Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4738-4749.doi: 10.3864/j.issn.0578-1752.2020.23.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum

HAO YanRong1(),DU Wei1,HOU SiYu1,WANG DongHang1,FENG HongMei1,HAN YuanHuai1,ZHOU MeiLiang2,ZHANG KaiXuan2,LIU LongLong3,WANG JunZhen4,LI HongYing1,SUN ZhaoXia1()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
    4Xichang Agricultural Institute of Liangshan, Xichang 615000, Sichuan
  • Received:2020-03-25 Accepted:2020-06-22 Online:2020-12-01 Published:2020-12-09
  • Contact: ZhaoXia SUN E-mail:1148639230@qq.com;18636071356@163.com

Abstract:

【Objective】 The objective of this study is to lay a foundation for the further functional studies and application of ARF genes by identifying the ARF gene family in tartary buckwheat (Fagopyrum tataricum), and analysis of gene structure, conserved domains, phylogeny, tissue expression characteristics, and gene expression levels under exogenous auxin treatment. 【Method】 The data of transcriptome and ARF conservative domains (PF06507) were analyzed to screen for ARF family members in tartary buckwheat. TBtools software was used to analyze the gene structure, NCBI and MEME were used to predict the conserved domain and motif of ARF proteins online, and MEGA X was used to construct ARF protein phylogenetic trees for tartary buckwheat, Arabidopsis thaliana, Oryza sativa, Fagopyrum esculentum, Beta vulgaris, and Glycine max. The FPKM values of six tissues of roots, stems, leaves, flowers, green grains, and black grains were analyzed in the transcriptome data of tartary buckwheat. Heat maps of FtARFs were drawn using TBtools HeatMap to analyze the tissue expression specificity of FtARFs. To predict the cis-acting elements of the FtARFs promoter specifically expressed on the stem, the PlantCARE online website was used. Two parts of tall buckwheat (ZNQ189 and PI673849) and two parts of dwarf buckwheat (PI658429 and PI647612) were treated with 0.5 mg·L -1 IAA and the elongation characteristics of the hypocotyls were analyzed. Samples were taken at different time periods (0, 0.5, 1, 6, 12, 24, and 48 h) after auxin treatment, and the expression differences of FtARFs in different hypocotyls were analyzed by qRT-PCR. Moreover, paraffin sections of four materials grown for 7 days were saffron and green stained, and the cell length was measured. 【Result】Total of 26 FtARFs were identified in the buckwheat genome. Chromosome mapping analysis showed that in addition to chromosome 4, FtARFs were distributed in other chromosomes. Analysis of physical and chemical properties showed that amino acid residues ranged from 331 to 1 083 aa and the theoretical isoelectric point ranged from 5.34 to 8.63. Conserved motif analysis identified several differences in motif composition among different groups. Gene structure analysis showed that the number of FtARFs exons ranged from 2 to 15, showing large variation. Phylogenetic analysis showed that 114 ARF proteins were divided into four groups (Group Ⅰ to Group Ⅳ), and FtARFs were distributed throughout all groups. The results of tissue-specific analysis showed that FPKM values of FtARFs differed significantly in different tissues. In roots, stems, and flowers, seven, nine, and four genes showed high expression, respectively, whereas in leaves, green grains, and black grains, the expression values remained low. When exogenous auxin was applied to these four buckwheat materials, the trend of hypocotyl elongation differed, which is consistent with observed changes in cell length. qRT-PCR showed that the expression of FtARFs was higher during the early stage (0.5-1 h) of auxin treatment, and decreased during later stages. When buckwheat seedlings were treated for 0.5 h, the expression of most genes was induced. 【Conclusion】The tartary buckwheat ARF gene structures and protein motifs show diversity among groups and conservation within groups. FtARFs show tissue expression specificity, and nine FtARFs, that are specifically expressed in the stem, respond to IAA induction. These exert a regulatory role in the stem elongation of tartary buckwheat.

