Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3573-3586.doi: 10.3864/j.issn.0578-1752.2021.17.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat

HOU SiYu1(),WANG XinFang1,DU Wei1,FENG JinHua1,HAN YuanHuai1,LI HongYing1,LIU LongLong2,SUN ZhaoXia1()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
  • Received:2021-02-18 Accepted:2021-05-08 Online:2021-09-01 Published:2021-09-09
  • Contact: ZhaoXia SUN E-mail:bragren123@163.com;18636071356@163.com

Abstract:

【Objective】 This study aimed to identify the whole genome WOX (WUSCHEL-related home obox) gene family in Tartary buckwheat and reveal the correlation with sequence characteristics of its gene family members, gene expression pattern and the rate of callus induction. It provides a theoretical basis for breaking through the regeneration and genetic transformation problem of Tartary buckwheat. 【Method】 The protein and nucleic acid sequence of the WOX gene family members in Tartary buckwheat were obtained by homology blast and the sequence of Arabidopsis WOX genes were served as reference. Based on protein homology and conserved domain analysis, all members of Tartary buckwheat WOX gene family were identified. The TBtools software was used to further demonstrate the characteristics of the WOX genes in Tartary buckwheat, including gene structure, conserved domain and cis-acting element. Genomic collinearity of WOX gene family members between Tartary buckwheat and Arabidopsis thaliana was analysed. Based on proximity method, the MEGA X software was used to perform phylogenetic tree of these WOX genes in Tartary buckwheat, Arabidopsis and rice. The hypocotyl explants of 70 Tartary buckwheat varieties were cultured with MS+2,4-D 3.0 mg·L -1+6-BA 1.0 mg·L-1 for callus induction and the callus emergence rate of different genotypes was evaluated. The FtWOX gene expression level was performed by qPCR to compare the different Tartary buckwheat varieties with high and low callus yield. The correlation between callus rate and FTWOXS gene family members was analysed based on Pearson correlation coefficient. 【Result】 A total of 30 WOX genes were identified in Tartary buckwheat and they were unevenly distributed on 8 chromosomes. The 30 Tartary buckwheat WOX genes could be divided into three groups by phylogenetic tree. The WOX genes contained different conserved domains in different groups, and the main conserved domains were HD(Homeodomain), START and MEKHLA. The conserved motif analysis showed that the conserved motif number of FtWOX genes may contain 2 to 10 motifs, and the gene structure analysis showed that the number of exons contained in the genes between 2 to 18. Promoter elements analysis showed 26 different kinds of cis-acting elements in the 30 WOX genes. The phylogenetic analysis showed that 30 Tartary buckwheat, 15 Arabidopsis thaliana and 12 rice WOX gene family members could be divided into three categories, of which the third group is unique to Tartary buckwheat. The collinearity analysis showed that six WOX genes were genomic collinearity between Tartary buckwheat and Arabidopsis thaliana. Expression pattern and correlation analysis show that the expression level of FtWOX1/FtWOX12/FtWOX22/FtWOX23/ FtWOX24 has positive correlation with the callus induction. 【Conclusion】 Collectively, these data suggest that the Tartary buckwheat FtWOX members showed abundant sequence variation characteristics. The expression level and callus rate of WOX gene in different Tartary buckwheat genotypes were significantly different and correlated to some extent, suggesting that different Tartary buckwheat WOX genes had potential functional diversity.

Key words: Tartary buckwheat, WOX gene family, callus induction, gene expression

Table 1

The varieties used for callus induction"

来源Origin 品种Variety name
中国湖北Hubei, China ZNQ171, ZNQ164, ZNQ165, ZNQ166, ZNQ167, ZNQ168, ZNQ169, ZNQ170
中国贵州Guizhou, China ZNQ183, ZNQ184, ZNQ185, ZNQ186, ZNQ187, ZNQ188, ZNQ189
中国广西Guangxi, China ZNQ194, ZNQ195, ZNQ196, ZNQ197, ZNQ198
中国安徽Anhui, China ZNQ161, ZNQ162, ZNQ163
中国云南Yunnan, China ZNQ192, ZNQ190, ZNQ191
中国甘肃Gansu, China ZNQ154, ZNQ155, ZNQ156
中国青海Qinghai, China ZNQ158, ZNQ159
中国湖南Hunan, China ZNQ176, ZNQ177, ZNQ178
美国USA PI647612, PI476852, PI658431, PI658429, PI658439, PI647613
不丹Bhutan PI481673, PI481675, PI481658, PI481672
尼泊尔Nepal PI427240, PI481666, PI658430
未知Unknown ZNQ172, ZNQ174, ZNQ180, PI673868, PI673869, PI673870, PI673874, PI673858, PI673876, PI673845, PI673856, PI673857, PI673855, PI673862, PI673854, PI673846, PI673873, PI673863, PI673847, PI481673, PI673865, PI658438, PI673852

