Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3573-3586.doi: 10.3864/j.issn.0578-1752.2021.17.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HOU SiYu1(),WANG XinFang1,DU Wei1,FENG JinHua1,HAN YuanHuai1,LI HongYing1,LIU LongLong2,SUN ZhaoXia1(
)
[1] |
JOSHI D C, CHAUDHARI G V, SOOD S, KANT L, PATTANAYAK A, ZHANG K X, FAN Y, JANOVSKA D, MEGLIC V, ZHOU M L. Revisiting the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019, 250: 783-801.
doi: 10.1007/s00425-018-03080-4 |
[2] |
GIMÉNEZ-BASTIDA J A, ZIELIŃSKI H. Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 2015, 63(36): 7896-7913.
doi: 10.1021/acs.jafc.5b02498 |
[3] | CAMPBELL C. Buckwheat crop improvement. Fagopyrum, 2003, 20: 1-6. |
[4] | 王兴春, 李宏, 王敏, 杨致荣. 植物体细胞胚胎发生的调控网络. 生物工程学报, 2010, 26(2): 141-146. |
WANG X C, LI H, WANG M, YANG Z R. Regulatory networks of somatic embryogenesis in plant. Chinese Journal of Biotechnology, 2010, 26(2): 141-146. (in Chinese) | |
[5] |
GENRING W J, AFFOLTER M, BURGLIN T. Homeodomain proteins. Annual Review of Biochemistry, 1994, 63: 487-526.
doi: 10.1146/annurev.bi.63.070194.002415 |
[6] | DERELLE R, LOPEZ P, GUYADER H L, MANUEL M. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evolution & Development, 2007, 9(3): 212-219. |
[7] |
LAUX T, MAYER K F, BERGER J, JURGENS G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, 122(1): 87-96.
doi: 10.1242/dev.122.1.87 |
[8] |
GRAAFF E, LAUX T, RENSING S A. The WUS homeobox- containing (WOX) protein family. Genome Biology, 2009, 10: 248.
doi: 10.1186/gb-2009-10-12-248 |
[9] |
ISABEL B, THOMAS L. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. The Plant Cell, 2005, 17(8): 2271-2280.
doi: 10.1105/tpc.105.032623 |
[10] |
MENG W J, CHENG Z J, SANG Y L, ZHANG M M, RONG X F, WANG Z W, TANG Y Y, ZHANG X S. Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372.
doi: 10.1105/tpc.16.00640 |
[11] |
ZUO J R, NIU Q W, GIOVANNA F, CHUA N H. The WUSCHEL gene promotes vegetative to embryonic transition in Arabidopsis. The Plant Journal, 2002, 30(3): 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x |
[12] |
GAMBINO G, MINUTO M, BOCCACCI P, PERRONE I, VALLANIA R, GRIBAUDO I. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. Journal of Experimental Botany, 2011, 62(3): 1089-1101.
doi: 10.1093/jxb/erq349 |
[13] |
NARDMANN J, WERR W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. Plant Molecular Biology, 2012, 78: 123-134.
doi: 10.1007/s11103-011-9851-4 |
[14] | BREUNINGER H, RIKIRSCH E, HERMANN M, UEDA M, LAUX T. Differential expression of WOX genes mediates apical- basal axis formation in the Arabidopsis embryo. Cell, 2008, 14(6): 867-876. |
[15] | ZHU J, SHI H, LEE B H, DAMSZ B, CHENG S, STIRM V, ZHU J K, HASEGAWA P M, BRESSAN R A. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9873-9878. |
[16] |
CHENG S, HUANG Y, ZHU N, ZHAO Y. The rice WUSCHEL- related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene, 2014, 549(2): 266-274.
doi: 10.1016/j.gene.2014.08.003 |
[17] | MARCHLER-BAUER A, BO Y, HAN L Y, HE J, LANCZYCKI C J, LU S, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017, 45(D1): 200-203. |
[18] |
CHEN C J, Chen H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[19] |
CHENNE R, SUGAWARA H, KOIKE T, LOPEZ R, GIBSON T J, HIGGINS D G, THOMPSON J D. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Research, 2003, 31(13): 3497-3500.
doi: 10.1093/nar/gkg500 |
[20] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 |
[21] | BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(suppl 2): 202-208. |
[22] |
LESCOT M, DEHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN D P Y, ROUZE P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327.
doi: 10.1093/nar/30.1.325 |
[23] |
ZHANG L J, LI X X, MA B, GAO Q, DU H L, HAN Y H, LI Y, GAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, GUI L, LIU H M, LIANG C Z, QIAO Z J. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017, 10(9): 1224-1237.
