Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 666-679.doi: 10.3864/j.issn.0578-1752.2022.04.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield

WANG YaLiang1(),ZHU DeFeng1(),CHEN RuoXia2,FANG WenYing3,WANG JingQing1,XIANG Jing1,CHEN HuiZhe1,ZHANG YuPing1,CHEN JiangHua2   

  1. 1China National Rice Research Institute, Hangzhou 310006
    2Ningbo Academy of Agricultural Sciences, Ningbo 315040, Zhejiang
    3Agricultural Technology Extension Center of Yuhang District, Hangzhou 311100
  • Received:2021-04-06 Accepted:2021-07-05 Online:2022-02-16 Published:2022-02-23
  • Contact: DeFeng ZHU E-mail:wangyaliang@caas.cn;cnrice@qq.com

Abstract:

【Objective】 The aim of this study was to clarify the beneficial effect of precision drill sowing (PS) in machine transplanting for improving the population uniformity and yield of hybrid rice under low seeding rate, and to establish the theory and technology for machine transplanting with sparse sowing and fewer seedling in machine transplanting with flat seedling of hybrid rice. 【Method】 Indica-japonica hybrid rice ‘Yongyou 1540’ was used in this study, and the experiment was conducted at Chonghua country (Yuhang district) and experimental base of China National Rice Research Inistitute (Fuyang district) at the same time. PS was layout set at 18 horizontal hills×40 vertical hills in the standard seedling tray for machine transplanting. The sowing amount per hill in seedling tray was set as 2.5 seeds (43.2 g/tray, T1), 3.5 seeds (60.5 g/tray, T2), and 4.0 seeds (69.1 g/tray, T3), and the same seeding rates in traditional broadcast sowing (BS) for machine transplanting were set as the control. Then, the seed distribution, seedling quality, machine planting quality, dry matter accumulation in rice population, the uniformity of the number of productive tillers and yield formation were investigated. 【Result】(1) Compared with BS, PS improved the uniformity of seed distribution in seedling tray. (2) PS significantly enhanced rice seedling quality, and increased the dry matter accumulation and uniformity of seedling. PS increased the seedling uniformity by 47.5% on average among different seeding rates than that under BS, which presented a more beneficial effect with low seeding rates. (3) Compared with BS, PS reduced the missing hill percent in machine transplanting by 8.9 percentage point on average, and PS enhanced the uniformity of seedling number transplanted per hill by 87.8% on average, meanwhile, the percentage of hills with 2-3 seedling transplanted was the highest at T2 under PS. (4) PS increased the number of tillers at tillering peak stage to increase the number of productive panicles in rice population. Among the different seeding rate treatments, PS increased the number of productive tillers by 6.7% on average, meanwhile, which enhanced the uniformity of the number of productive tillers by 40.2%, in which T2 presented the highest productive tillers and productive tillers uniformity, meanwhile PS enhanced the leaf area index and dry matter accumulation of rice population. (5) PS enhanced the rice yield by 9.0% on average compared with BS by increasing in the number of productive tillers, in which T2 presented the highest yield. With the increasing of seeding rate, the increasing rate of yield under PS in contrast to BS presented a reduction tendency, while a decreasing was observed in the contribution rate of machine-transplanted seedlings to yield. (6) Correlation analysis showed that the population uniformity of the number of productive tillers positive correlated to leaf area index, dry matter accumulation and rice yield. 【Conclusion】Precision drill sowing in machine transplanting improved the uniformity of seed distribution, reduced the missing hill percent, increased the uniformity of seedling transplanted per hill, therefore contributed to enhance the rice population uniformity and yield. Precision drill sowing was an effective method to achieve higher yield with flat seedling in machine transplanting under low seeding rates of hybrid rice.

