different varieties of potato (Kufri Chandramukhi and Kufri Jyoti) and mango (Langra and Fazli) during storage by response surface methodology. Innovative Food Science and Emerging Technologies, 2014, 26:257-264. doi: 10.1016/j.ifset.2014.04.002.
doi: 10.1016/j.ifset.2014.04.002
[12] 史萌, 许立兴, 林琼, 阎瑞香, 刘斌, 关文强. UV-C处理抑制马铃薯贮藏期发芽及相关机理研究. 食品工业科技, 2019, 40(13):242-247, 252. doi: 10.13386/j.issn1002-0306.2019.13.040.
doi: 10.13386/j.issn1002-0306.2019.13.040
SHI M, XU L X, LIN Q, YAN R X, LIU B, GUAN W Q. Study on UV-C treatment inhibits germination and related mechanism of potato during storage. Science and Technology of Food Industry, 2019, 40(13):242-247, 252. doi: 10.13386/j.issn1002-0306.2019.13.040. (in Chinese)
doi: 10.13386/j.issn1002-0306.2019.13.040
[13] PAUL V, EZEKIEL R, PANDEY R. Sprout suppression on potato: Need to look beyond CIPC for more effective and safer alternatives. Journal of Food Science and Technology, 2016, 53(1):1-18. doi: 10.1007/s13197-015-1980-3.
doi: 10.1007/s13197-015-1980-3
[14] FAN X T, SOKORAI K, WEIDAUER A, GOTZMANN G, ROGNER F H, KOCH E. Comparison of gamma and electron beam irradiation in reducing populations of E-coil artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiation Physics and Chemistry, 2017, 130:306-315.
doi: 10.1016/j.radphyschem.2016.09.015
[15] TODORIKI S, HAYASHI T. Sprout inhibition of potatoes with soft-electron (low-energy electrons beams). Journal of the Science of Food and Agriculture, 2004, 84(15):2010-2014.
doi: 10.1002/jsfa.1906
[16] BLESSINGTON T, SCHEURING D C, NZARAMBA M N, HALE A L, REDDIVARI L, VESTAL T A, MAXIM J E, MILLER J C. The use of low-dose electron-beam irradiation and storage conditions for sprout control and their effects on xanthophylls, antioxidant capacity, and phenolics in the potato cultivar Atlantic. American Journal of Potato Research, 2015, 92(5):609-618. doi: 10.1007/s12230-015-9474-4.
doi: 10.1007/s12230-015-9474-4
[17] ETEMADINASAB H, ZAHEDI M, RAMIN A A, KADIVAR M, SHIRMARDI S P. Effects of electron beam irradiation on physicochemical, nutritional properties and storage life of five potato cultivars. Radiation Physics and Chemistry, 2020, 177:109093.
doi: 10.1016/j.radphyschem.2020.109093
[18] 马艳萍, 王国梁, 刘兴华, 张继增. 60Coγ射线辐照对鲜食核桃贮藏期间胚细胞超微结构的影响. 西北植物学报, 2010, 30(7):1382-1387.
MA Y P, WANG G L, LIU X H, ZHANG J Z. Influence of 60Co γ-irradiation on ultrastructure of embryonic cell of fresh walnut during storage. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(7):1382-1387. (in Chinese)
[19] 傅俊杰, 沈伟桥, 包劲松, 徐颖, 张世民. 辐照对板栗胚芽细胞结构的影响. 核农学报, 2002, 16(2):85-88. doi: 10.3969/j.issn.1000-8551.2002.02.005.
doi: 10.3969/j.issn.1000-8551.2002.02.005
FU J J, SHEN W Q, BAO J S, XU Y, ZHANG S M. Effects of γ-irradiation on the embryonic bud structure of chestnut. Acta Agriculturae Nucleatae Sinica, 2002, 16(2):85-88. doi: 10.3969/j.issn.1000-8551.2002.02.005. (in Chinese)
doi: 10.3969/j.issn.1000-8551.2002.02.005
[20] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007: 101-105.
CAO J K, JIANG W B, ZHAO Y M. Guidance of Post-Harvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2007: 101-105. (in Chinese)
[21] 张万明, 王志明, 陈开陆, 蔡光泽, 黄郑, 黄娟. 蒽酮比色法测定马铃薯淀粉深加工工艺废液总糖含量的研究. 光谱实验室, 2010, 27(2):435-440. doi: 10.3969/j.issn.1004-8138.2010.02.008.
doi: 10.3969/j.issn.1004-8138.2010.02.008
ZHANG W M, WANG Z M, CHEN K L, CAI G Z, HUANG Z, HUANG J. Determination of total sugar in potato starch deep- processing waste liquid using anthrone colorimetry. Chinese Journal of Spectroscopy Laboratory, 2010, 27(2):435-440. doi: 10.3969/j.issn.1004-8138.2010.02.008. (in Chinese)
doi: 10.3969/j.issn.1004-8138.2010.02.008
[22] FRAZIER M J, KLEINKOPF G E, BREY R R, OLSEN N L. Potato sprout inhibition and tuber quality after treatment with high-energy ionizing radiation. American Journal of Potato Research, 2006, 83(1):31-39. doi: 10.1007/BF02869607.
