Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 558-574.doi: 10.3864/j.issn.0578-1752.2022.03.011

• HORTICULTURE • Previous Articles     Next Articles

Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment

LAI ChunWang1(),ZHOU XiaoJuan2,CHEN Yan1,LIU MengYu1,XUE XiaoDong1,XIAO XueChen1,LIN WenZhong3,LAI ZhongXiong1,LIN YuLing1,*()   

  1. Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002
    Agricultural and Rural Bureau of Ganzhou Jiangxi, Ganzhou 341000, Jiangxi
    Quanzhou Institute of Agricultural Sciences, Quanzhou 362000, Fujian
  • Received:2021-04-06 Accepted:2021-06-21 Online:2022-02-01 Published:2022-02-11
  • Contact: YuLing LIN E-mail:laichunwang@163.com;buliang84@163.com

Abstract:

【Objective】 S-adenosylmethionine synthetase (SAMS), 1-aminocyclopropane-1-carboxylic acid synthetase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) are three key enzymes in the biosynthesis of ethylene in plants. In this study, the gene families of SAMS, ACS and ACO in Dimocarpus longan (DlSAMS, DlACS and DlACO) were identified at the whole genome level. Bioinformatics analysis, expression pattern analysis at different early stages of somatic embryogenesis (SE), and expression pattern analysis of embryogenic callus (EC) in longan treated with 1-aminocyclopropane-1-carboxylic acid (ACC) at different time and different concentrations were carried out, so as to lay the foundation for in-depth study and utilization of DlSAMS, DlACS and DlACO family genes in longan. 【Method】 The protein sequences of SAMS, ACS and ACO of Arabidopsis thaliana were downloaded from TAIR as reference sequences. TBtools, NCBI blast and other tools were used to search longan genome database to identify DlSAMS, DlACS and DlACO gene families. ExPASy, PrediSi, TMHMM Server2.0, NetPhos3.1Server, Plant-PLoc, MEME, PlantCARE, STRING, TBtools and other tools were used to predict the basic physicochemical properties, chromosomal localization, gene collinearity and selection pressure, gene structures, protein conservative motifs, cis-acting elements of promoters and protein interaction relationship of DlSAMS, DlACS and DlACO gene family members. The proteins sequences of longan, Arabidopsis thaliana, tomato, rice and maize were aligned by ClustalW software, and the evolutionary trees of SAMS, ACS and ACO were constructed by MEGA-X software. According to the FPKM values of longan transcriptome database, TBtools software was used to draw the expression heat maps of DlSAMS, DlACS and DlACO members at different early stages of SE. The expression of DlSAMS, DlACS and DlACO members in EC of longan under different concentrations of ACC and treatment time were analyzed by real-time fluorescence quantitative PCR (qRT-PCR). 【Result】 There were 4, 11 and 4 members of SAMS, ACS and ACO families in the third generation genome of longan, respectively, and the number of family members in longan had little difference with those of Arabidopsis and tomato. DlSAMS family members were the most conservative, and all members had the same motifs, DlACS and DlACO family members also had many conservative motifs. A total of 19 members of the three families were distributed on 11 chromosomes, with six pairs of collinearity genes and 30 pairs of collinearity genes with Arabidopsis thaliana, all of which were subjected to purification selection. All the members of the three gene families contained a large number of light, hormone and stress response elements. The proteins interaction within the family was weak, but the interaction between the families were very close. According to the phylogenetic relationship, SAMS, ACS and ACO gene families could be divided into three subgroups. DlSAMS family members were only distributed in SAMS-Ⅰ and SAMS-Ⅱ, SAMS-Ⅲ might be unique to monocotyledons. DlACS and DlACO family members were distributed in all three subgroups, and the distribution was relatively uniform. The three gene families were closely related to SAMS, ACS and ACO in tomato and Arabidopsis thaliana. The analysis of transcriptome FPKM value showed that all members of DlSAMS family and DlACO4B were highly expressed in the early three stages of SE, which might play an important role in SE. DlACS1 and DlACS6B were highly expressed in globular embryo (GE) stage, which might be closely related to the formation of GE. The proliferation of EC and the expression of DlSAMS, DlACS and DlACO members were significantly affected by different concentrations of ACC in subculture medium. After 20 days of culture, the genes were mainly up-regulated, and the higher concentrations of ACC, the higher up regulation of genes. In 25-35 days, the expression of genes were mainly down regulated. However, at 20 d, the genes expression in EC under 0.01 mmol∙L-1 ACC treatment was mainly down regulated, which might be the reason for its significantly higher proliferation than that of CK. 【Conclusion】 There were 4, 11 and 4 members of SAMS, ACS and ACO family in the third generation genome of longan, which were relatively conservative in evolution, and they contained a lot of hormones and stress response elements. These three gene family members played important roles in the regulation of SE in longan. 0.01 mmol∙L-1 ACC treated might regulate and control the proliferation of EC by regulating the expression of DlSAMS, DlACS and DlACO genes.