Key words: hybrid rice, machine transplanting, flat seedling, precision drill sowing, plant distribution uniformity, yield

Table 1

Seeding rate setting in the study"

播种量处理
Seed rate treatment
每秧盘取秧穴数
Total hills per seedling tray
每穴播种粒数
Seed number per hill
每秧盘播种量
Seed rate per tray (g/tray)
单位面积播种量
Seed rate (kg·hm-2)
T1 720 2.5 43.2 11.1
T2 720 3.5 60.5 15.5
T3 720 4.0 69.1 19.9

Fig. 1

Seed distribution of precision drill and broadcast sowing under different sowing rate treatments A-C, precision drill sowing in 18 rows, seedling catching set at 18 hills in transverse direction and 40 hills in longitudinal direction per tray. D-F, traditional broadcast sowing in 18 rows, seedling catching set at 18 hills in transverse direction and 40 hills in longitudinal direction per tray. A, D: T1 treatment, seed rate of 43.2 g/tray, 2.5 seeds per hill; B, E: T2 treatment, seed rate of 60.5 g/tray, 3.5 seeds per hill; C, F: T3 treatment, seed rate of 69.1 g/tray, 4.0 seeds per hill"

Fig. 2

Effects of sowing method on seed distribution uniformity in seedling tray under different seeding rate treatments A: Yuhang field site; B: Fuyang field site. * indicated significance at P<0.05; ** indicated significance at P<0.01. The same as below"

Table 2

Effects of sowing method on seedling quality under different seeding rate treatments"

试验点
Site
播种量
Seeding rate
播种方法
Sowing method
成苗率 Seedling rate (%) 苗高
Seedling height (cm)
叶龄
Leaf age
茎叶干重 Biomass of stem and leaves (mg) 根干重
Root biomass (mg)
茎基宽度 Basal stem width (cm) 秧苗均匀度 Seedling evenness (%)
余杭
Yuhang
T1 传统撒播 BS 73.0±6.2 16.2±0.1 3.4±0.1 59.8±0.8 16.5±1.0 0.40±0.03 48.0±4.4
精准条播 PS 72.7±2.5 15.5±0.4** 3.3±0.1 63.0±1.1** 16.3±0.6 0.41±0.03 84.0±3.6**
T2 传统撒播 BS 69.0±2.2 16.1±0.1 3.3±0.1 55.7±2.2 12.0±0.9 0.36±0.03 58.7±4.0
精准条播 PS 67.6±4.4 15.5±0.4** 3.3±0.1 64.4±1.2** 16.1±0.2** 0.39±0.03 81.3±2.1**
T3 传统撒播 BS 77.3±4.8 16.8±0.1 3.3±0.1 52.9±1.6 12.4±0.9 0.33±0.03 64.0±5.6
精准条播 PS 74.6±4.0 16.2±0.3 3.4±0.1 62.7±1.6** 16.1±0.5** 0.34±0.02 81.7±2.3**
富阳
Fuyang
T1 传统撒播 BS 78.7±4.6 16.1±0.1 3.3±0.1 58.6±2.5 15.5±1.1 0.40±0.03 46.0±3.6
精准条播 PS 74.1±5.8 15.7±0.4 3.3±0.0 64.2±0.5** 16.3±0.5 0.42±0.03 84.3±4.0**
T2 传统撒播 BS 72.9±3.8 16.4±0.4 3.3±0.1 55.6±1.8 12.4±0.7 0.37±0.05 57.7±6.4
精准条播 PS 74.2±5.7 15.8±0.8 3.3±0.1 66.4±1.9** 16.3±0.5** 0.39±0.02 80.3±5.0**
T3 传统撒播 BS 71.7±8.8 16.9±0.4 3.3±0.1 52.9±1.0 12.2±0.5 0.30±0.03 60.7±8.6
精准条播 PS 72.1±3.8 16.5±0.2 3.4±0.1 62.9±1.0** 16.1±0.5** 0.34±0.02 73.3±1.5**
试验点 Site 0.64 2.05 0.13 0.42 0.53 0.07 0.20
播种量 Seeding rate 1.30 15.44** 0.17 14.69** 39.25** 28.12** 1.12
播种方法 Sowing method 0.37 21.33** 0.84 211.20** 155.05** 7.23* 175.25**
试验点×播种量 Site × Seeding rate 2.11 0.37 0.16 0.29 1.43 0.78 0.40
试验点×播种方法
Site × Sowing method
0.02 0.41 0.01 2.01 1.08 0.41 0.20
播种量×播种方法
Seeding rate × Sowing method
0.13 0.19 1.76 10.79** 34.56** 0.08 18.24**
试验点×播种量×播种方法
Site × Seeding rate × Sowing method
0.37 0.18 0.33 0.43 1.08 0.27 0.31

