Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 264-274.doi: 10.3864/j.issn.0578-1752.2023.02.005

• PLANT PROTECTION • Previous Articles     Next Articles

Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province

LIU RUI1(),ZHAO YuHan1,FU ZhongJu1,GU XinYi1,WANG YanXia1,JIN XueHui1,YANG Ying1,WU WeiHuai2,ZHANG YaLing1()   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163319, Heilongjiang
    2Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
  • Received:2022-08-02 Accepted:2022-09-06 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】The objective of this study is to understand the distribution and variation characteristics of PWL gene family in different Magnaporthe oryzae strains, and to provide a basis for studying the genetic diversity and specificity of different M. oryzae strains. 【Method】A total of 8 pairs of specific primers were designed for the promoter region and CDS region of the PWL gene family by referring to the avirulence gene sequence published in NCBI. DNA was extracted from 397 single spore isolates of M. oryzae collected from different regions of Heilongjiang Province and Hainan Province in 2020. PCR amplification of avirulence genes was conducted and the genes were detected by agarose gel electrophoresis. Representative strains from different regions were selected from the test results to sequence and analyze the amplified fragments. The sequencing results were compared with the base and amino acid sequences of the corresponding avirulence gene promoter region and CDS region in NCBI. 【Result】In the results of PCR electrophoresis, PWL1 was not detected in all strains. The specific fragments of PWL2, PWL3 and PWL4 were amplified in Heilongjiang Province and Hainan Province, indicating that these three genes were distributed in both provinces and had different distribution frequencies and variation types. Among them, PWL2 had the highest distribution frequency in Heilongjiang Province and Hainan Province, which were 98.14% and 100%, respectively. The distribution frequencies of PWL3 and PWL4 in the two provinces were significantly different. The frequencies of these two genes in Heilongjiang strains were 89.30% and 82.79%, respectively, while in Hainan strains were 5.49%. Through the analysis of avirulence gene combinations, the results showed that the combination types could be divided into six types, namely PWL(f), PWL2, PWL3, PWL2+PWL3, PWL2+PWL4, PWL2+PWL3+PWL4. Among them, Heilongjiang strains contained all combination types, and Hainan strains contained only two, indicating that Heilongjiang strains were more abundant in avirulent genotypes than Hainan strains. By sequencing the PCR products of the PWL gene family, it was found that the PWL gene family had abundant variation sites in the promoter region and CDS region, and was divided into nine types with point mutations and deletions as the main variation types, and the variation types of strains from different populations were specific and consistent. Among them, five variant types PWL2- (1, 2, 3, 4, 5) were detected in PWL2, base sequence changes led to amino acid sequence missense mutations; two mutation types were detected in PWL3 and PWL4, which were PWL3- (1, 2) and PWL4- (1, 2), respectively. Both of them had frameshift mutations that caused changes in the following amino acids. 【Conclusion】The distribution and variation types of PWL gene family in M. oryzae strains from different populations have regional differences, and the variation sites are abundant.

Key words: Magnaporthe oryzae, PWL gene family, mutation, avirulence gene, Heilongjiang Province, Hainan Province

Table 1

The strains of M. oryzae isolated from Heilongjiang Province and Hainan Province"

省份Province 采集地点Sampling location 菌株编号<BOLD>S</BOLD>train number 菌株数Number of strains
黑龙江省(215a
Heilongjiang Province(215a
绥化北林区Beilin District, Suihua BL20001-BL20006 6
绥化庆安Qing’an, Suihua QA20007-QA20009 3
绥化青冈Qinggang, Suihua QG20010-QG20012 3
伊春铁力Tieli, Yichun TL20013-TL20018 6
哈尔滨方正Fangzheng, Harbin FZ20019-FZ20044 26
哈尔滨通河Tonghe, Harbin TH20045-TH20069 25
哈尔滨木兰Mulan, Harbin ML20070-ML20081 12
哈尔滨依兰Yilan, Harbin YL20082-YL20085 4
鹤岗绥滨Suibin, Hegang SB20086-SB20102 17
佳木斯富锦Fujin, Jiamusi FJ20103-FJ20106 4
佳木斯东风区Dongfeng District, Jiamusi DF20199-DF20215 17
鸡西虎林Hulin, Jixi HL20107-HL20110 4
鸡西密山Mishan, Jixi MS20111-MS20169 59
牡丹江东宁Dongning, Mudanjiang DN20170-DN20198 29
海南省(182b
Hainan Province(182b
东方感城Gancheng, Dongfang DF20001-DF20004 4
陵水Lingshui LS20085-LS20094 10
文昌铺前Puqian, Wenchang WC20005-WC20038 34
定安定城Dingcheng, Dingan DC20039-DC20065 27
定安雷鸣Leiming, Dingan LM20066-LM20084 19
澄迈金江Jinjiang, Chengmai CM20095-CM20182 88