Key words: Longan, SAMS, ACS, ACO, gene family, gene expression analyses

Table 1

Primer sequences and produce size in qRT-PCR analysis"

基因名称 Gene name 引物序列 Primer sequence (5′ to 3′) 目的片段长度Produce size (bp)
DlSAMS2B F: CGAGGTCAGGAAGAACGG R: CTGGACACGGACTGGAAC 108
DlSAMS3A F: GGCTCTGTCAACGAAGGC R: GGGCAACTTTACTCTCGGG 99
DlSAMS3B F: GCGTTGGTCTTGATGCTG R: GCGATCTCCTCAGGCTTC 111
DlACS1 F: GCCACACCTTCACAATGG R: GCATCTCGCCTTCTTCTG 120
DlACS8B F: GCCCTTCCAACCCATTG R: GCCTGCCCGAATAGATTTC 110
DlACO4B F: GGCGGCACCAAAGTTAG R: CGGAGAGGAGGATGATGC 98
FeSOD F: CAGATGGTGAAGCCGTAGAG R: TATGCCACCGATACAACAAAC 106

Table 2

Protein physicochemical properties of DlSAMS, DlACS and DlACO families"

基因名称
Gene name
基因ID
Gene ID
注释到拟南芥成员
Annotated in Arabidopsis thaliana
氨基酸
数量
AA
蛋白质
分子量
MW
等电点
PI
不稳定性
指数
II
脂肪指数
AI
亲水性
Hydropathicity
信号肽
Signal
peptide
跨膜
结构域
THM
磷酸化位点 Phosphorylationsite 亚细胞定位
Subcellular localization
丝氨酸(S) 络氨酸(Y) 苏氨酸(T) 合计
Total
DlSAMS2A Dlo003446 AtSAMS2 393 42976.7 5.67 24.04 82.06 -0.30 NO 0 13 5 18 36 叶绿体 Chloroplast
DlSAMS2B Dlo011926 AtSAMS2 393 43174.9 5.59 23.62 80.08 -0.33 NO 0 13 5 17 35 叶绿体 Chloroplast
DlSAMS3A Dlo026134 AtSAMS3 389 42627.4 5.70 28.73 80.93 -0.33 NO 0 12 4 16 32 叶绿体 Chloroplast
DlSAMS3B Dlo029479 AtSAMS3 390 42651.5 5.92 23.05 80.72 -0.31 NO 0 13 5 17 35 叶绿体 Chloroplast
DlACS1 Dlo012699 AtACS1 478 53837.4 6.57 44.99 77.95 -0.28 NO 0 24 5 14 43 叶绿体 Chloroplast
DlACS6A Dlo032315 AtACS6 485 54632.4 6.47 42.48 82.41 -0.26 NO 0 21 5 14 40 叶绿体 Chloroplast
DlACS6B Dlo032316 AtACS6 486 54537 5.64 45.14 81.85 -0.25 NO 0 29 5 11 45 质膜 Cell membrane
DlACS7 Dlo000144 AtACS7 453 50954.9 6.17 49.2 83.77 -0.3 NO 0 27 6 12 45 叶绿体 Chloroplast
DlACS8A Dlo013892 AtACS8 461 51773.2 8.48 42.26 82.06 -0.28 NO 0 26 5 7 38 叶绿体 Chloroplast
DlACS8B Dlo016064 AtACS8 466 52741 7.95 45.65 80.17 -0.36 NO 0 22 6 14 42 细胞核 Nucleus
DlACS9 Dlo016060 AtACS9 466 52894.3 7.14 45.26 80.79 -0.35 NO 0 25 6 17 48 细胞核 Nucleus