Key words: tartary buckwheat, ARF gene family, auxin, plant height, gene expression

Table 1

Primers of sequences"

基因名称 Gene name 正向引物 Forward primers (5′-3′) 反向引物 Reverse primers (5′-3′)
FtARF1 AACCCGAGGACACACCTTTC GTTGCCTTGAATAAGCGGGC
FtARF2 GCTTGTCGGAGATGACCCTT CTGCACTCCTTCCTTGCTCA
FtARF4 CGGGCTGATGTTACCCATGA CCTGCACTCGGCAGTTCATA
FtARF14 GCAAATGGGCTTCAACCGAG CCAAGCCATCCATACCAGCA
FtARF16 CCAACCTTTGTCTCCGCAAG CGAGGAACAGAAAAACCCCC
FtARF17 CGAGGATTGCTTCCCTCCTT CTCCATCCTGTCGTGAGCAA
FtARF18 ATAGCATGCACATCGGCCTT ACTTTGCCAGAGGAACGACA
FtARF22 CCACGATGTGGTAAACGGGA TTGAGTCCGCACAGAACCTC
FtARF23 ACTGAATGGAAGTTCCGCCA AACCGCATCCCCTGAAACAA
FtHis ATTCCAGAGGCTTGTTCGTG CATAATGGTGACACGCTTGG

Fig. 1

The distribution of FtARFs on chromosomes"

Fig. 2

The phylogenetic tree, conserved domains and gene structures of ARF family in tartary buckwheat"

Fig. 3

The phylogenetic tree of ARF protein in tartary buckwheat and other species"

Fig. 4

The tissue specific expression of ARF genes in tartary buckwheat"

Fig. 5

The analysis of ARF gene promoter elements in tartary buckwheat"

Fig. 6

The growth and cytological observation of buckwheat seedlings after 7 days treatment with IAA A: Growth of seedlings before and after IAA treatment; B: Longitudinal section of hypocotyl cells before and after IAA treatment, and the black box represents the size of a single cell; C: The change in stem length of seedlings; D: The change in length of hypocotyl cells; *above bars indicated significant difference (P<0.05), ** indicated very significant difference (P<0.01)"

Fig. 7

The IAA induced relative expression of FtARFs related to hypocotyl elongation"

