Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5017-5026.doi: 10.3864/j.issn.0578-1752.2020.24.005

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica

LONG Feng1(),WANG Qing1(),ZHU Hang1,WANG JianXia1,SHEN Shen1,LIU Ning1,HAO ZhiMin1(),DONG JinGao1,2()   

  1. 1College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, Hebei
    2College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2020-03-28 Accepted:2020-05-10 Online:2020-12-16 Published:2020-12-28
  • Contact: ZhiMin HAO,JinGao DONG E-mail:2801351713@qq.com;wangqing9525@126.com;haozhimin@hebau.edu.cn;dongjingao@126.com

Abstract:

【Background】Septin, which is widely found in all eukaryotes except plants, is a highly conserved GTP binding protein family and is considered to be the fourth cytoskeletal protein after microtubules, microfilaments and intermediate fibers. Septin proteins of pathogenic fungi are involved in cell polarity determination, morphological shaping and morphological transformation associated with pathogenicity.【Objective】The objective of this study is to identify Septin gene family of Setosphaeria turcica, analyze its expression pattern at different developmental stages, and to lay a foundation for clarifying the relationship between the membrane protein Septin and fungal infection structure development.【Method】The amino acid sequences of six Septin proteins in Bipolaris maydis were used as probe sequences, online Blastp alignment and keyword search were carried out in the S. turcica database to obtain S. turcica candidate Septins. Then bioinformatics analyses including gene structure, physical and chemical properties and transmembrane region structure of the Septins were conducted. The materials of S. turcica that were induced by artificial hydrophobic media at different stages of infective structures development and infected host leaves at different times were collected, and RT-qPCR (real-time fluorescence quantitative PCR) technology was used to analyze the transcription levels of Septins at different stages of infective structures development.【Result】Six candidate Septins were obtained, and among them, four typical Septins contained G1, G3, and G4 motifs, were named by StSep1, StSep2, StSep3 and StSep4, respectively. The expression level of Septins increased slowly under the induction on artificial hydrophobic media. StSep1 was active in the late stage of germ tube formation, and its expression level was 25.69 times of that in the conidia period (P<0.01). The expression level of StSep4 reached a peak in appressorium anaphase, and then the expression level was down-regulated. The change trend of Septin expression in the process of pathogen infection was basically consistent with that under the induction of artificial hydrophobic material. StSep1 expression was significantly up-regulated at 6 h after inoculation (P<0.01). As time went on, StSep4 actively expressed during the period of appressorial formation, and the expression reached a peak at 18 h after inoculation. After that, the expression was down-regulated, but it was still higher than that in the early stage of germination. StSep2 and StSep3 were active at 18 h and 24 h after inoculation, exceeding the initial stage of germination.【Conclusion】There are 4 core Septins in the genome of S. turcica. StSep1 and StSep4 are actively expressed during the formation of germ tube and appressoria, respectively. The results will provide a theoretical basis for further clarifying the function of Septin and the infection regulation mechanism of S. turcica.

Key words: Setosphaeria turcica, Septin gene family, RT-qRCR, gene expression

Table 1

Primers used for RT-qPCR"

名称Primer 序列Sequence (5′ to 3′)
β-Tubulin-F GGGAACTCCTCACGGATGTTG
β-Tubulin-R TAACAAVTGGGCAAAGGGTCA
StSep1F ACTGCTGCCTGTTCTTCA
StSep1R TGGAACTCCTCCTTTATCC
StSep2F GATTCGGAGACCAGATTGA
StSep2R AGTAGGCGTGATGAAGTAGAG
StSep3F TGGCTCGGAGAAGGATGT
StSep3R GGGTTCGGATGAGGATGG
StSep4F GCTCATCCGCACCCACATG
StSep4R CATCTTCTGGAGCTTGGC

Table 2

RT-qPCR reaction system"

反应组分
Reaction component
反应体系
Reaction system
终浓度
Final concentration
2×Fast Super EvaGreen Master Mix 10 μL
F, R primers 1 μL 0.1-0.5 μmol·L-1 each
cDNA (500 ng·μL-1) template 1 μL
H2O 补足至20 μL
Up to 20 μL

Table 3

Information of Septins in S. turcica"