DlACS10 Dlo031591 AtACS10 544 59420.8 7.00 50.14 88.69 -0.1 NO 1 44 4 12 60 叶绿体 Chloroplast
DlACS12A Dlo006366 AtACS12 504 55461.9 7.84 58.9 94.58 -0.03 NO 1 42 6 7 55 叶绿体 Chloroplast
DlACS12B Dlo019762 AtACS12 628 69745 9.31 51.11 87.71 -0.24 NO 0 55 7 24 86 叶绿体 Chloroplast
DlACS12C Dlo020124 AtACS12 378 41746.1 4.95 53.69 97.22 0.11 NO 0 16 3 7 26 质膜 Cell membrane
DlACO1 Dlo000160 AtACO1 306 34938.9 6.17 41.55 82.84 -0.57 NO 0 17 4 8 29 细胞质 Cytoplasm
DlACO4A Dlo021230 AtACO4 320 36155.7 5.06 31.92 87.72 -0.22 NO 0 9 6 2 17 细胞质 Cytoplasm
DlACO4B Dlo027043 AtACO4 315 36128.5 5.8 30.41 83.24 -0.46 NO 0 8 5 6 19 叶绿体 Chloroplast
DlACO5 Dlo014445 AtACO5 310 35026.9 5.46 31.73 86.77 -0.4 NO 0 12 4 5 21 叶绿体 Chloroplast

Fig. 1

Collinearity analysis of DlSAMS, DlACS and DlACO gene families"

Fig. 2

Collinearity analysis of SAMS, ACS and ACO genes in Arabidopsis thaliana and Longan"

Fig. 3

Motif analysis of gene structure and protein conservationA: Conservative motif distribution; B: Gene structure; C: Protein conservative domain"

Fig. 4

Distribution of cis-acting elements in DlSAMS, DlACS and DlACO gene families"

Fig. 5

Analysis of protein-protein interaction networks of DLSAMS, DLACS and DLACO family members A: SAMS proteins interaction, B: ACS proteins interaction, C: ACO proteins interaction, D: SAMS, ACS and ACO proteins interaction"

Fig. 6

Evolutionary trees of ETH synthesis pathway genes"

Fig. 7

Expression levels of DlSAMS, DlACS and DlACO family members in different stages of early somatic embryos"

Fig. 8

Effects of different concentrations of ACC on EC of LonganA: Growth status, B: Growth weight, C: Ethylene release. Different lowercase letters indicate significant differences between treatments (P<0.05). The same as below"

Fig. 9

The relative expression of DlSAMS, DlACS and DlACO family members in different ACC concentration and time"