Table 2

The primer sequence for qRT-PCR"

引物名称
Primer name
正向引物
Forward sequences (5'-3')
反向引物
Revered sequences (5'-3')
扩增长度
Amplification length (bp)
FtWOX1 CAGGCGGTGTCTTCTCGATT AACTGACCGGAAGATGGGTG 94
FtWOX2 GATGAAGGACGACGAGCCAG AGAACTCGGTAGGGTTGCAG 137
FtWOX3 CGAGGGGAACGATAAGGTGG GACTCAACTTTGCCATGCTCC 142
FtWOX4 CTCAAGCGCCTTACTCCCTC GCTTTCAAACGCCCTACTCG 102
FtWOX5 AGGACCTGCAAATGGGAAGC TCTGAGACGGCTGCTACTCT 138
FtWOX6 AAGGTGCTCTAATGGCCGC TTGGTCAACGCTTAAACGCC 137
FtWOX7 TTCAAGTCCAAGCCCTGCAA CTCCGCTGTCGATCCATCTC 108
FtWOX8 ACACGACTCTCTCCTGCTTG TGTCGTTGGACTGTTGTGGT 142
FtWOX9 AGTGGACAGTTCGTTGCTGA GGACTCCTGACCGTCGTAAC 133
FtWOX10 ACTACATTGGCACCTGGTCG CCACTAAGCTGCCATCCTCC 124
FtWOX11 AGGCGTGCTAGATTGAAGAGG CTTGTGGCTGGGAATCCTCG 124
FtWOX12 AGAGGACCACCATAGACTCG ACTGAACCGGACCCTCATTC 98
FtWOX13 ACCTTCCAATCAGTTCGCGG ACTTCAAGTTGCTCGTCGGT 117
FtWOX14 GGTGGAACCCTACGCAAGAG CTGAGTTGCGTCGTGATGTG 106
FtWOX15 GGTAGTCCGACTTGAAGGGC CAACCGCCAACTGCATTCTC 111
FtWOX16 AGGCGTGCTAGATTGAAGAGG CTTGTGGCTGGGAATCCTCG 124
FtWOX17 CCTCGAGAAGAGCTTCGACA AACCAGATAGCAACCTGCCG 102
FtWOX18 ACCAAGCTTGAACCACGTCA AGCTGCTTCGACTTCCATCG 113
FtWOX19 ACGGAGATGGAGTGCGAGTA GTAGAGCTCGGCACAGTCAA 128
FtWOX20 TCTCACAGAGCAGAATCGCTG GTCCTTGAATGGCAGGAGGC 129
FtWOX21 GCGGCATTGCGTCATCTAAG TTCAACCTCTGGCTGAGTGC 107
FtWOX22 TCTTGCCCGTTGGATCACTC GCAACACAAGATGGCATCCG 127
FtWOX23 CGTGATTGCCGAGCTGTAGA AGCCGATGCCAAAGTCGTAA 108
FtWOX24 TGAGGAGAAGTCTCCAGGGT CCGGTTCAGGCCTCATCATA 104
FtWOX25 CGTGAACAGGAGATGCCGAT TACTGAACTTGCGTCGGTGT 120
FtWOX26 TGTGAAGAAAGCTCCCTCGG TTCTGTATTTGCTGCGCCGT 111
FtWOX27 CATACGATGACTCTCCAGGGC ATCTAGCGGCGGATGTTCG 116
FtWOX28 TCAGCGATGAGCAGATCAGG CATCTGGCTCGTCGGTTCTG 145
FtWOX29 AAGCTTGCTCGTGAGCTTGG ATGGAGACGGCATCGAACTC 134
FtWOX30 TACGCTCCGGTTGACATTCC AGGCAACAGAGAGAAGCGAC 130
FtHis ATCGACTGGAGGAAAGGCTC GCGGTATCTGTGGGACTTCT 106

Fig. 1

The distribution location of FtWOXs on chromosomes"

Fig. 2

FtWOXs gene family Phylogenetic analysis (A), conserved domain (B) and gene structure analysis (C) in Tartary buckwheat"

Fig. 3

The phylogenetic tree of WOX protein in Arabidopsis thaliana (At), Oryza sativa (Os) and Fagopyrum tataricum (Ft) AtWOX1-13C and AtWUX: The WOX protein of Arabidopsis thaliana; OsWOX3-12B, OsWUX and OsNS1-2: The WOX protein of rice; FtWOX1-30: The WOX protein of Tartary buckwheat, numbers in brackets are the corresponding protein ID"