doi: 10.1016/j.molp.2017.08.013 |
[24] | MI Y L, ZHU Z H, QIAN G T, LI Y, MENG X X, XUE J P, CHEN Q F, SUN W, SHI Y H. Inducing hairy roots by Agrobacterium rhizogenes-mediated transformation in Tartary buckwheat (Fagopyrum tataricum). Journal of Visualized Experiments, 2020(157): e60828. |
[25] |
HOU S Y, SUN Z X, LINGHU N, WANG Y G, HUANG K S, XU D M, HAN Y H. Regeneration of buckwheat plantlets from hypocotyl and the influence of exogenous hormones on rutin content and rutin biosynthetic gene expression in vitro. Plant Cell, Tissue and Organ Culture, 2015, 120(3): 1159-1167.
doi: 10.1007/s11240-014-0671-5 |
[26] |
MAYER K F, SCHOOF H, HAECKER A, LENHARD M, JURGENS G, LAUX T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95(6): 805-815.
doi: 10.1016/S0092-8674(00)81703-1 |
[27] |
WU C C, LI F W, KRAMER E M. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-related homeobox transcription factor family in plants. PLoS ONE, 2019, 14(10): e0223521.
doi: 10.1371/journal.pone.0223521 |
[28] | HAO Q, ZHANG L, YANG Y, SHAN Z, ZHOU X A. Genome wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean. Plants (Basel), 2019, 8(7): 215. |
[29] | VENKATA B, SCHRICK K. START Domains in Lipid/Sterol Transfer and Signaling in Plants. Michigan State University: Michigan State University Press, 2006. |
[30] |
MUKHERJEE K, BURGLIN T R. MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins. Plant Physiology, 2006, 140(4): 1142-1150.
doi: 10.1104/pp.105.073833 |
[31] |
ZHANG X, ZONG J, LIU J H, YIN J Y, ZHANG D B. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Journal of Integrative Plant Biology, 2010, 52(11): 1016-1026.
doi: 10.1111/jipb.2010.52.issue-11 |
[32] |
HOQUE M E, MANSFIELD J W. Effect of genotype and explant age on callus induction and subsequent plant regeneration from root derived callus of indica rice genotypes. Plant Cell Tissue and Organ Culture, 2004, 78(3): 217-223.
doi: 10.1023/B:TICU.0000025640.75168.2d |
[33] | 张小红, 闵东红, 邵景侠. 小麦愈伤组织诱导及原生质体的分离与纯化. 中国农学通报, 2010, 26(21): 49-53. |
ZHANG X H, MIN D H, SHAO J X. Wheat callus induction and protoplasts of separation and purification. China Agricultural Journal, 2010, 26(21): 49-53. (in Chinese) | |
[34] | 王鹏姬. 荞麦愈伤组织培养及其黄酮合成研究[D]. 杨凌: 西北农林科技大学, 2013. |
WANG P J. Research on callus culture and flavonoids biosynthesis of buckwheat[D]. Yangling: Northwest A&F University, 2013. (in Chinese) | |
[35] |
LIU B L, WANG L, ZHANG J, LI J B, ZHENG H Q, CHEN J, LU M Z. WUSCHEL-related homeobox genes in Populus tomentosa: Diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics, 2014, 15: 296.
doi: 10.1186/1471-2164-15-296 |
[36] |
GUO F, ZHANG H, LIU W, HU X, HAN N, QIAN Q, XU L, BIAN H. Callus initiation from root explants employs different strategies in rice and Arabidopsis. Plant Cell Physiology, 2018, 59(9): 1782-1789.
doi: 10.1093/pcp/pcy095 |
[37] |
DEVEAUX Y, TOFFANO-NIOCHE C, CLAISSE G, THAREAU V, MORIN H, LAUFS P, MOREAU H, KREIS M, LECHARNY A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291.
doi: 10.1186/1471-2148-8-291 |
[38] |
HIRAKAWA Y, KONDO Y, FUKUDA H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell, 2010, 22(8): 2618-2629.
doi: 10.1105/tpc.110.076083 |
[39] |
ETCHELLS J P, PROVOST C M, MISHRA L, TURNER S. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organization. Development, 2013, 140: 2224-2234.
doi: 10.1242/dev.091314 |
[1] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[2] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[3] | ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734. |
[4] | LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574. |
[5] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[6] | GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716. |
[7] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
[8] | YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. |
[9] | JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. |
[10] | YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855. |
[11] | SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038. |
[12] | ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652. |
[13] | ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854. |
[14] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[15] | YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649. |
|