Table 2

Primers used for Avr-gene amplification"

无毒基因
Avr-gene
引物序列
Primer sequence (5°-3°)
片段大小
Length of targeted fragments (bp)
登录号GenBank
accession number
PWL1 F1:TTTCACGCCCATTAACGG 1262 AB480169.1
R1:ACGCACAACACGAGGT
F2:GTCGCAAATGGACTAACA 395
R2:AAACCCTATTCCAGCAGT
PWL2 F1:TTCGGGCACTCCGTTACT 521 U26313.1
R1:CCTCTCTTTCGCCTTTG
F2:ATGAAATGCAACAACATC 495
R2:CCTCACACTTAAGTTAACAC
PWL3 F1:TGCGAGTAAAAGCCTGAA 548 U36995.1
R1:GTGGGTGTTGTAATAGCGAT
F2:GCTGGGAAGCCTGTCACCT 1412
R2:GTTCACGCAACTGGAGGG
PWL4 F1:TCCTCTGGAACATGACAATAGT 385 U36996.1
R1:TCCGTGGGTGTTGTAGTAGC
F2:CGGCTCATTGTCTGTCGTAAAGG 292
R2:TTCGCTGGTCTTTACAAACTCCC

Fig. 1

Electrophoretic diagram of PCR amplification of PWL gene family"

Table 3

Detection results of avirulent genotypes of tested strains"

基因型
Genotype
黑龙江Heilongjiang 海南Hainan
菌株数 Number of strains 频率Frequency (%) 菌株数 Number of strains 频率Frequency (%)
PWL(f) 1 0.47 0 0
PWL2 25 11.63 172 94.51
PWL3 1 0.47 0 0
PWL2+PWL3 14 6.51 0 0
PWL2+PWL4 3 1.40 0 0
PWL2+PWL3+PWL4 171 79.53 10 5.49

Table 4

PWL2 base sequence alignment results of some strains"

等位基因型
Allele genotype
碱基突变位点Base mutation site (bp)
-307 -223 -169 -152 -129 -73 -51 268
PWL2 CGC TAT GGT CAT TGG TCG GAA GAT
PWL2-1 --T --- --- --- --- --- --- ---
PWL2-2 --- --- --- --- --- --- --- A--
PWL2-3 --- --- --- --- --- --- A-- A--
PWL2-4 --- --G --G -T- G-- --T A-- A--

Fig. 2

Deletion of PWL2-5 fragment"

Fig. 3

Comparative analysis of amino acid sequences of PWL2-2"

Table 5

PWL3 base sequence alignment results of some strains"

等位基因型
Allele genotype
碱基突变位点Base mutation site (bp)
-187 -151 301 363 391 408 409,411
PWL3 AAA AGT TAT GGG AAG GAC GAC
PWL3-1 --- --C *-- --A C-- --A T-G
PWL3-2 --* --C *-- --A C-- --A T-G

Fig. 4

Comparative analysis of amino acid sequences of PWL3-1"

Fig. 5

PWL4 base sequence alignment results of some strains"

Fig. 6

Comparative analysis of amino acid sequences of PWL4-1"

Fig. 7

Proportion analysis of variation types of PWL gene family"

Fig. 8

Phylogenetic tree analysis of PWL gene family genotypes"