基因
Gene
基因登录号
Database accession number
基因长度
Gene length (bp)
蛋白质ID
Protein ID
大小
Size (aa)
基因组定位
Genomic mapping
StSep1 XP_008021140.1 1588 162710 341 scaffold_1:3755824-3757411 (+)
StSep2 XP_008027140.1 1883 163440 375 scaffold_3:81842-83724 (+)
StSep3 XP_008028687.1 1406 93639 381 scaffold_4:2483454-2484859 (+)
StSep4 XP_008026163.1 1424 110191 432 scaffold_21:190124-191547 (+)
StSep5 XP_008030793.1 1977 165795 475 scaffold_8:185341-187317 (-)
StSep6 XP_008030826.1 2554 99177 793 scaffold_8:379528-382081 (-)

Fig. 1

The gene structure of Septin homologues in S. turcica"

Fig. 2

The phylogenetic tree of Septins from different fungi"

Fig. 3

Conservative domain analysis of Septins"

Table 4

Basic physical and chemical properties of Septins"

特征蛋白
Characteristic protein
StSep1 StSep2 StSep3 StSep4
相对分子质量
Relative molecular mass (kD)
39.1454 42.6070 44.0992 49.7026
PI 7.20 5.07 8.54 6.56
(Asp+Glu) 44 72 60 68
(Arg+Lys) 44 53 63 66
分子式Molecular formula C1733H2735N495O520S10 C1851H2985N535O595S11 C1938H3107N573O580S12 C2179H3514N624O671S16
不稳定性系数
Coefficient of instability
49.91 47.37 48.84 42.73
脂肪族氨基酸指数
Aliphatic amino acid index
84.31 86.53 78.87 81.62
总平均亲水性
Total average hydrophilicity
-0.498 -0.608 -0.175 -0.681

Fig. 4

The secondary structure characteristics of Septins in S. turcica"

Fig. 5

Expression pattern analysis of Septins"