[1] 张晓卫, 曹蔚, 王玉琨, 王四旺. 龙眼的化学成分及药理作用研究进展. 西北药学杂志, 2012, 27(5): 493-496.
ZHANG X W, CAO W, WANG Y K, WANG S W.Study of the progress on chemical constituents and pharmacological activities of Longan. Northwest Pharmaceutical Journal, 2012, 27(5): 493-496. (in Chinese)
[2] WANG H B, ZHANG H Q, LIANG F F, CONG L, SONG L Y, LI X Y, ZHAI R, YANG C Q, WANG Z G, MA F W, XU L F.PbEIL1 acts upstream of PbCysp1 to regulate ovule senescence in seedless pear. Horticulture Research, 2021, 8(1): 59.
doi: 10.1038/s41438-021-00491-5
[3] SAUTER M, MOFFATT B, SAECHAO M C, HELL R, WIRTZ M.Methionine salvage and S-adenosylmethionine: Essential links between sulfur, ethylene and polyamine biosynthesis. The Biochemical Journal, 2013, 451(2): 145-154.
doi: 10.1042/BJ20121744
[4] CHEN Y, ZOU T, MCCORMICK S.S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiology, 2016, 172(1): 244-253.
doi: 10.1104/pp.16.00774
[5] SHEN B, LI C J, TARCZYNSKI M C.High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. The Plant Journal, 2002, 29(3): 371-380.
doi: 10.1046/j.1365-313X.2002.01221.x
[6] HEIDARI P, MAZLOOMI F, NUSSBAUMER T, BARCACCIA G.Insights into the SAM synthetase gene family and its roles in tomato seedlings under abiotic stresses and hormone treatments. Plants, 2020, 9: 586.
doi: 10.3390/plants9050586
[7] BAUERLE M R, SCHWALM E L, BOOKER S J.Mechanistic Diversity of radical s-adenosylmethionine (SAM)-dependent methylation. Journal of Biological Chemistry, 2015, 290(7): 3995-4002.
doi: 10.1074/jbc.R114.607044
[8] KLEE H J, GIOVANNONI J J.Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 2011, 45: 41-59.
doi: 10.1146/genet.2011.45.issue-1
[9] 孙申申. ‘云香’水仙ACS基因和ACO基因的克隆分析及遗传转化[D]. 福州: 福建农林大学, 2018.
SUN S S.Molecular cloning, expression analysis and its transformation of ACS gene and ACO gene from Narcissus tazetta CV Yunxiang. [D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
[10] TSUCHISAKA A, THEOLOGIS A.Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane- 1-carboxylate synthase gene family members. Plant Physiology, 2004, 136(2): 2982-3000.
doi: 10.1104/pp.104.049999
[11] 佟少明, 席海秀, 艾可筠, 侯和胜. 葡萄VvACO1的表达及在拟南芥和番茄中的遗传转化. 园艺学报, 2016, 43(12): 2315-2324.
TONG S M, XI H X, AI K J, HOU H S.Expression of VvACO1 gene in grape and genetic transformation in Arabidopsis and tomato. Acta Horticulturae Sinica, 2016, 43(12): 2315-2324. (in Chinese)
[12] 李惠华, 赖钟雄, 苏明华, 林玉玲. 龙眼胚性愈伤组织ACC合成酶基因(DL-ACS1)的克隆及表达分析. 热带作物学报, 2011, 32(5): 854-860.
LI H H, LAI Z X, SU M H, LIN Y L.Cloning and expression of ACS gene from embryogenic callus in Dimocarpus longan. Chinese Journal of Tropical Crops, 2011, 32(5): 854-860. (in Chinese)
[13] 李惠华, 赖钟雄, 林玉玲, 苏明华. 龙眼胚性愈伤组织ACC氧化酶基因的克隆及其在龙眼体胚发生过程中的表达分析. 中国农业科学, 2010, 43(18): 3798-3808.
LI H H, LAI Z X, LIN Y L, SU M H.Cloning of ACO gene from embryogenic calli of kongan (Dimocorpus longan lour.) and its expression during kongan somatic embryogenesis. Scientia Agricultura Sinica, 2010, 43(18): 3798-3808. (in Chinese)
[14] HUANG S J, CHANG C L, WANG P H, TSAI M C, HSU P H, CHANG I F.A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64(14): 4343-4360.
doi: 10.1093/jxb/ert241
[15] ZHANG B G, LIU H F, DING X H, QIU J J, ZHANG M, CHU Z H. Arabidopsis thaliana ACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu2+ ions. Journal of Cell Science, 2018, 131(2): jcs.202424.
