Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4259-4270.doi: 10.3864/j.issn.0578-1752.2020.20.014

• HORTICULTURE • Previous Articles     Next Articles

Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan

LU BaoShun(),ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing()   

  1. Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-03-09 Accepted:2020-05-09 Online:2020-10-16 Published:2020-10-26
  • Contact: YuLing LIN E-mail:1150309215@qq.com;buliang84@163.com

Abstract:

【Objective】To provide a reference for the study of the function of SPL in Dimocarpus longan growth and development, all members of the longan SPL(DlSPL) gene family were identified and their expression patterns were analyzed in this study.【Method】The DlSPL family members, with their basic physicochemical properties, gene structures, phylogenetic relationships, and cis-acting promoter elements, were identified by bioinformatics analysis, and their expression patterns in non-embryonic callus (NEC), embryogenic culture and embryonic callus (EC) under different hormone treatments were analyzed by FPKM and qRT-PCR technology. 【Result】The results showed that there were 14 DlSPL gene family members, and their gene and protein structures were all highly conserved and contained only one SBP domain. The promoters of DlSPL genes had a large number of light response elements, stress response elements, hormone response elements, tissue specific regulatory elements and cis-regulatory elements related to plant growth and development, indicating that DlSPL genes might be regulated by light, hormone, stress and other factors. RNA-seq expression analysis showed that 11 of 14 DlSPL members were detected in EC under the different light qualities and different hormones treatments, and only DlSPL8 showed a down-regulated expression trend under blue and white light treatments, and the expression levels of DlSPL3 and DlSPL13 members were higher in EC under 2, 4-D+KT treatment than that of under 2, 4-D and KT treatment, respectively; 13 DlSPLs were detected in non-embryogenic and embryogenic cultures, seven members of them had the highest expression levels in the NEC stage. QRT-PCR results showed that DlSPL1 and DlSPL14 had the highest expression levels in the EC stage, DlSPL5, DlSPL7 and DlSPL13 had the highest expression levels in the incomplete embryonic compact structure (ICpEC) stage; DlSPL1, DlSPL5, DlSPL7, and DlSPL13 were down-regulated under abscisic acid treatments. DlSPL5 was up-regulated under methyl jasmonate acid treatments, while the other three members were down-regulated. 【Conclusion】 A total of 14 longan SPL gene family members contained a highly conserved SBP domain were identified, and the DlSPL gene family might play an important role in longan somatic embryos, and respond to abscisic acid and methyl jasmonate element treatments.

Key words: Dimocarpus longan, SPL, genome-wide identification, expression analysis

Table 1

qRT-PCR primers of DlSPL in this study"

基因名称
Gene name
引物序列
Primer sequence
退火温度
Annealing temperature (℃)
产物大小
Product size (bp)
DlSPL1

DlSPL5

DlSPL7

DlSPL8

DlSPL13

DlSPL14

EF-1α
CCCACGTGTGTTTACCGAG
GGAGACAGATCCTTGATTGGTT
GGTACCCATCCCTTTACGG
TCGGAGTTTGATGAGGCC
TGGTCAAACACAACAGAGCC
AGGCCCCAAAGCTTCACTAT
GAGGAGTGGTCTTCGAAGGAT
TGTTGGAGTACGAGTGGGC
GCAGCTTCTCTTTCCCTCATC
AGTCCCTTCTTGCTTGGTTG
GCTTCTCTTTCCCTCGTCAA
ACCGCCGTCATAAAGTGTGT
GATGATTCCCACCAAGCCCAT
GGGTCCTTCTTCTCAACACTCT
60.0
59.4
59.1
59.7
59.7
60.1
59.7
59.7
60.5
59.3
59.6
60.4
61.3
58.9
113

122

196

144

175

133

129

Table 2

Basic parameters analysis of DlSPL family"