[1] 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析. 中国农业科学, 2022, 55(4): 625-640.
ZHANG Y L, GAO Q, ZHAO Y H, LIU R, FU Z J, LI X, SUN Y J, JIN X H. Evaluation of rice blast resistance and genetic structure analysis of rice germplasm in Heilongjiang Province. Scientia Agricultura Sinica, 2022, 55(4): 625-640. (in Chinese)
[2] ZHANG Y L, ZHU Q L, YAO Y X, ZHAO Z H, CORRELL J C, WANG L, PAN Q H. The race structure of the rice blast pathogen across southern and northeastern China. Rice, 2017, 10(1): 46.
doi: 10.1186/s12284-017-0185-y pmid: 28983868
[3] 孟峰, 张亚玲, 靳学慧, 张晓玉, 姜军. 黑龙江省稻瘟病菌无毒基因AVR-PibAVR-PikAvrPiz-t的检测与分析. 中国农业科学, 2019, 52(23): 4262-4273.
MENG F, ZHANG Y L, JIN X H, ZHANG X Y, JIANG J. Detection and analysis of Magnaporthe oryzae avirulence genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273. (in Chinese)
[4] FLOR H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9: 275-296.
doi: 10.1146/annurev.py.09.090171.001423
[5] 吴伟怀, 王玲, 程贯忠, 朱有勇, 潘庆华. 稻瘟病菌群体的分子遗传学研究——广东省与云南省稻瘟病菌群体遗传及致病型结构的比较分析. 中国农业科学, 2004, 37(5): 675-680.
WU W H, WANG L, CHENG G Z, ZHU Y Y, PAN Q H. Studies on molecular genetics of rice blast fungus population——Comparison of genetic and pathotypic structures of two rice blast fungus populations derived from Guangdong and Yunnan provinces of China. Scientia Agricultura Sinica, 2004, 37(5): 675-680. (in Chinese)
[6] ORBACH M J, FARRALL L, SWEIGARD J A, CHUMLEY F G, VALENT B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11): 2019-2032.
doi: 10.1105/tpc.12.11.2019
[7] COLLEMARE J, PIANFETTI M, HOULLE A E, MORIN D, CAMBORDE L, GAGEY M J, BARBISAN C, FUDAL I, LEBRUN M H, BOHNERT H U. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist, 2008, 179(1): 196-208.
doi: 10.1111/j.1469-8137.2008.02459.x
[8] FARMAN M L, LEONG S A. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics, 1998, 150(3): 1049-1058.
doi: 10.1093/genetics/150.3.1049
[9] LI W, WANG B H, WU J, LU G D, HU Y J, ZHANG X, ZHANG Z G, ZHAO Q, FENG Q, ZHANG H Y, WANG Z Y, WANG G L, HAN B, WANG Z H, ZHOU B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009, 22(4): 411-420.
doi: 10.1094/MPMI-22-4-0411
[10] YOSHIDA K, SAITOH H, FUJISAWA S, KANZAKI H, MATSUMURA H, YOSHIDA K, TOSA Y, CHUMA I, TAKANO Y, WIN J, KAMOUN S, TERAUCHI R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. The Plant Cell, 2009, 21(5): 1573-1591.
doi: 10.1105/tpc.109.066324
[11] WU J, KOU Y J, BAO J D, LI Y, TANG M Z, ZHU X L, PONAYA A, XIAO G, LI J B, LI C Y, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9that triggers Pi9- mediated blast resistance in rice. New Phytologist, 2015, 206(4): 1463-1475.
doi: 10.1111/nph.13310
[12] ZHANG S L, WANG L, WU W H, HE L Y, YANG X F, PAN Q H. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 2015, 5: 11642.
doi: 10.1038/srep11642
[13] KANG S, SWEIGARD J A, VALENT B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant- Microbe Interactions, 1995, 8(6): 939-948.
doi: 10.1094/MPMI-8-0939
[14] SWEIGARD J A, CARROLL A M, KANG S, FARRALL L, CHUNLEY F G, VALENT B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. The Plant Cell, 1995, 7(8): 1221-1233.
[15] MASAKI H I. Cloning and characterization of PWL1 and PWL2 host-species specificity genes of the finger millet blast pathogen, Magnaporthe oryzae[D]. Kenya: Pwani University, 2020.
[16] 余欢, 姜华, 王艳丽, 孙国昌. 无毒基因在不同寄主梨孢菌中的变异研究. 浙江农业学报, 2015, 27(8): 1414-1421.