Table 3

Effects of sowing method on the quality of machine transplanting under different seeding rate treatments"

试验点
Site
播种量
Seeding
rate
播种方法
Sowing
method
漏秧率
Missing hill
percent
(%)
机插苗数
Seedling number transplanted per hill
机插苗数分布
Range of seedling number transplanted per hill
机插苗数均匀度
The evenness of seedling number transplanted per hill
机插2—3苗比例
The ratio of 2-3 seedling transplanted per hill (%)
余杭
Yuhang
T1 传统撒播 BS 11.7±1.4 1.8±0.2 0-6 33.3±4.0 35.8±2.9
精准条播 PS 6.7±1.4** 1.8±0.1 0-4 56.5±2.9** 61.7±7.6**
T2 传统撒播 BS 15.0±2.5 2.4±0.1 0-8 25.7±1.7 39.0±7.7
精准条播 PS 3.3±1.4** 2.4±0.2 0-4 54.7±4.5** 73.3±7.2**
T3 传统撒播 BS 10.8±2.9 3.1±0.5 0-11 42.3±2.1 35.8±2.9
精准条播 PS 1.7±1.4** 3.1±0.1 0-6 59.5±4.1** 42.3±2.1**
富阳 Fuyang T1 传统撒播 BS 12.7±1.7 2.0±0.2 0-7 19.7±10.2 34.3±5.1
精准条播 PS 3.2±0.5** 2.0±0.0 0-4 58.1±5.0** 66.7±5.8**
T2 传统撒播 BS 12.0±1.1 2.6±0.1 0-8 30.4±10.1 40.0±5.0
精准条播 PS 1.2±1.0** 2.4±0.2 0-4 62.3±5.1** 76.7±2.9**
T3 传统撒播 BS 7.5±0.7 2.9±0.4 0-11 39.4±1.1 36.0±3.6
精准条播 PS 0.2±0.3** 3.1±0.1 0-6 67.0±2.8** 45.0±5.0
试验点 Site 16.2** 0.6 0.2 10.70**
播种量 Seeding rate 17.3** 98.8** 15.6** 7.01**
播种方法 Sowing method 296.3** 0.1 249.9** 324.31**
试验点×播种量 Site × Seeding rate 0.7 1.5 0.7 30.67**
试验点×播种方法 Site × Sowing method 0.3 0.3 7.3* 1.11
播种量×播种方法 Seeding rate × Sowing method 5.4** 1.2 4.1 17.95**
试验点×播种量×播种方法
Site × Seeding rate × Sowing method
3.6 0.7 0.1 6.21**

Fig. 3

Effects of sowing method on dynamic of tillering under different seeding rate treatments A-C: Yuhang field site; D-F: Fuyang field site. A, D: T1 Treatment; B, E: T2 Treatment; C, F: T3 Treatment"

Fig. 4

Effects of sowing method on uniformity of the number of productive tillers under different seeding rate treatments A: Yuhang field site; B: Fuyang field site"

Fig. 5

Effects of sowing method on leaf area index and dry matter accumulation of rice population under different seeding rate treatments A, C, E: Yuhang field site; B, D, F: Fuyang field site"

Table 4

Effects of sowing method on rice yield and yield component under different seeding rate treatments"