[1] VAN INGHELANDT D, MELCHINGER A E, MARTINANT J P, STICH B. Genome-wide association mapping of flowering time and northern corn leaf blight ( Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biology, 2012,12:56.
doi: 10.1186/1471-2229-12-56 pmid: 22545925
[2] 孙淑琴, 温雷蕾, 董金皋. 玉米大斑病菌的生理小种及交配型测定. 玉米科学, 2005,13(4):112-113.
SUN S Q, WEN L L, DONG J G. Identification of physiological races and mating type of Exserohilum turcicum. Journal of Maize Sciences, 2005,13(4):112-113. (in Chinese)
[3] WERIRRICH C S, ERZBERGER J P, BARRAL Y. The Septin family of GTPases: Architecture and dynamics. Nature Reviews. Molecular Cell Biology, 2008,9(6):478-489.
doi: 10.1038/nrm2407 pmid: 18478031
[4] 张家静. Septin11对肥大细胞活化的影响及机理研究[D]. 昆明: 昆明理工大学, 2018.
ZHANG J J. Study on the effect and mechanism of Septin11 on activation of mast cells[D]. Kunming: Kunming University of Science and Technology, 2018. (in Chinese)
[5] GLADFELTER A S, PRINGLE J R, LEW D J. The Septin cortex at the yeast mother-bud neck. Current Opinion in Microbiology, 2001,4(6):681-689.
doi: 10.1016/S1369-5274(01)00269-7
[6] ONISHI M, KOGA T, HIRATA A, NAKAMURA T, ASAKAWA H, SHIMODA C, BAHLER J, WU J Q, TAKEGAWA K, TACHIKAWA H, PRINGLE J R, FUKUI Y. Role of Septins in the orientation of forespore membrane extension during sporulation in fission yeast. Molecular and Cellular Biology, 2010,30(8):2057-2074.
doi: 10.1128/MCB.01529-09 pmid: 20123972
[7] DE VIRGILIO C, DEMARINI D J, PRINGLE J R. SPR28, a sixth member of the Septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology, 1996,142(10):2897-2905.
doi: 10.1099/13500872-142-10-2897
[8] DOBBELAERE J, GENTRY M S, HALLBERG R L, BARRAL Y. Phosphorylation-dependent regulation of Septin dynamics during the cell cycle. Developmental Cell, 2003,4(3):345-357.
doi: 10.1016/S1534-5807(03)00061-3
[9] 李国涛. 酵母Coronin蛋白与Septin家族成员相互作用研究[D]. 昆明: 云南师范大学, 2017.
LI G T. Study on the interaction between Coronin protein and Septin family members in yeast[D]. Kunming: Yunnan Normal University, 2017. (in Chinese)
[10] AN H, MORRELL J L, JENNINGS J L, LINK A J, GOULD K L. Requirements of fission yeast Septins for complex formation, localization, and function. Molecular Biology of the Cell, 2004,15(12):5551-5564.
doi: 10.1091/mbc.e04-07-0640 pmid: 15385632
[11] DAGDAS Y F, YOSHINO K, DAGDAS G, RYDER S L, BIEKLSA E, STEINBERG G, TALBOT N J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science, 2012,336(6088):1590-1595.
doi: 10.1126/science.1222934 pmid: 22723425
[12] GUPTA Y K, DAGDAS Y F, MARTINEZ-ROCHA A L, KERSHAW M J, LITTLEJOHN G R, RYDER L S, SKLENAR J, MENKE F, TALBOT N J. Septin-dependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae. The Plant Cell, 2015,27:3277-3289.
doi: 10.1105/tpc.15.00552 pmid: 26566920
[13] HERNANDEZ-RODRIGUEZ Y, HASTINGS S, MOMANY M. The Septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation. Eukaryotic Cell, 2012,11(3):311-323.
doi: 10.1128/EC.05164-11
[14] 冯会强. 灰葡萄孢菌隔膜蛋白Septin的生物学功能解析[D]. 长春: 吉林大学, 2017.
FENG H Q. Biological function analysis of Septin protein in Botrytis cinerea[D]. Changchun: Jilin University, 2017. (in Chinese)
[15] HELFER H, GLADFELTER A S. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossyppii cells. Molecular Biology of the Cell, 2006,17(10):4494-4512.
doi: 10.1091/mbc.e06-03-0215 pmid: 16899511
[16] SINHA I, WANG Y M, PHIL R, LI C R, YAP W H, WANG Y. Cyclin-dependent kinases control Septin phosphorylation in Candida albicans hyphal development. Development Cell, 2007,13(3):421-432.
doi: 10.1016/j.devcel.2007.06.011
[17] WARENDA A J, KAUFFMAN S, SHERRILL T P, BECKER J M, KONOPKA J B. Candida albicans Septin mutants are defective for invasive growth and virulence. Infection and Immunity, 2003,71(7):4045-4051.
doi: 10.1128/iai.71.7.4045-4051.2003 pmid: 12819094
[18] LI L F, ZHANG C D, KONOPKA J B. A Candida albicans temperature-sensitive cdc12-6 mutant identifies rose for Septin in selection of sites of germ tube formation and hyphal morphogenesis. Eukaryotic Cell, 2012,11(10):1210-1218.
doi: 10.1128/EC.00216-12
[19] 申珅, 李贞杨, 赵玉兰, 李盼, 董金皋, 韩建民, 郝志敏. 玉米大斑病菌转录因子Flo8的基因克隆及表达规律分析. 农业生物技术学报, 2017,25(10):1661-1667.