[16] YIM W J, KIM K Y, LEE Y W, SUNDARAM S P, LEE Y, SA T M.Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. Journal of Plant Physiology, 2014, 171(12): 1064-1075.
doi: 10.1016/j.jplph.2014.03.009
[17] 邹冰雪. 印度南瓜ACS基因家族的克隆与表达分析[D]. 哈尔滨: 东北农业大学, 2018.
ZOU B X.Cloning and expression analysis of ACS gene family in Cucurbita maxima [D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[18] 赖钟雄, 陈振光. 龙眼胚性愈伤组织的高频率体细胞胚胎发生. 福建农业大学学报, 1997(3): 271-276.
LAI Z X, CHEN Z G.Somatic embryogenesis of high frequency from longan embryogenic calli. Journal of Fujian Agricultural University, 1997(3): 271-276. (in Chinese)
[19] LIN Y L, MIN J M, LAI R L, WU Z Y, CHEN Y K, YU L L, CHENG C Z, JIN Y C, TIAN Q L, LIU Q F, LIU W H, ZHANG C G, LIN L X, HU Y, ZHANG D M, THU M, ZHANG Z H, LIU S C, ZHONG C S, FANG X D, WANG J, YANG H M, VARSHNEY R K, YIN Y, LAI Z X.Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Giga Science, 2017, 6(5): 1-14.
[20] 赖钟雄, 潘良镇, 陈振光. 龙眼胚性细胞系的建立与保持. 福建农业大学学报, 1997(2): 33-40.
LAI Z X, PAN L Z, CHEN Z G.Establishment and maintenance of longan embryogenic cell lines. Journal of Fujian Agricultural University, 1997(2): 33-40. (in Chinese)
[21] 林玉玲. 龙眼体胚发生过程中SOD基因家族的克隆及表达调控研究[D]. 福州: 福建农林大学, 2011.
LIN Y L.Studies on cloning, expression and regulation of SOD gene family duling somatic embryogenesis in Dimocarpus longan Lour [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese)
[22] 袁秀云, 雷志华, 梁芳, 蒋素华, 许申平, 王默霏, 崔波. 蝴蝶兰S-腺苷甲硫氨酸合成酶基因的克隆及低温下的表达分析. 植物生理学报, 2015, 51(5): 754-762.
YUAN X Y, LEI Z H, LIANG F, JIANG S H, XU S P, WANG M F, CUI B.Cloning of a s-adenosylmethionine synthetase gene from Phalaenopsis amabilis and its expression under low temperature. Plant Physiology Joumal, 2015, 51(5): 754-762. (in Chinese)
[23] HEIDARI P, AHMADIZADEH M, IZANLO F, NUSSBAUMER T.In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: Focus on post-translation modifications. Plant Gene, 2019, 19: 100189.
doi: 10.1016/j.plgene.2019.100189
[24] YUAN H, YUE P T, BU H D, HAN D G, WANG A.Genome-wide analysis of ACO and ACS genes in pear(Pyrus ussuriensis). In Vitro Cellular & Developmental Biology-Plant, 2020, 56(2): 193-199.
[25] 孙申申, 温秀萍, 杨菲颖, 李梦思, 李欢, 李科, 陈晓静. ‘云香’水仙ACC合成酶基因NtACS1的克隆及遗传转化. 西北植物学报, 2017, 37(2): 250-257.
SUN S S, WEN X P, YANG F Y, LI M S, LI H, LI K, CHEN X J.Molecular cloning and its transformation of ACC synthase NtACS1 Gene from Narcissus tazetta var. ‘Yunxiang’. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(2): 250-257. (in Chinese)
[26] CORBINEAU F, XIA Q, BAILLY C, EL-MAAROUF-BOUTEAU H. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 2014, 5: 539.
[27] 宋松泉, 刘军, 徐恒恒, 张琪, 黄荟, 伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控. 作物学报, 2019, 45(7): 969-981.
doi: 10.3724/SP.J.1006.2019.84175
SONG S Q, LIU J, XU H H, ZHANG Q, HUANG H, WU X J.Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy. Acta Agronomica Sinica, 2019, 45(7): 969-981. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84175
[28] EL-MAAROUF-BOUTEAU H, SAJJAD Y, BAZIN J, LANGLADE N, CRISTESCU S M, BALZERGUE S, BAUDOUIN E, BAILLY C. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell & Environment, 2015, 38(2): 364-374.
[29] BHOWMIK P K, MATSUI T.Ethylene biosynthetic genes in ‘Moso’ bamboo shoot in response to wounding. Postharvest Biology and Technology, 2005, 38(2): 188-194.
doi: 10.1016/j.postharvbio.2005.07.006