基因 ID
Gene ID
注释
Annotated
氨基酸数
Number of amino acids
分子量
Molecular weight (kD)
等电点
pI
Dlo_001733.2SPL1
Dlo_031916.2SPL2
Dlo_022368.1SPL3
Dlo_006549.2SPL4
Dlo_010830.1SPL5
Dlo_003532.1SPL6
Dlo_032239.1SPL7
Dlo_028807.2SPL8
Dlo_028808.2SPL9
Dlo_031932.1SPL10
Dlo_003987.1SPL12
Dlo_031932.1SPL13
Dlo_028254.1SPL14
Dlo_009019.1SPL15
AtSPL1
AtSPL2
AtSPL3
AtSPL4
AtSPL5
AtSPL6
AtSPL7
AtSPL8
AtSPL9
AtSPL10
AtSPL12
AtSPL13
AtSPL14
AtSPL15
1030
480
138
191
183
535
798
341
271
450
987
312
1062
383
114.71
52.61
15.61
21.82
20.48
58.38
89.32
38.20
29.80
49.42
109.25
33.74
118.42
40.56
6.94
8.75
7.65
8.83
9.13
7.00
6.07
8.83
9.12
7.28
5.81
8.86
8.24
9.22

Fig. 1

Phylogenic tree of Arabidopsis thaliana and Dimocarpus longan SPL family members"

Fig. 2

Gene structural distribution map of DlSPL family"

Fig. 3

Protein motif distribution map of DlSPL family"

Fig. 4

Distribution of cis-acting elements in promoter sequence of longan SPL family"

Fig. 5

The specific expression of the DlSPL family in light quality (A), hormone (B) and non-embryogenic and embryogenic cultures (C) of longan"

Fig. 6

Expression analysis of DlSPL in non-embryonic and embryogenic cultures of Dimocarpus longan"

Fig. 7

Expression of DlSPL family members in longan EC treated with abscisic acid and jamonic acid methyl ester for different durations Different lowercase letters indicate significant differences (P<0.05)"