试验点
Site
播种量
Seeding rate
播种方式
Sowing method
有效穗数
Productive panicle number (×105·hm-2)
每穗粒数
The number of spikelets per panicle
结实率
Spikelet fertility rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t·hm-2)
余杭
Yuhang
T1 传统撒播 BS 22.5±0.3 270.2±4.0 82.4±0.9 23.5±0.1 11.8±0.3
精准条播 PS 24.9±0.8** 275.2±8.2 81.9±1.1 23.6±0.2 13.2±0.3**
T2 传统撒播 BS 23.7±1.0 272.9±7.2 82.2±1.0 23.7±0.1 12.6±0.4
精准条播 PS 25.8±0.4** 273.7±3.0 83.4±2.0 23.6±0.2 13.9±0.3**
T3 传统撒播 BS 23.3±0.1 268.0±7.7 82.5±0.9 23.5±0.1 12.1±0.5
精准条播 PS 25.2±1.4** 261.9±7.4 82.5±0.9 23.5±0.1 12.8±0.2
富阳
Fuyang
T1 传统撒播 BS 17.9±0.3 249.7±9.8 82.5±0.9 23.7±0.1 8.7±0.1
精准条播 PS 18.7±0.2** 250.2±12.5 82.5±0.9 23.7±0.1 9.1±0.5**
T2 传统撒播 BS 18.1±0.5 248.7±6.4 81.9±0.3 23.5±0.1 8.9±0.2
精准条播 PS 20.6±0.4** 255.2±2.8 81.3±0.6 23.6±0.1 10.1±0.2**
T3 传统撒播 BS 17.9±0.5 256.4±3.0 83.2±2.2 23.4±0.0 8.9±0.2
精准条播 PS 19.1±0.4** 250.2±7.8 82.1±1.2 23.7±0.1 9.5±0.5
试验点 Site 515.07** 53.12** 0.4 0.08 951.96**
播种量 Seeding rate 5.98** 0.24 0.26 2.3 9.18**
播种方法 Sowing method 55.78** 0.2 0.16 2.7 66.48**
试验点×播种量 Site × Sowing rate 0.48 3.4 1.45 1.61 0.16
试验点×播种方法 Site × Sowing method 0.85 0.23 0.89 2.61 0.2
播种量×播种方法 Seeding rate × Sowing method 1.03 0.79 0.37 1.9 3.83*
试验点×播种量×播种方法
Site × Seeding rate × Sowing method
0.99 0.51 0.67 2.61 0.12

Fig. 6

Effects of sowing method on rice yield contribution per seedling machine transplanted under different seeding rate treatments"

Fig. 7

Correlation analysis between the uniformity of the number of productive tillers per plant and leaf area index, total dry matter accumulation, the number of productive tillers, and rice yield A, correlation between the uniformity of the number of productive tillers per plant and leaf area index of rice population; B, correlation between the uniformity of the number of productive tillers per plant and total dry matter accumulation of rice population; C, correlation between the uniformity of the number of productive tillers per plant and the number of productive tillers of rice population; D, correlation between the uniformity of the number of productive tillers per plant and rice yield"