[1] TSUJI K, OHNISHI O . Origin of cultivated tatary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 2000,47(4):431-438.
doi: 10.1023/A:1008741513277
[2] JOSHI D C, CHAUDHARI G V, SOOD S, KANT L, PATTANAYAK A, ZHANG K X, FAN Y, JANOVSKA D, MEGLIC V, ZHOU M L . Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019,250:783-801.
doi: 10.1007/s00425-018-03080-4 pmid: 30623242
[3] JOSHI D C, ZHANG K X, WANG C L, CHANDORA R, KHURSHID M, LI J B, HE M, GEORGIEV M I, ZHOU M L . Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances, 2018, https://doi.org/10.1016/j.biotechadv.2019.107479.
doi: 10.1016/j.biotechadv.2020.107650 pmid: 33091484
[4] HAGIWARA M, IZUSAWA H, INOUE N . Varietal difference of shoot growth characters related to lodging in tartary buckwheat. Fagopyrum, 1999,16:67-72.
[5] 郭志利, 孙常青 . 北方旱地荞麦抗倒栽培技术研究. 园艺与种苗, 2007,27(5):364-366.
GUO Z L, SUN C Q . Study on the cultivation technology of buckwheat in the north dry land. Horticulture & Seed, 2007,27(5):364-366. (in Chinese)
[6] 虞慧芳, 曹家树, 王永勤 . 植物矮化突变体的激素调控. 生命科学, 2002,14(2):85-88.
YU H F, CAO J S, WANG Y Q . Hormones regulation in plant dwarfing mutants. Chinese Bulletin of Life Sciences, 2002,14(2):85-88. (in Chinese)
[7] FORD B A, FOO E, SHARWOOD R, KARAFIATOVA M, VRANA J, MACMILLAN C, NICHOLS D S, STEUERNAGEL B, UAUY C, DOLEZEL J, CHANDLER P M, SPIELMEYER W . Rht18 semi-dwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiology, 2018,177(1):168-180.
doi: 10.1104/pp.18.00023 pmid: 29545269
[8] BERNARDO-GARCIA S, DE LUCAS M, MARTINEZ C, ESPINOSA-RUIZ A, DAVIERE J M, PRAT S . BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Development, 2014,28(15):1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420
[9] HU Z Y, YAN H F, YANG J H, SHINJIRO Y, MASAHIKO M, ITSURO T, NOBUHIRO T, JUNKO K, MIKIO N . Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant and Cell Physiology, 2010,51(7):1136-1142.
doi: 10.1093/pcp/pcq075 pmid: 20498118
[10] 王冰, 李家洋, 王永红 . 生长素调控植物株型形成的研究进展. 植物学通报, 2006,23(5):443-458.
WANG B, LI J Y, WANG Y H . Advances in understanding the roles of auxin involved in modulating plant architecture. Chinese Bulletin of Botany, 2006,23(5):443-458. (in Chinese)
[11] WANG Q, QIN G C, CAO M, CHEN R, HE Y M, YANG L Y, ZENG Z J, YU Y Q, GU Y T, XING W M, TAO W A, XU T D . A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nature Communications, 2020,11:679.
doi: 10.1038/s41467-020-14395-w pmid: 32015349
[12] ROOSJEN M, PAQUE S, WEIJERS D . Auxin response factors: Output control in auxin biology. Journal of Experimental Botany, 2018,69(2):179-188.
doi: 10.1093/jxb/erx237 pmid: 28992135
[13] GUILFOYLE T J, HAGEN G . Auxin response factors. Current Opinion in Plant Biology, 2007,10(5):453-460.
doi: 10.1016/j.pbi.2007.08.014
[14] OKUSHIMA Y, OVERVOORDE P J, ARIMA K, ALONSO J M, CHAN A, CHANG C, ECKER J R, HUGHES B, LUI A, NGUYEN D, ONODERA C, QUACH H, SMITH A, YU G X, THEOLOGIS A . Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 2005,17(2):444-463.
doi: 10.1105/tpc.104.028316 pmid: 15659631
[15] WANG D, PEI K, FU Y, SUN Z, LI S, LIU H, TANG K, HAN B, TAO Y . Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007,394(1):13-24.
doi: 10.1016/j.gene.2007.01.006
[16] KALLURI U C, DIFAZIO S P, BRUNNER A M, TUSKAN G A . Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology, 2007,7(1):59.
doi: 10.1186/1471-2229-7-59
[17] XING H, PUDAKE R N, GUO G, XING G, HU Z, ZHANG Y, SUN Q, NI Z . Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011,12(1):178.
doi: 10.1186/1471-2164-12-178
[18] WU J, WANG F, CHENG L, KONG F, PENG Z, LIU S, YU X, LU G . Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011,30(11):2059-2073.
doi: 10.1007/s00299-011-1113-z
[19] VAN HA C, LE D T, NISHIYAMA R, WATANABE Y, SULIEMAN S, TRAN U T, MOCHIDA K, DONG N V, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, PHAN TRAN L S . The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Research, 2013,20(5):511-524.
doi: 10.1093/dnares/dst027
[20] WAN S, LI W, ZHU Y, LIU Z, HUANG W, ZHAN J . Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Reports, 2014,33:1365-1375.
doi: 10.1007/s00299-014-1622-7
[21] WU B, LI Y H, WU J Y, CHEN Q Z, HUANG X, CHEN Y F, HUANG X L . Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. Molecular Biology Reports, 2011,38(5):3189-3194.
doi: 10.1007/s11033-010-9990-8
[22] JUNG J H, LEE M, PARK C M . A transcriptional feedback loop modulating signaling crosstalks between auxin and brassinosteroid in Arabidopsis. Molecules and Cells, 2010,29(5):449-456.
doi: 10.1007/s10059-010-0055-6
[23] HUANG J, LI Z, ZHAO D . Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Scientific Reports, 2016,6(1):29938.
doi: 10.1038/srep29938