[1] 张晓卫, 曹蔚, 王玉琨, 王四旺. 龙眼的化学成分及药理作用研究进展. 西北药学杂志, 2012,27(5):493-496.
ZHANG X W, CAO W, WANG Y K, WANG S W. Study of the progress on chemical constituents and pharmacological activities of longan. Northwest Pharmaceutical Journal, 2012,27(5):493-496. (in Chinese)
[2] 梁文裕, 陈伟, 宋瑞峰, 张凤. 龙眼胚胎发育研究进展(综述). 亚热带植物科学, 2004,33(4):65-68.
LIANG W Y, CHEN W, SONG R F, ZHANG F. Advances in embryo development of longan. Subtropical Plant Science, 2004,33(4):65-68. (in Chinese)
[3] KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. MGG Molecular & General Genetics, 1996,250(1):7-16.
doi: 10.1007/BF02191820 pmid: 8569690
[4] 陈婉冰, 周波. SPL调控因子在植物生长调控的研究进展. 分子植物育种, 2020,18(5):1505-1512.
CHEN W B, ZHOU B. Research progress of SPL regulatory factors in plant growth regulation. Molecular Plant Breeding, 2020,18(5):1505-1512. (in Chinese)
[5] RHOADES M W, REINHART J B, LIM L P, BURGE C B, BARTEL B, BARTEL D. Prediction of plant microRNA targets. Cell, 2002,110(4):513-520.
pmid: 12202040
[6] 雷凯健, 任晶, 朱园园, 安国勇. 拟南芥SPL1基因参与调节低磷条件下的根际酸化反应. 植物学报, 2016,51(2):184-193.
LEI K J, REN J, ZHU Y Y, AN G Y. SPL1 is involved in the regulation of rhizosphere acidification reaction under low phosphate condition in Arabidopsis Acta Botanica, 2016,51(2):184-193. (in Chinese)
[7] 杨柳. 拟南芥SPL8同源基因的克隆和功能分析[D]. 太原: 山西大学, 2018.
YANG L. Analysis of SPL8-like genes in Arabidopsis and beyond[D]. Taiyuan: Shanxi University, 2018. (in Chinese)
[8] YANG J H, ZHANG M F, YU J Q. Relationship between cytoplasmic male sterility and SPL-like gene expression in Stem mustard. Physiol Plantarum, 2008,133(2):426-434.
[9] WANG S, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO CA X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015,47(8):949-954.
[10] 吴艳, 侯智红, 程群, 董利东, 芦思佳, 南海洋, 甘卓, 刘宝辉. SPL转录因子的研究进展. 大豆科学, 2019,38(2):304-310.
WU Y, HOU Z H, CHENG Q, DONG L D, LU S J, NAN H Y, GAN Z, LIU B H. Research progress of SPL transcription factor. Soybean Science, 2019,38(2):304-310. (in Chinese)
[11] 曹雪. 葡萄两个重要SBP基因的克隆、亚细胞定位及表达分析[D]. 南京: 南京农业大学, 2010.
CAO X. Cloning, subcellular localization and expression analysis of two important SBP genes from grape[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[12] 战新梅, 管世铭, 张玉喜. 牡丹PsSPL3基因的克隆和表达特性分析. 华北农学报, 2017,32(4):13-18.
ZHAN X M, GUAN S M, ZHANG Y X. Cloning and express pattern analysis of PsSPL3 in tree peony. North China Agricultural Journal, 2017,32(4):13-18. (in Chinese)
[13] 宁坤, 杨洋, 马述山, 李慧玉. 11条白桦BpSPL家族基因的生物信息学和表达分析. 林业科学研究, 2016,29(5):646-653.
NING K, YANG Y, MA S S, LI H Y. Bioinformatics and expression analysis of 11 BpSPLs in Betula platyphylla Suk. Forestry scientific research, 2016,29(5):646-653. (in Chinese)
[14] 王丽晨. 陆地棉体细胞胚胎发生过程中miRNAs及其靶标的鉴定和GhmiR157a/GhSPL10功能分析[D]. 武汉: 华中农业大学, 2017.
WANG L C. Identification of microRNAs and their targets and functional analysis of GhmiR157a/GhSPL10 during somatic embryogenesis in Gossypium hirsutum [D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[15] 赖钟雄, 潘良镇, 陈振光. 龙眼胚性细胞系的建立与保持. 福建农林大学学报, 1997,26(2):160-167.
LAI Z X, PAN L Z, CHEN Z G. Establishment and maintenance of longan embryogenic cell line. Journal of Fujian Agriculture and Forestry University, 1997,26(2):160-167. (in Chinese)
[16] 陈春玲, 赖钟雄. 龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察. 福建农林大学学报, 2002,31(2):192-194.
CHEN C L, LAI Z X. Synchronization regulation of embryogenesis of embryogenic calli and their histological observations in longan. Journal of Fujian Agriculture and Forestry University, 2002,31(2):192-194. (in Chinese)
[17] LIN Y L, MIN J M, LAI R L, WU Z Y, CHEN Y K, YU L L, CHENG C Z, JIN Y C, TIAN Q L, LIU Q F,et al. Genome-wide sequencing of longan (Dimocarpus longan Lour) provides insights into molecular basis of its polyphenol-rich characteristics. Giga Science, 2017,6(5):1-14.