[1] 霍中洋, 李杰, 许轲, 戴其根, 魏海燕, 龚金龙, 张洪程. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012, 45(19):3932-3945.
HUO Z Y, LI J, XU K, DAI Q G, WEI H Y, GONG J L, ZHANG H C. Effect of planting methods on quality of different growth and development types of Japonica rice under high-yielding cultivation condition. Scientia Agricultura Sinica, 2012, 45(19):3932-3945. (in Chinese)
[2] 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018, 44(6):791-795.
ZOU Y B, HUANG M. Opportunities and challenges for crop production in China during the transition period. Acta Agronomica Sinica, 2018, 44(6):791-795. (in Chinese)
[3] HUANG M, TANG Q, AO H, ZOU Y. Yield potential and stability in super hybrid rice and its production strategies. Journal of Integrative Agriculture, 2017, 16(5):1009-1017.
doi: 10.1016/S2095-3119(16)61535-6
[4] 彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016, 42(3):313-319.
PENG S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agronomica Sinica, 2016, 42(3):313-319. (in Chinese)
[5] 李泽华, 马旭, 李秀昊, 陈林涛, 李宏伟, 袁志成. 水稻栽植机械化技术研究进展. 农业机械学报, 2018, 49(5):1-20.
LI Z H, MA X, LI X H, CHEN L T, LI H W, YUAN Z C. Research progress of rice transplanting mechanization. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5):1-20. (in Chinese)
[6] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7):1273-1289.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7):1273-1289. (in Chinese)
[7] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47(5):865-879.
HU Y J, XING Z P, GONG J L, LIU G T, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W, SHA A Q, ZHOU Y Y, LUO X C, LIU G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Scientia Agricultura Sinica, 2014, 47(5):865-879. (in Chinese)
[8] 谢小兵, 王玉梅, 黄敏, 赵春容, 陈佳娜, 曹放波, 单双吕, 周雪峰, 李志斌, 范龙, 高伟, 邹应斌. 单本密植机插对杂交稻生长和产量的影响. 作物学报, 2016, 42(6):924-931.
XIE X B, WANG Y M, HUANG M, ZHAO C R, CHEN J N, CAO F B, SHAN S L, ZHOU X F, LI Z B, FAN L, GAO W, ZOU Y B. Effect of mechanized transplanting with high hill density and single seedling per hill on growth and grain yield in hybrid rice. Acta Agronomica Sinica, 2016, 42(6):924-931. (in Chinese)
[9] 王亚梁, 朱德峰, 向镜, 陈惠哲, 张玉屏, 徐一成, 张义凯. 杂交稻低播量精量播种育秧及机插取秧特性. 中国水稻科学, 2020, 34(4):332-338.
WANG Y L, ZHU D F, XIANG J, CHEN H Z, ZHANG Y P, XU Y C, ZHANG Y K. Characteristics of seedling raising and mechanized transplanting of hybrid rice with a low seeding rate by precise seeding method. Chinese Journal of Rice Science, 2020, 34(4):332-338. (in Chinese)
[10] 李泽华, 马旭, 李宏伟, 郭林杰, 刘朝东, 傅荣富, 杨明祥, 梁振宇. 低播种量下杂交稻不同机械化种植方式的产量构成及特征. 华南农业大学学报, 2020, 41(4):22-29.
LI Z H, MA X, LI H W, GUO L J, LIU C D, FU R F, YANG M X, LIANG Z Y. Yield components and characteristics of hybrid rice with different mechanical transplanting methods under low sowing rate. Journal of South China Agricultural University, 2020, 41(4):22-29. (in Chinese)
[11] 汪建军, 曾勇军, 易艳红, 章起明, 胡启星, 谭雪明, 黄山, 商庆银, 曾研华, 石庆华. 基于不同播种量的双季机插早稻均匀度对产量形成的影响. 作物杂志, 2018(2):141-147.
WANG J J, ZENG Y J, YI Y H, ZHANG Q M, HU Q X, TAN X M, HUANG S, SHANG Q Y, ZENG Y H, SHI Q H. The uniformity of mechanical-transplanted early-season rice under different seedling rates and its effects on the formation of grain yield. Crops, 2018(2):141-147. (in Chinese)
[12] 张桥, 向开宏, 孙永健, 武云霞, 郭长春, 唐源, 刘芳艳, 马均. 不同育秧方式下播种量和插秧机具对水稻产量及群体质量的影响. 核农学报, 2020, 34(11):2595-2606.