YU H, JIANG H, WANG Y L, SUN G C. Variability of avirulence genes in Pyricularia isolates from different hosts. Acta Agriculturae Zhejiangensis, 2015, 27(8): 1414-1421. (in Chinese)
[17] 穆慧敏. 利用无毒基因研究浙江省分离于不同年份的稻瘟病菌群体的遗传结构多样性[D]. 南京: 南京农业大学, 2013.
MU H M. Analysis of genetic diversity of Magnaporthe oryzae isolates from Zhejiang Province, over the past thirty years based on avirulence gene[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[18] 孟峰, 靳学慧, 张亚玲. PWL基因家族在黑龙江省水稻稻瘟病菌中的分布与变异. 植物保护, 2020, 46(6): 71-76.
MENG F, JIN X H, ZHANG Y L. Distribution and variability of Magnaporthe oryzae PWL gene family in Heilongjiang Province. Plant Protection, 2020, 46(6): 71-76. (in Chinese)
[19] 李焕宇, 付婷婷, 张云, 吕天佑, 李远, 徐秉良. 5种方法提取真菌基因组DNA作为PCR模板效果的比较. 中国农学通报, 2017, 33(16): 28-35.
LI H Y, FU T T, ZHANG Y, LÜ T Y, LI Y, XU B L. Effect comparison of five methods to extract fungal genomic DNA as PCR templates. Chinese Agricultural Science Bulletin, 2017, 33(16): 28-35. (in Chinese)
[20] 聂江山. 稻瘟病菌群体致病型结构的动态变化及其区域特征[D]. 广州: 华南农业大学, 2017.
NIE J S. Temporal dynamics and spatial variation of pathotype structure of Magnaporthe oryzae populations in China[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese)
[21] 穆慧敏, 姜华, 毛雪琴, 柴荣耀, 王艳丽, 张震, 王教瑜, 邱海萍, 杜新法, 孙国昌. PWL基因家族在稻瘟病菌中的分布及变异初探. 浙江农业学报, 2013, 25(3): 526-532.
MU H M, JIANG H, MAO X Q, CHAI R Y, WANG Y L, ZHANG Z, WANG J Y, QIU H P, DU X F, SUN G C. A primary study on distribution and variability of PWL gene family in Magnaporthe grisea. Acta Agriculturae Zhejiangensis, 2013, 25(3): 526-532. (in Chinese)
[22] SHI N N, RUAN H C, LIU X Z, YANG X J, DAI Y L, GAN L, CHEN F R, DU Y X. Virulence structure of Magnaporthe oryzae populations from Fujian Province, China. Canadian Journal of Plant Pathology, 2018, 40(4): 542-550.
doi: 10.1080/07060661.2018.1504821
[23] 张崎峰, 靳学慧, 蔡鑫鑫, 李金良, 陈海军. 黑龙江省稻瘟病菌无毒基因的检测. 黑龙江农业科学, 2014(12): 70-73.
ZHANG Q F, JIN X H, CAI X X, LI J L, CHEN H J. Detection on avirulence gene of rice blast in Heilongjiang Province. Heilongjiang Agricultural Sciences, 2014(12): 70-73. (in Chinese)
[24] 曹雪琦. 福建省稻瘟病菌田间种群无毒基因的变异检测[D]. 福州: 福建农林大学, 2020.
CAO X Q. Detection of avirulence gene mutations in the field population of rice blast flungus in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese)
[25] ZEIGLER R S, CUOC L X, SCOTT R P, BERNARDO M A, CHEN D H, VALENT B, NELSON R J. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology, 1995, 85(4): 443-451.
doi: 10.1094/Phyto-85-443
[26] GOMEZ LUCIANO L B, TSAI I J, CHUMA I, TOSA Y, CHEN Y H, LI J Y, LI M Y, LU M Y J, NAKAYASHIKI H, LI W H. Blast fungal genomes show frequent chromosomal changes, gene gains and losses, and effector gene turnover. Molecular Biology and Evolution, 2019, 36(6): 1148-1161.
doi: 10.1093/molbev/msz045 pmid: 30835262
[27] YOSHIDA K, SAUNDERS D G, MITSUOKA C, NATSUME S, KOSUGI S, SAITOH H, INOUE Y, CHUMA I, TOSA Y, CANO L M, KAMOUN S, TERAUCHI R. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 2016, 17: 370.
doi: 10.1186/s12864-016-2690-6
[28] BAO J, CHEN M, ZHONG Z, TANG W, LIN L, ZHANG X, JIANG H, ZHANG D, MIAO C, TANG H, et al. PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae. Molecular Plant, 2017, 10(11): 1465-1468.
doi: 10.1016/j.molp.2017.08.008
[29] THON M R, PAN H, DIENER S, PAPALAS J, TARO A, MITCHELL T K, DEAN R A. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biology, 2006, 7(2): R16.
doi: 10.1186/gb-2006-7-2-r16