[24] ZHANG L J, LI X X, MA B, GAO Q, DU H L, HAN Y H, LI Y, CAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, CUI L, LIU H M, LIANG C Z, QIAO Z J . The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017,10:1224-1237.
doi: 10.1016/j.molp.2017.08.013 pmid: 28866080
[25] LIU M Y, MA Z T, WANG A H, ZHENG T R, HUANG L, SUN W J, ZHANG Y J, JIN W Q, ZHAN J Y, CAI Y T, TANG Y J, WU Q, TANG Z Z, BU T L, LI C L, CHEN H . Genome-wide investigation of the auxin response factor gene family in tartary buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 2018,19(11):3526.
doi: 10.3390/ijms19113526
[26] 王茜茹, 惠志明, 徐建飞, 段绍光, 卞春松, 金黎平, 李广存 . 马铃薯薯形发育的组织细胞学研究. 中国蔬菜, 2020(4):67-73.
WANG Q R, HUI Z M, XU J F, DUAN S G, BIAN C S, JIN L P, LI G C . Studies on histocytology of potato tuber shape development. China Vegetables, 2020(4):67-73. (in Chinese)
[27] 李艳林, 高志红, 宋娟, 王万许, 侍婷 . 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017,53(10):1842-1858.
LI Y L, GAO Z H, SONG J, WANG W X, SHI T . Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017,53(10):1842-1858. (in Chinese)
[28] LAU S, JURGENS G, DE SMET I . The evolving complexity of the auxin pathway. The Plant Cell, 2008,20(7):1738-1746.
doi: 10.1105/tpc.108.060418 pmid: 18647826
[29] 欧春青, 姜淑苓, 王斐, 赵亚楠 . 梨全基因组生长素反应因子(ARF)基因家族鉴定及表达分析. 中国农业科学, 2018,51(2):327-340.
doi: 10.3864/j.issn.0578-1752.2018.02.012
OU C Q, JIANG S L, WANG F, ZHAO Y N . Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pear. Scientia Agricultura Sinica, 2018,51(2):327-340. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.012
[30] 李慧峰, 冉昆, 何平, 王海波, 常源升, 孙清荣, 程来亮, 李林光 . 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析. 植物生理学报, 2015,51(7):1045-1054.
LI H F, RAN K, HE P, WANG H B, CHANG Y S, SUN Q R, CHENG L L, LI L G . Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in apple. Plant Physiology Journal, 2015,51(7):1045-1054. (in Chinese)
[31] ELLIS C M, NAGPAL P, YOUNG J C, HAGEN G, GUILFOYLE T J, REED J W . Auxin response factor 1 and Auxin response factor 2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005,132(20):4563-4574.
[32] FENG Z H, ZHU J, DU X L, CUI X H . Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta, 2012,236(4):1227-1237.
[33] HARDTKE C S, CKURSHUMOVA W, VIDAURRE D P, SINGH S A, STAMATIOU G, TIWARI S B, HAGEN G, GUILFOYLE T J, BERLETH T . Overlapping and non-redundant functions of the Arabidopsis auxin response factors monopteros and nonphototropic hypocotyl 4. Development, 2004,131(5):1089-1100.
doi: 10.1242/dev.00925 pmid: 14973283
[34] WU M F, TIAN Q, REED J W . Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133(21):4211-4218.
doi: 10.1242/dev.02602 pmid: 17021043
[35] ODAT O, GARDINER J, SAWCHUK M G, VERNA C, DONNER T J, SCARPELLA E . Characterization of an allelic series in the monopteros gene of Arabidopsis. Genesis, 2014,52(2):127-133.
doi: 10.1002/dvg.22729
[36] TIAN C E, MUTO H, HIGUCHI K, MATAMURA T, TATEMATSU K, KOSHIBA T, YAMAMOTO K T . Disruption and over expression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. The Plant Journal, 2004,40(3):333-343.
doi: 10.1111/j.1365-313X.2004.02220.x pmid: 15469491
[37] TIWARI S B, HAGEN G, GUILFOYLE T . The role of auxin response factor domains in auxin-reponsive transcription. The Plant Cell, 2003,15:533-543.
doi: 10.1105/tpc.008417 pmid: 12566590
[38] WOODWARD A W, BARTEL B . A receptor for auxin. The Plant Cell, 2005,17(9):2425-2429.
doi: 10.1105/tpc.105.036236 pmid: 16141189
[39] GUILFOYLE T . Sticking with auxin. Nature, 2007,446(7136):621-622.
doi: 10.1038/446621a pmid: 17410164
[40] CHENG Y . Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development, 2006,20(13):1790-1799.
doi: 10.1101/gad.1415106 pmid: 16818609
[41] LI J S, DAI X H, ZHAO Y D . A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiology, 2006,140:899-908.
doi: 10.1104/pp.105.070987 pmid: 16461383
[42] 王红飞, 尚庆茂 . 被子植物下胚轴细胞伸长的分子机理. 植物学报, 2018,53(2):276-287.
doi: 10.11983/CBB17065
WANG H F, SHANG Q M . Molecular mechanisms of cell elongation in angiosperm hypocotyl. Chinese Bulletin of Botany, 2018,53(2):276-287. (in Chinese)
doi: 10.11983/CBB17065
[43] 盛慧, 秦智伟, 李文滨, 周秀艳, 武涛, 辛明 . 黄瓜生长素反应因子(ARF)家族鉴定及表达特异性分析. 中国农业科学, 2014,47(10):1985-1994.
doi: 10.3864/j.issn.0578-1752.2014.10.012
SHENG H, QIN Z W, LI W B, ZHOU X Y, WU T, XIN M . Genome-wide identification and expression analysis of auxin response factor (ARF) family in Cucumber. Scientia Agricultura Sinica, 2014,47(10):1985-1994. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.10.012
[44] WALLER F, FURUYA M, NICK P . OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Molecular Biology, 2002,50(3):415-425.
doi: 10.1023/A:1019818110761
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[4] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[9] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!