Fig. 4

The analysis of FtWOXs gene promoter elements in Tartary buckwheat"

Fig. 5

Collinearity analysis of WOX gene family between Fagopyrum tataricum (Ft) and Arabidopsis thaliana (At) "

Fig. 6

The callus growth situation (A) and cluster diagram of induction rate (B) of different Tartary buckwheat varieties Ⅰ: The varieties with callus induction rate of 92% to 100%;Ⅱ: The varieties with callus induction rate of 66% to 78%; Ⅲ, Ⅳ: The varieties with the callus induction rate of 30% to 64% and less than 30%, respectively"

Fig. 7

The heat map of gene expression pattern of FtWOXs in callus among different Tartary buckwheat varieties In black box, the expression tendency of five genes was consistent with inducing rate"

[1] JOSHI D C, CHAUDHARI G V, SOOD S, KANT L, PATTANAYAK A, ZHANG K X, FAN Y, JANOVSKA D, MEGLIC V, ZHOU M L. Revisiting the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019, 250: 783-801.
doi: 10.1007/s00425-018-03080-4
[2] GIMÉNEZ-BASTIDA J A, ZIELIŃSKI H. Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 2015, 63(36): 7896-7913.
doi: 10.1021/acs.jafc.5b02498
[3] CAMPBELL C. Buckwheat crop improvement. Fagopyrum, 2003, 20: 1-6.
[4] 王兴春, 李宏, 王敏, 杨致荣. 植物体细胞胚胎发生的调控网络. 生物工程学报, 2010, 26(2): 141-146.
WANG X C, LI H, WANG M, YANG Z R. Regulatory networks of somatic embryogenesis in plant. Chinese Journal of Biotechnology, 2010, 26(2): 141-146. (in Chinese)
[5] GENRING W J, AFFOLTER M, BURGLIN T. Homeodomain proteins. Annual Review of Biochemistry, 1994, 63: 487-526.
doi: 10.1146/annurev.bi.63.070194.002415
[6] DERELLE R, LOPEZ P, GUYADER H L, MANUEL M. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evolution & Development, 2007, 9(3): 212-219.
[7] LAUX T, MAYER K F, BERGER J, JURGENS G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, 122(1): 87-96.
doi: 10.1242/dev.122.1.87
[8] GRAAFF E, LAUX T, RENSING S A. The WUS homeobox- containing (WOX) protein family. Genome Biology, 2009, 10: 248.
doi: 10.1186/gb-2009-10-12-248
[9] ISABEL B, THOMAS L. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. The Plant Cell, 2005, 17(8): 2271-2280.
doi: 10.1105/tpc.105.032623
[10] MENG W J, CHENG Z J, SANG Y L, ZHANG M M, RONG X F, WANG Z W, TANG Y Y, ZHANG X S. Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372.
doi: 10.1105/tpc.16.00640
[11] ZUO J R, NIU Q W, GIOVANNA F, CHUA N H. The WUSCHEL gene promotes vegetative to embryonic transition in Arabidopsis. The Plant Journal, 2002, 30(3): 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[12] GAMBINO G, MINUTO M, BOCCACCI P, PERRONE I, VALLANIA R, GRIBAUDO I. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. Journal of Experimental Botany, 2011, 62(3): 1089-1101.
doi: 10.1093/jxb/erq349
[13] NARDMANN J, WERR W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Molecular Biology, 2012, 78: 123-134.
doi: 10.1007/s11103-011-9851-4
[14] BREUNINGER H, RIKIRSCH E, HERMANN M, UEDA M, LAUX T. Differential expression of WOX genes mediates apical- basal axis formation in the Arabidopsis embryo. Cell, 2008, 14(6): 867-876.
[15] ZHU J, SHI H, LEE B H, DAMSZ B, CHENG S, STIRM V, ZHU J K, HASEGAWA P M, BRESSAN R A. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9873-9878.
[16] CHENG S, HUANG Y, ZHU N, ZHAO Y. The rice WUSCHEL- related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene, 2014, 549(2): 266-274.
doi: 10.1016/j.gene.2014.08.003
[17] MARCHLER-BAUER A, BO Y, HAN L Y, HE J, LANCZYCKI C J, LU S, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017, 45(D1): 200-203.
[18] CHEN C J, Chen H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[19] CHENNE R, SUGAWARA H, KOIKE T, LOPEZ R, GIBSON T J, HIGGINS D G, THOMPSON J D. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Research, 2003, 31(13): 3497-3500.
doi: 10.1093/nar/gkg500
[20] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096
[21] BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(suppl 2): 202-208.