SHEN S, LI Z Y, ZHAO Y L, LI P, DONG J G, HAN J M, HAO Z M. Gene cloning and expression pattern analysis of transcription factor Flo8 in Setosphaeria turcica. Journal of Agricultural Biotechnology, 2017,25(10):1661-1667. (in Chinese)
[20] 申珅, 李贞杨, 赵玉兰, 李盼, 韩建民, 郝志敏, 董金皋. 玉米大斑病菌环腺苷酸磷酸二酯酶基因克隆及表达分析. 中国农业科学, 2017,50(16):3135-3144.
doi: 10.3864/j.issn.0578-1752.2017.16.008
SHEN S, LI Z Y, ZHAO Y L, LI P, HAN J M, HAO Z M, DONG J G. Cloning and expression pattern analysis of cAMP phosphodiesterase coding genes in Setosphaeria turcica. Scientia Agricultura Sinica, 2017,50(16):3135-3144. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.008
[21] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007,29(8):1023-1026.
pmid: 17681935
GUO A Y, ZHU Q H, CHEN X, LUO J C . GSDS: A gene structure display server. Hereditas, 2007,29(8):1023-1026. (in Chinese)
pmid: 17681935
[22] 韩长志. 希金斯炭疽菌中5个典型Septin的生物信息学分析. 河南农业科学, 2014,43(8):91-96.
HAN C Z. Bioinformatics analysis of five typical Septin sequences in Colletotrichum higginsianum. Journal of Henan Agricultural Sciences, 2014,43(8):91-96. (in Chinese)
[23] PAN F F, MALMBEGR R L, MOMANY M. Analysis of Septins across kingdoms reveals orthology and new motifs. BMC Evolutionary Biology, 2007,7:103.
doi: 10.1186/1471-2148-7-103 pmid: 17601340
[24] NISHILHAMA R, ONISHI M, PRINGLE J R. New insights into the phylogenetic distribution and evolutionary origins of the Septins. Biological Chemistry, 2011,392:681-687.
doi: 10.1515/BC.2011.086
[25] AUXIER B, DEE J, BERBEE M L, MOMANY M. Diversity of opisthokont Septin proteins reveals structural constraints and conserved motifs. BMC Evolutionary Biology, 2019,19:4.
doi: 10.1186/s12862-018-1297-8 pmid: 30616529
[26] 余文博, 江松敏, 余龙. Septin基因家族的研究进展. 遗传, 2008,30(9):1097-1107.
doi: 10.3724/sp.j.1005.2008.01097 pmid: 18779165
YU W B, JIANG S M, YU L. Research progresses on septin family. Hereditas, 2008,30(9):1097-1107. (in Chinese)
doi: 10.3724/sp.j.1005.2008.01097 pmid: 18779165
[27] 史汉强. 球孢白僵菌四个Septin基因的功能解析与无外源抗性标记表达杀虫蛋白Vip3Aal的工程菌构建[D]. 杭州: 浙江大学, 2015.
SHI H Q. Functional characterization of four Septin genes and construction of markerless transgenic strains expressing insecticidal protein Vip3Aal in Beauveria bassiana[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[28] 张家静, 杨洋, 刘莹, 郭晓汐, 郝倩, 虞姣姣, 张新宇, 徐天瑞, 安输. Septin蛋白的生理功能及其对相关疾病发生发展的影响. 中国细胞生物学学报, 2018,40(8):1392-1401.
ZHANG J J, YANG Y, LIU Y, GUO X X, HAO Q, YU J J, ZHANG X Y, XU T R, AN S. The physiological function of Septin protein family and its effects on the occurrence and development of Septin- associated diseases. Chinese Journal of Cell Biology, 2018,40(8):1392-1401. (in Chinese)
[29] RYDER L S, DAGDAS Y F, KERSHAW M J, VENKATARAMAN C, MADZVAMUSE A, YAN X, CRUZ-MIRELES N, SOANES D M, OSES-RUIZ M, STYLES V, SKLENAR J, MENKE F L H, TALBOT N J. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 2019,574(7778):423-427.
doi: 10.1038/s41586-019-1637-x pmid: 31597961
[30] CHEN A H, XIE Q R, LIN Y H, XU H J, SHANG W J, ZHANG J, ZHANG D M, ZHENG W H, LI G P, WANG Z H. Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum. Fungal Genetics and Biology, 2016,94:79-87.
doi: 10.1016/j.fgb.2016.07.005 pmid: 27387218
[31] ZHANG Y, GAO T, SHAO W Y, ZHENG Z T, ZHOU M G, CHEN C J. The septins FaCdc3 and FaCdc12 are required for cytokinesis and affect asexual and sexual development, lipid metabolism and virulence in Fusarium asiaticum. Molecular Plant Pathology, 2017,18(9):1282-1294.
doi: 10.1111/mpp.12492 pmid: 27666337
[32] ALVAREZ-TABARES I, PEREZ-MARTIN J. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLoS ONE, 2010,5(9):e12933.
doi: 10.1371/journal.pone.0012933 pmid: 20885997
[33] LINDSEY R, COWDEN S, HERNANDEZ-RODRIGUEZ Y, MOMANY M. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryotic Cell, 2010,9(1):155-163.
doi: 10.1128/EC.00269-09 pmid: 19949047
[34] ZHOU T T, ZHAO Y L, GUO H S. Secretory proteins are delivered to the Septin-organized penetration interface during root infection by Verticillium dahlia. PLoS Pathogens, 2017,13(3):e1006275.
doi: 10.1371/journal.ppat.1006275 pmid: 28282450
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!