[18] LI H S, CHEN X H, WANG Y, YAO D H, LIN Y L, LAI Z X. Exploration of the effect of blue light on microRNAs involved in the accumulation of functional metabolites of longan embryonic calli through RNA-sequencing. Journal of the Science of Food and Agriculture, 2018. https://doi.org/10.1002/jsfa.9329.
doi: 10.1002/jsfa.10885 pmid: 33058186
[19] 李明, 李长生, 赵传志, 李爱芹, 王兴军. 植物SPL转录因子研究进展. 植物学报, 2013,48(1):107-116.
LI M, LI C S, ZHAO C Z, LI A Q, WANG X J. Research advances in plant SPL transcription factors. Acta Botanica Sinica, 2013,48(1):107-116. (in Chinese)
[20] 万红建, 袁伟, 俞锞, 刘云飞, 李志邈, 叶青静, 王荣青, 阮美颖, 周国治, 姚祝平, 杨悦俭. 番茄SBP基因家族的全基因组鉴定、结构特征及表达分析. 分子植物育种, 2013,11(3):299-306.
WAN H J, YUAN W, YU K, LIU Y F, LI Z M, YE Q J, WANG R Q, RUAN M Y, ZHOU G Z, YAO G P, YANG Y J. Genome-wide identification, structure characterization and expression analysis of SBP gene family in tomato. Molecular Plant Breeding, 2013,11(3):299-306. (in Chinese)
[21] 杨果, 董金金, 李萌, 汪贵斌, 郁万文, 杨婷婷, 刘艳玲, 唐隆平, 蒋舜村, 王义强. 银杏SQUAMOSA启动子结合蛋白(SBP)基因家族的鉴定及表达分析. 植物生理学报, 2019,55(7):993-1003.
YANG G, DONG J J, LI M, WANG G B, YU W W, YANG T T, LIU Y L, TANG L P, JIANG S C, WANG Y Q. Identification and expression analysis of SQUAMOSA promoter binding protein (SBP) gene family in Ginkgo biloba. Chinese Journal of Plant Physiology, 2019,55(7):993-1003. (in Chinese)
[22] 王婷, 唐锐敏, 王瑞晋, 贺立恒, 刘霞宇, 刘世芳, 李润植, 贾小云. 三裂叶薯SPL基因家族鉴定、表达及miR156的调控分析. 植物遗传资源学报, 2019,20(3):255-268.
WANG T, TANG R M, WANG R J, HE L H, LIU X Y, LIU S F, LI R Z, JIA X Y. Genome-wide identification and expression analysis of SPL gene family regulated by miR156 in Ipomoea triloba. Journal of Plant Genetic Resources, 2019,20(3):255-268. (in Chinese)
[23] 潘晓璐, 张秀梅, 许婷婷, 侯世贵, 张红娜. 菠萝SPL基因家族全基因组鉴定及其在开花诱导中的表达分析. 分子植物育种, 2019. http://kns.cnki.net/kcms/detail/46.1068.S.20191111.1420.012.html.
PAN X L, ZHANG X M, XU T T, HOU S G, ZHANG H N. Genome-wide identification and characterization of SBP-like gene family and expression profiling during flowering induction in pineapple. Molecular Plant Breeding, 2019. http://kns.cnki.net/kcms/detail/46.1068.S.20191111.1420.012.html.(in Chinese)
[24] YU Z X, WANG L J, ZHAO B, SHAN C M, ZHANG Y H, CHEN D F, CHEN X Y. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156- targeted SPL transcription factors. Molecular Plant, 2015,8(1):98-110.
pmid: 25578275
[25] YU N, CAI W J, WANG S C, SHAN C M, WANG L J, CHEN X Y. Temporal control of trichome distribution by microRNA156-targeted SPL Genes in Arabidopsis thaliana. The Plant Cell, 2010,22(7):2322-2335.
pmid: 20622149
[26] YU S, GALVAO C V, ZHANG Y C, HORRER D, ZHANG T Q, HAO Y H, FENG Y Q, WANG S, SCHMID M, WANG J W. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell, 2012,24(8):3320-3332.
pmid: 22942378
[27] SCHWARZ S, GRANDE A V, BUJDOSO N, SAEDLER H, HUIJSER P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology, 2008,67(1/2):183-195.
[28] 刘亚芹, 田坤红, 孙琪璐, 潘铖, 李叶云, 蒋家月, 江昌俊. 茶树miR156a靶基因SPL6SPL9的克隆及表达分析. 茶叶科学, 2017,37(6):551-564.
LIU Y Q, TIAN K H, SUN Q L, PAN C, LI Y Y, JIANG J Y, JIANG C J. Cloning and expression analysis of miR156a-targeted genes SPL6 and SPL9 in Camellia sinensis. Tea Science, 2017,37(6) : 551-564. (in Chinese)
[29] 徐伟娜. 小麦穗发育相关基因TaSPL20的生物学功能分析[D]. 北京: 中国农业科学院, 2016.
XU W N. Biological function of ear development related gene TaSPL20 from wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.(in Chinese)
[30] 龙健梅. 柑橘珠心胚起始相关miRNA挖掘与csi-miR156a调控体细胞胚发生作用机理[D]. 武汉: 华中农业大学, 2017.
LONG J M. Identificstion of miRNA involved in citrus nucellar embryo initiation and regulatory mechanism csi-miR156a in somatic embryogenesis[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[31] 何青松. 银杏种子休眠过程与休眠解除研究[D]. 扬州: 扬州大学, 2018.
HE Q S. Seed dormancy process and dormancy relese in Ginkgo biloba [D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