[30] CHUMA I, ISOBE C, HOTTA Y, IBARAGI K, FUTAMATA N, KUSABA M, YOSHIDA K, TERAUCHI R, FUJITA Y, NAKAYASHIKI H, VALENT B, TOSA Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens, 2011, 7(7): e1002147.
doi: 10.1371/journal.ppat.1002147
[31] SCHNEIDER D R S, SARAIVA A M, AZZONI A R, MIRANDA H R C, DE TOLEDO M A S, PELLOSO A C, SOUZA A P. Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expression and Purification, 2010, 74(1): 24-31.
doi: 10.1016/j.pep.2010.04.020
[32] 申浩冉, 白辉, 任世龙, 王璐, 王永芳, 全建章, 董志平, 李志勇. 谷瘟病菌无毒基因PWL家族检测及变异分析. 华北农学报, 2020, 35(3): 178-183.
doi: 10.7668/hbnxb.20190568
SHEN H R, BAI H, REN S L, WANG L, WANG Y F, QUAN J Z, DONG Z P, LI Z Y. Detection and variation analysis of PWL gene family of Magnaporthe oryzae in foxtail millet. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 178-183. (in Chinese)
doi: 10.7668/hbnxb.20190568
[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[3] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[4] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[5] MENG Feng,ZHANG YaLing,JIN XueHui,ZHANG XiaoYu,JIANG Jun. Detection and Analysis of Magnaporthe oryzae Avirulence Genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4262-4273.
[6] HAO BaoCheng, SONG XiangDong, GAO Yan, WANG XueHong, LIU Yu, LI YuanXi, LIANG Yan, CHEN KeYuan, HU YuYao, XING XiaoYong, HU YongHao, LIANG JianPing. Mutagenesis and Screening of Endophytic Fungus Alternaria Section Undifilum oxytropis Producing Swainsonine from Locoweed [J]. Scientia Agricultura Sinica, 2019, 52(15): 2716-2728.
[7] PENG XianLong,WANG Wei,ZHOU Na,LIU HaiYang,LI PengFei,LIU ZhiLei,YU CaiLian. Analysis of Fertilizer Application and Its Reduction Potential in Paddy Fields of Heilongjiang Province [J]. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100.
[8] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[9] REN ShiLong, BAI Hui, WANG yongFang, QUAN JianZhang, DONG ZhiPing, LI ZhiYong, XING JiHong. Identification and Analysis of Magnaporthe oryzae of Foxtail Millet Avirulence Genes [J]. Scientia Agricultura Sinica, 2018, 51(6): 1079-1088.
[10] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[11] DU JiGe, XUE Qi, ZHU Zhen, LI QiHong, YIN ChunSheng, YAO WenSheng, KANG Kai, CHEN XiaoYun. Expression and Evaluation of Protective Efficacy of No-toxic Clostridium perfringens ε Toxin Derivative [J]. Scientia Agricultura Sinica, 2018, 51(11): 2206-2215.
[12] WANG Xiao-yu, YANG Xiao-guang, Lü Shuo, CHEN Fu. The Possible Effects of Global Warming on Cropping Systems in China Ⅻ. The Possible Effects of Climate Warming on Geographical Shift in Safe Planting Area of Rice in Cold Areas and the Risk Analysis of Chilling Damage [J]. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871.
[13] DONG Ming-chao, YANG Xia, ZHANG Zi-chang, LI Yong-feng, GUAN Rong-zhan. Identification and Expression Analysis of 1-Aminocyclopropane- 1-Carboxylate Oxidase Gene from Quinclorac-Resistant Barnyardgrass (Echinochloa crus-galli) [J]. Scientia Agricultura Sinica, 2015, 48(20): 4077-4085.
[14] WANG Jian-Qi, CAO Wen-Guang. Myostatin and Its Double-Muscling Phenotype in Animals [J]. Scientia Agricultura Sinica, 2014, 47(8): 1577-1587.
[15] WANG Shi-Wei-1, 2 , ZHENG Wen-Jing-2, ZHAO Jia-Ming-2, WEI Song-Hong-1, WANG Yan-1, ZHAO Bao-Hai-1, LIU Zhi-Heng-1. Identification and Analysis of Magnaporthe oryzae Avirulence Genes in Liaoning Province [J]. Scientia Agricultura Sinica, 2014, 47(3): 462-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!