ZHANG Q, XIANG K H, SUN Y J, WU Y X, GUO C C, TANG Y, LIU F Y, MA J. Effects of seeding amount and transplanting machines on rice yield and population quality under different seedling raising methods. Journal of Nuclear Agricultural Sciences, 2020, 34(11):2595-2606. (in Chinese)
[13] 杜永林, 缪学宽, 李刚华, 张俊, 王绍华, 刘正辉, 唐设, 丁艳锋. 江苏机插水稻大面积均衡增产共性特征分析. 作物学报, 2014, 40(12):2183-2191.
doi: 10.3724/SP.J.1006.2014.02183
DU Y L, MIAO X K, LI G H, ZHANG J, WANG S H, LIU Z H, TANG S, DING Y F. Common characteristics of balanced yield increase in a large area of mechanical transplanted rice in Jiangsu province. Acta Agronomica Sinica, 2014, 40(12):2183-2191. (in Chinese)
doi: 10.3724/SP.J.1006.2014.02183
[14] 罗汉亚, 李吉, 袁钊和, 何瑞银, 马拯胞, 张璐. 杂交稻机插秧育秧播种密度与取秧面积耦合关系. 农业工程学报, 2009, 25(7):98-102.
LUO H Y, LI J, YUAN Z H, HE R Y, MA Z B, ZHANG L. Coupling relationships of nursing seedling densities and finger sticking area by mechanized hybrid rice transplanter. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7):98-102. (in Chinese)
[15] HUANG M, SHAN S, XIE X, CAO F, ZOU Y. Why high grain yield can be achieved in single seedling machine-transplanted hybrid rice under dense planting conditions?. Journal of Integrative Agriculture, 2018, 17(6):1299-1306.
doi: 10.1016/S2095-3119(17)61771-4
[16] 陈惠哲, 向镜, 王岳钧, 徐一成, 陈叶平, 张玉屏, 张义凯, 朱德峰. 水稻叠盘出苗育秧的种子出苗特性及秧苗机插效果. 核农学报, 2020, 34(12):2823-2830.
CHEN H Z, XIANG J, WANG Y J, XU Y C, CHEN Y P, ZHANG Y P, ZHANG Y K, ZHU D F. Seedling emergence characteristics and transplanting quality using the tray-overlaying seedling raising mode in rice mechanized transplanting systems. Journal of Nuclear Agricultural Sciences, 2020, 34(12):2823-2830. (in Chinese)
[17] 谢小兵, 周雪峰, 蒋鹏, 陈佳娜, 张瑞春, 伍丹丹, 曹放波, 单双吕, 黄敏, 邹应斌. 低氮密植栽培对超级稻产量和氮素利用率的影响. 作物学报, 2015, 41(10):1591-1602.
doi: 10.3724/SP.J.1006.2015.01591
XIE X B, ZHOU X F, JIANG P, CHEN J N, ZHANG R C, WU D D, CAO F B, SHAN S L, HUANG M, ZOU Y B. Effect of low nitrogen rate combined with high plant density on grain yield and nitrogen use efficiency in super rice. Acta Agronomica Sinica, 2015, 41(10):1591-1602. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01591
[18] 吴文革, 杨剑波, 张健美, 周永进, 蔡海涛, 许有尊, 吴然然, 陈刚. 穴基本苗对机插杂交中籼稻群体构建及产量的影响. 安徽农业大学学报, 2014, 41(3):401-405.
WU W G, YANG J B, ZHANG J M, ZHOU Y J, CAI H T, XU Y Z, WU R R, CHEN G. Effects of seedling number per hole on population quality and yield of mechanical transplanting middle-season indica hybrid rice. Journal of Anhui Agricultural Uniersity, 2014, 41(3):401-405. (in Chinese)
[19] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀. 基于机插晚稻分蘖成穗特性获取基本苗定量参数. 农业工程学报, 2016, 32(1):30-37.
LÜ W S, ZENG Y J, SHI Q H, PAN X H, HUANG S, SHANG Q Y, TAN X M, LI M Y, HU S X. Calculation of quantitative parameters of basic population of machine transplanted late rice based on its tillering and panicle formation characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1):30-37. (in Chinese)
[20] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻机械化种植的分蘖特性. 作物学报, 2014, 40(6):1044-1055.
LEI X L, LIU L, LIU B, HUANG G Z, MA R C, REN W J. Tillering characteristics of Indica hybrid rice under mechanized planting. Acta Agronomica Sinica, 2014, 40(6):1044-1055. (in Chinese)