[32] 匡勇, 夏石头, 匡逢春. 脱落酸(ABA)对植物生长发育的促进效应. 湖南农业科学, 2009(1):40-43.
KUANG Y, XIA S T, KUANG F C. Promotive effect of abscisic acid on plant development.Hunan Agricultural Sciences, 2009(1):40-43. (in Chinese)
[33] 刘晓龙. 脱落酸(ABA)对水稻耐碱胁迫的诱抗效应及机理研究[D]. 北京: 中国科学院大学, 2019.
LIU X L. Study on the mechanism of abscisic acid-priming for alkaline stress tolerance in rice[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
[34] 高述民. ABA和PEG对胡萝卜体细胞胚诱导和调控的影响. 西北农林科技大学学报(自然科学版), 2001,29(2):13-16.
GAO S M. Effects of ABA and PEG on the embryogenesis and regulation of carrot (Daucus carota L.) somatic embryos. Journal of Northwest A & F University (Natural Science Edition), 2001,29(2):13-16. (in Chinese)
[35] 田晶, 赵雪媛, 谢隆聖, 权晋谊, 姚连梅, 王国东, 郑要强, 刘雪梅. SPL转录因子调控植物花发育及其分子机制研究进展. 南京林业大学学报(自然科学版), 2018,42(3):159-166.
TIAN J, ZHAO X Y, XIE L S, QUAN J Y, YAO L M, WANG G D, ZHENG Y Q, LIU X M. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development. Journal of Nanjing Forestry University (Natural Science Edition), 2018,42(3):159-166. (in Chinese)
[36] 牟望舒. 脱落酸及脱落酸-乙烯互作调控番茄果实成熟的效应与机理[D]. 杭州: 浙江大学, 2019.
MOU W S. The roles and mechanisms of abscisic acid and abscisic acid-ethylene crosstalk in the regulation of tomato fruit ripening[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
[37] 忽雪琦, 李东阳, 严加坤, 张岁岐. 干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响. 植物生理学报, 2018,54(6):991-998.
HU X Q, LI D Y, YAN J K, ZHANG S Q. Effects of exogenous methyl jasmonate on water absorption capacity of maize (Zea mays L.) seedling root under drought stress. Acta Phytophysiologica Sinica, 2018,54(6):991-998. (in Chinese)
[38] 李荣冲, 沈亮余, 梁晶龙, 赵敬会, 王瑞雪, 邹燕, 张涛. 高温高湿胁迫下茉莉酸甲酯对紫苏种子萌发及生理特性的影响. 西北植物学报, 2012,32(2):312-317.
LI R C, SHEN L Y, LIANG J L, ZHAO J H, WANG R X, ZHOU Y, ZHANG T. Effects of exogenous MeJA on germination and physiological characteristics of Perilla frutescens seed under high temperature and air humidity stress. Northwestern Botanical Journal, 2012,32(2):312-317. (in Chinese)
[39] 成铁龙, 孟岩, 陈金慧, 施季森. 茉莉酸甲酯对杂交鹅掌楸体胚发育的影响. 南京林业大学学报(自然科学版), 2017,41(6):44-49.
CHENG T L, MENG Y, CHEN J H, SHI J S. Effects of methyl jasmonic acid on somatic embryogenesis of Liriodendron hybrid. Journal of Nanjing Forestry University (Natural Science Edition), 2017,41(6):44-49. (in Chinese)
[40] 畅姣, 陈涛, 黄天带, 黄华孙, 华玉伟. 茉莉酸诱导橡胶树体细胞胚花青素的累积. 基因组学与应用生物学, 2016,35(11):3115-3121.
CHANG J, CHEN T, HUANG T D, HUANG H S, HUA Y W. Anthocyanin accumulation induced by MeJA in somatic embryo of rubber tree (Hevea brasiliensis). Genomics and Applied Biology, 2016,35(11):3115-3121. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[5] GUO BaoWei,TANG Chuang,WANG Yan,CAI JiaXin,TANG Jian,ZHOU Miao,JING Xiu,ZHANG HongCheng,XU Ke,HU YaJie,XING ZhiPeng,LI GuoHui,CHEN Heng. Effects of Two Mechanical Planting Methods on the Yield and Quality of High-Quality Late Indica Rice [J]. Scientia Agricultura Sinica, 2022, 55(20): 3910-3925.
[6] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[7] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[8] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[9] DENG Fei,HE LianHua,CHEN Duo,TIAN QingLan,LI QiuPing,ZENG YuLing,LI Bo,CHEN Hong,WANG Li,REN WanJun. Characteristics of Nitrogen Absorption and Utilization of Machine- Transplanted Indica Hybrid Rice with Different Daily Yield Types [J]. Scientia Agricultura Sinica, 2021, 54(7): 1469-1481.
[10] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[11] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[12] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[13] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[14] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[15] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!