[22] LESCOT M, DEHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN D P Y, ROUZE P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
doi: 10.1093/nar/30.1.325
[23] ZHANG L J, LI X X, MA B, GAO Q, DU H L, HAN Y H, LI Y, GAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, GUI L, LIU H M, LIANG C Z, QIAO Z J. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017, 10(9): 1224-1237.
doi: 10.1016/j.molp.2017.08.013
[24] MI Y L, ZHU Z H, QIAN G T, LI Y, MENG X X, XUE J P, CHEN Q F, SUN W, SHI Y H. Inducing hairy roots by Agrobacterium rhizogenes-mediated transformation in Tartary buckwheat (Fagopyrum tataricum). Journal of Visualized Experiments, 2020(157): e60828.
[25] HOU S Y, SUN Z X, LINGHU N, WANG Y G, HUANG K S, XU D M, HAN Y H. Regeneration of buckwheat plantlets from hypocotyl and the influence of exogenous hormones on rutin content and rutin biosynthetic gene expression in vitro. Plant Cell, Tissue and Organ Culture, 2015, 120(3): 1159-1167.
doi: 10.1007/s11240-014-0671-5
[26] MAYER K F, SCHOOF H, HAECKER A, LENHARD M, JURGENS G, LAUX T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95(6): 805-815.
doi: 10.1016/S0092-8674(00)81703-1
[27] WU C C, LI F W, KRAMER E M. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-related homeobox transcription factor family in plants. PLoS ONE, 2019, 14(10): e0223521.
doi: 10.1371/journal.pone.0223521
[28] HAO Q, ZHANG L, YANG Y, SHAN Z, ZHOU X A. Genome wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean. Plants (Basel), 2019, 8(7): 215.
[29] VENKATA B, SCHRICK K. START Domains in Lipid/Sterol Transfer and Signaling in Plants. Michigan State University: Michigan State University Press, 2006.
[30] MUKHERJEE K, BURGLIN T R. MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins. Plant Physiology, 2006, 140(4): 1142-1150.
doi: 10.1104/pp.105.073833
[31] ZHANG X, ZONG J, LIU J H, YIN J Y, ZHANG D B. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Journal of Integrative Plant Biology, 2010, 52(11): 1016-1026.
doi: 10.1111/jipb.2010.52.issue-11
[32] HOQUE M E, MANSFIELD J W. Effect of genotype and explant age on callus induction and subsequent plant regeneration from root derived callus of indica rice genotypes. Plant Cell Tissue and Organ Culture, 2004, 78(3): 217-223.
doi: 10.1023/B:TICU.0000025640.75168.2d
[33] 张小红, 闵东红, 邵景侠. 小麦愈伤组织诱导及原生质体的分离与纯化. 中国农学通报, 2010, 26(21): 49-53.
ZHANG X H, MIN D H, SHAO J X. Wheat callus induction and protoplasts of separation and purification. China Agricultural Journal, 2010, 26(21): 49-53. (in Chinese)
[34] 王鹏姬. 荞麦愈伤组织培养及其黄酮合成研究[D]. 杨凌: 西北农林科技大学, 2013.
WANG P J. Research on callus culture and flavonoids biosynthesis of buckwheat[D]. Yangling: Northwest A&F University, 2013. (in Chinese)
[35] LIU B L, WANG L, ZHANG J, LI J B, ZHENG H Q, CHEN J, LU M Z. WUSCHEL-related homeobox genes in Populus tomentosa: Diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics, 2014, 15: 296.
doi: 10.1186/1471-2164-15-296
[36] GUO F, ZHANG H, LIU W, HU X, HAN N, QIAN Q, XU L, BIAN H. Callus initiation from root explants employs different strategies in rice and Arabidopsis. Plant Cell Physiology, 2018, 59(9): 1782-1789.
doi: 10.1093/pcp/pcy095
[37] DEVEAUX Y, TOFFANO-NIOCHE C, CLAISSE G, THAREAU V, MORIN H, LAUFS P, MOREAU H, KREIS M, LECHARNY A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291.
doi: 10.1186/1471-2148-8-291
[38] HIRAKAWA Y, KONDO Y, FUKUDA H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell, 2010, 22(8): 2618-2629.
doi: 10.1105/tpc.110.076083
[39] ETCHELLS J P, PROVOST C M, MISHRA L, TURNER S. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organization. Development, 2013, 140: 2224-2234.
doi: 10.1242/dev.091314
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[4] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[11] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[12] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[13] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!