[21] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17):3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K. Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015, 48(17):3404-3414. (in Chinese)
[22] 杨祥田, 何贤彪, 王旭辉, 曾孝元. 水稻机插缺丛条件下自然补偿能力研究. 中国农业通报, 2014, 30(21):70-74.
YANG X T, HE X B, WANG X H, ZENG X Y. Research on natural compensation ability for empty hills in paddy field for mechanical transplanting rice. Chinese Agricultural Science Bulletin, 2014, 30(21):70-74. (in Chinese)
[23] 李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国水稻科学, 2017, 31(3):265-277.
LI Y H, WANG H Y, LÜ T F, ZHANG S W, JIANG M J, HE Q L, SUN Y J, MA J. Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages. Chinese Journal of Rice Science, 2017, 31(3):265-277. (in Chinese)
[24] 章起明, 曾勇军, 吕伟军, 黄山, 商庆银, 曾研华, 谭雪明, 石庆华, 潘晓华. 每穴苗数和施氮量对双季机插稻产量及氮肥利用效率的影响. 作物杂志, 2016(3):144-150.
ZHANG Q M, ZENG Y J, LÜ W J, HUANG S, SHANG Q Y, ZENG Y H, TAN X M, SHI Q H, PAN X H. Effects of nitrogen application and transplanting seedlings number per hole on the grain yield and nitrogen use efficiency of double-rice by machine plug. Crops, 2016(3):144-150. (in Chinese)
[25] SHAN S, JIANG P, FANG S, CAO F, ZHANG H, CHEN J, YIN X, TAO Z, LEI T, HUANG M, ZOU Y. Printed sowing improves grain yield with reduced seed rate in machine-transplanted hybrid rice. Field Crops Research, 2020, 245:107676.
doi: 10.1016/j.fcr.2019.107676
[26] 王端飞, 李刚华, 耿春苗, 杜永林, 梨泉, 丁艳锋. 播插方式对超级粳稻宁粳3号产量及群体均衡性的影响. 作物学报, 2012, 38(2):307-314.
WANG D F, LI G H, GENG C M, DU Y L, LI Q, DING Y F. Effect of seeding and transplanting methods on yield and uniformity of population indices of super japonica rice Ningjing 3. Acta Agronomica Sinica, 2012, 38(2):307-314. (in Chinese)
[27] TURNER M D, RABIAOWLTZ D. Factors affecting frequency distribution of plant mass: The absence of dominance and suppression in competing monocultures of Festuca Paradoxa. Ecology, 1983, 64(3):469-475.
doi: 10.2307/1939966
[28] 林洪鑫, 肖运萍, 袁展汽, 刘仁根, 汪瑞清. 水稻合理密植及其优质高产机理研究进展. 中国农学通报, 2011, 27(9):1-4.
LIN H X, XIAO Y P, YUAN Z Q, LIU R G, WANG R Q. Advance in rational close planting and its mechanism of superior quality and high yield in rice. Chinese Agricultural Science Bulletin, 2011, 27(9):1-4. (in Chinese)
[29] WU H, XIANG J, ZHANG Y, ZHANG Y, PENG S, CHEN H, ZHU D. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Scientific Reports, 2018, 8:12891.
doi: 10.1038/s41598-018-31267-y
[30] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析. 作物学报, 2021, 47(3):546-555.
doi: 10.3724/SP.J.1006.2021.02033
WEI H H, ZHANG X B, GE J L, MENG T Y, LU Y, LI X Y, TAO Y, DING E H, CHEN Y L, DAI Q G. Dynamics in above-ground biomass accumulation after transplanting and its characteristics analysis in Yongyou japonica/indica hybrids. Acta Agronomica Sinica, 2021, 47(3):546-555. (in Chinese)
doi: 10.3724/SP.J.1006.2021.02033
[31] HUANG M, JIANG P, SHAN S, GAO W, MA G, ZOU Y, UPHOFF N, YUAN L. Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions. Rice, 2017, 10:43.
doi: 10.1186/s12284-017-0182-1
[32] HUANG M, CHEN J, CAO F, ZOU Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Research, 2018, 221:333-338.
doi: 10.1016/j.fcr.2017.06.028
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[9] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[10] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[14] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!