doi: 10.1007/BF02869607
[23] MATHO R, DAS M. Effect of gamma irradiation on the physico- mechanical and chemical properties of potato (Solanum tuberosum L.), cv.‘Kufri Sindhuri', in non-refrigerated storage conditions. Postharvest Biology Technology, 2014, 92:37-45.
doi: 10.1016/j.postharvbio.2014.01.011
[24] SOARES I G M, SILVA E B, AMARAL A J, MACHADO E C L, SILVA J M. Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation. Anais Da Academia Brasileira De Ciencias, 2016, 88(2):941-950. doi: 10.1590/0001-3765201620140617.
doi: 10.1590/0001-3765201620140617
[25] 董婷, 高鹏, 蒋毅, 李华, 王丹, 陈浩. 电子束辐照对芒果品质的影响. 食品工业科技, 2021, 42(2):279-283, 289. doi: 10.13386/j.issn1002-0306.2020030073.
doi: 10.13386/j.issn1002-0306.2020030073
DONG T, GAO P, JIANG Y, LI H, WANG D, CHEN H. Effect of electron beam irradiation on mango quality. Science and Technology of Food Industry, 2021, 42(2):279-283, 289. doi: 10.13386/j.issn1002-0306.2020030073. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020030073
[26] 王琛, 高雅, 陶烨, 崔智博, 吴兴壮. 60Co-γ辐照对冷藏蓝莓果实软化相关指标的影响. 食品安全质量检测学报, 2020, 11(22):8540-8546. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069.
doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069
WANG C, GAO Y, TAO Y, CUI Z B, WU X Z. Effect of 60Co-γ irradiation on softening indices of blueberry fruit during cold storage. Journal of Food Safety & Quality, 2020, 11(22):8540-8546. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069. (in Chinese)
doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.069
[27] 李阳, 沙飞, 高月霞, 李佳佳, 彭雪, 任亚梅. 高能电子束辐照对金丝绞瓜的保鲜效果. 现代食品科技, 2021, 37(2):171-182. doi: 10.13982/j.mfst.1673-9078.2021.2.0694.
doi: 10.13982/j.mfst.1673-9078.2021.2.0694
LI Y, SHA F, GAO Y X, LI J J, PENG X, REN Y M. Effects of high energy electron beam irradiation on the preservation of spaghetti squash. Modern Food Science and Technology, 2021, 37(2):171-182. doi: 10.13982/j.mfst.1673-9078.2021.2.0694. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2021.2.0694
[28] 王汝顺, 周盼, 肖成, 夏发明, 王晓广. 电子束辐射剂量大小对淀粉结构的影响. 胶体与聚合物, 2018, 36(3):117-119. doi: 10.13909/j.cnki.1009-1815.2018.03.007.
doi: 10.13909/j.cnki.1009-1815.2018.03.007
WANG R S, ZHOU P, XIAO C, XIA F M, WANG X G. Effect of electron beam radiation dose on the structure of starch. Chinese Journal of Colloid & Polymer, 2018, 36(3):117-119. doi: 10.13909/j.cnki.1009-1815.2018.03.007. (in Chinese)
doi: 10.13909/j.cnki.1009-1815.2018.03.007
[29] 江枝和, 翁伯琦, 王义祥, 林勇, 黄挺俊, 肖淑霞. 60Co γ射线辐照对姬松茸菌丝体细胞超微结构的影响. 电子显微学报, 2006, 25(5):435-439. doi: 10.3969/j.issn.1000-6281.2006.05.017.
doi: 10.3969/j.issn.1000-6281.2006.05.017
JIANG Z H, WENG B Q, WANG Y X, LIN Y, HUANG T J, XIAO S X. Effect of irradiation with 60Co γ radiation on mycelial ultrastructure of Agaricus blazei murill. Journal of Chinese Electron Microscopy Society, 2006, 25(5):435-439. doi: 10.3969/j.issn.1000-6281.2006. 05.017. (in Chinese)
doi: 10.3969/j.issn.1000-6281.2006.05.017
[30] 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 王志强, 刘凤之. 破眠剂1号对葡萄冬芽休眠解除及萌芽过程中呼吸代谢的影响. 中国果树, 2016(4):5-10. doi: 10.16626/j.cnki.issn1000-8047.2016.04.002.
doi: 10.16626/j.cnki.issn1000-8047.2016.04.002
WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z. Effect of sleep breaker No. 1 on respiratory metabolism during grape winter bud dormancy release and germination. China Fruits, 2016(4):5-10. doi: 10.16626/j.cnki.issn1000-8047.2016.04.002. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2016.04.002
[1] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[2] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[5] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[6] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[9] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[10] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[11] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[12] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[13] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[14] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[15] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!