[30] SHI Y T, TIAN S W, HOU L Y, HUANG X Z, ZHANG X Y, GUO H W, YANG S H.Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR Genes in Arabidopsis. The Plant Cell, 2012, 24(6): 2578-2595.
doi: 10.1105/tpc.112.098640
[31] ARDITO F, GIULIANI M, PERRONE D, TROIANO G, MUZIO L L.The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International journal of molecular medicine, 2017, 40(2): 271-280.
doi: 10.3892/ijmm.2017.3036
[32] FRISO G, VAN WIJK K J. Posttranslational protein modifications in plant metabolism. Plant Physiology, 2015, 169: 1469-1487.
[33] MAURI P V, MANZANERA J A.Somatic embryogenesis of holm oak (Quercus ilex L.): Ethylene production and polyamine content. Acta Physiologiae Plantarum, 2011, 33(3): 717-723.
doi: 10.1007/s11738-010-0596-5
[34] KĘPCZYŃSKA E, ZIELIŃSKA S. Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L. reduces embryos’ ability to regenerate. Acta Physiologiae Plantarum, 2011, 33(5): 1969-1980.
doi: 10.1007/s11738-011-0745-5
[35] LU J R, VAHALA J, PAPPINEN A.Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L. ). Plant Cell, Tissue and Organ Culture, 2011, 107(1): 25-33.
doi: 10.1007/s11240-011-9952-4
[36] 李惠华, 赖钟雄, 苏明华, 林玉玲. 龙眼体胚发生过程中两个乙烯受体基因的定量表达分析. 热带作物学报, 2011, 32(7): 1314-1319.
LI H H, LAI Z X, SU M H, LIN Y L.Quantitative expression analysis of two ethylene receptor genes from embryogenic callus in Dimocarpus longan Lour. Chinese Journal of Tropical Crops, 2011, 32(7): 1314-1319. (in Chinese)
[37] 陈燕, 吕科良, 厉雪, 高玉莹, 林玉玲, 赖钟雄. 龙眼ERF家族成员鉴定及其在体胚发生早期的表达. 西北植物学报, 2018, 38(11): 1986-1999.
CHEN Y, LÜ K L, LI X, GAO Y Y, LIN Y L, LAI Z X.Identification of ERF gene family and their expression analysis during early somatic embryogenesis in Dimocarpus longan. Acta Botanica Boreali- Occidentalia Sinica, 2018, 38(11): 1986-1999. (in Chinese)
[38] NISSEN P.Stimulation of somatic embryogenesis in carrot by ethylene: Effects of modulators of ethylene biosynthesis and action. Physiologia Plantarum, 1994, 92(3): 397-403.
doi: 10.1111/ppl.1994.92.issue-3
[39] 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应. 作物学报, 2021, 47(5): 788-795.
WU B H, WANG G P, WANG Y B, LI Z H, ZHANG M C.Regulation of ACC treatment on nitrogen supply response of maize seedlings with different genotypes. Acta Agronomica Sinica, 2021, 47(5): 788-795. (in Chinese)
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[4] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[5] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[6] ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060.
[7] HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586.
[8] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[9] YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889.
[10] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[11] SHAO ChenBing,HUANG ZhiNan,BAI XueYing,WANG YunPeng,DUAN WeiKe. Identification, Systematic Evolution and Expression Analysis of HD-Zip Gene Family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004-1017.
[12] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[13] HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
[14] LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270.
[15] XU Ying,YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui. Pharmacokinetics of Chlortetracycline Microspheres in Pigs [J]. Scientia Agricultura Sinica, 2020, 53(19): 4083-4091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!