Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3807-3821.doi: 10.3864/j.issn.0578-1752.2022.19.010

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress

CHEN FengQiong(),CHEN QiuSen,LIN JiaXin,WANG YaTing,LIU HanLin,LIANG BingRuoShi,DENG YiRu,REN ChunYuan,ZHANG YuXian,YANG FengJun,YU GaoBo,WEI JinPeng(),WANG MengXue()   

  1. College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
  • Received:2021-12-19 Accepted:2022-03-21 Online:2022-10-01 Published:2022-10-10
  • Contact: JinPeng WEI,MengXue WANG E-mail:1922925586@qq.com;weijp81@163.com;wangmengxue@163.com

Abstract:

【Objective】 The aim of this study was to identify all members of tomato DIR gene family, and to predict and analyze their gene structures, physicochemical properties of proteins, phylogenetic relationship, chromosome location, collinearity analysis, promoter elements, expression pattern, prediction of interacting transcription factors and endogenous competitive RNA, so as to provide a reference for exploring the role of DIR in tomato growth and development and response to environmental stresses. 【Method】 The family members of DIR were identified in the whole genome level by bioinformatics methods. The chromosome location, conserved motif, cis-acting element, transcription factors, miRNA and circRNA were analyzed with Phytozome, MEME, PlantCARE, opsRNATarget and plantcircnet, respectively. Chromosome location map, evolutionary tree, relationship map between DIR and transcription factors, ceRNA network, and etc., were drown using Maptea, TBtools, Cytoscape and Omicshare. The expression level of DIR under environmental stresses was studied by NCBI gene database, transcriptome sequencing and qRT-PCR. 【Result】 27 members of DIR family were identified from the whole genome of the tomato, which were named SlDIR1-SlDIR27, and DIR genes of the tomato were located on 12 chromosomes, most of which were located at the end of chromosomes. The gene structures, motifs and domains were relatively conservative, and the classical structure of one exon existed in 22 SlDIR genes. The collinear relationship of DIR genes between tomato and Arabidopsis was much higher than that of rice and soybean. Based on the phylogenetic relationship, 27 DIR members of tomato were divided into three different subfamilies. The tissue specific expression analysis revealed that transcription levels of DIR members of tomato were higher in root. In addition, the promoter region of these genes contained multiple cis-acting elements related to abiotic stress, including drought, low temperature, and hormone induction, such as MeJA, ABA and SA. Hormone, growth and abiotic stress related to transcription factors (ERF, E2F / DP and MYB) were also predicted. Combined with our transcriptome data of pesticide stress and published transcriptome data analysis, the expression level of 5, 10, 10 and 13 SlDIR genes was significantly up-regulated after pesticide, drought, salt and cold stress. And SlDIR23 was induced by all the four stresses, while SlDIR8, SlDIR13 and SlDIR20 were specifically responded to the induction of cold stress, and SlDIR17 specifically responded to salt stress. Finally, the ceRNA regulation of tomato DIR showed that miR-156 might interacted with the target gene SlDIR8 to regulate tomato against stresses. 【Conclusion】 A total of 27 DIR gene family members were identified from the tomato genome and unevenly distributed on 12 chromosomes, with high expression in roots. The expression of SlDIR1, SlDIR13, SlDIR14 and other genes was included by MeJA, ABA and SA and other hormone response elements, among which SlDIR6 only contained MeJA element, and SlDIR27 only contained SA response element. In addition, SlDIR2, SlDIR14, SlDIR23 and other genes were participated in drought, salt, low temperature and other stresses. Especially for SlDIR23, it could be activated under different stress treatments. In addition, DIR genes interacted with transcription factors and noncoding RNA to regulate the responses of tomato plants under stresses.

Key words: DIR protein, Lycopersicon esculentum, gene family, bioinformatics

Fig. 1

Chromosomal location of DIR gene in tomato"

Fig. 2

Phylogentic analysis of DIR gene family from Arabidopsis thaliana (At), Solanum lycopersicum (Sl), Capsicum annuum (Ca), and Gossypium hirsutum (Gh)"

Fig. 3

Phylogenetic tree of tomato DIR gene family, protein motif and gene structure"

Fig. 4

Homology analysis of DIR genes in soybean, rice, Arabidopsis and tomato The red arc indicates that there is homology among the different species, and the gray arc indicates that exist homology among the same species"

Fig. 5

Expression analysis of tomato DIR gene family in different tissues"

Fig. 6

Cis element analysis of 1500 bp promoter upstream of tomato DIR gene"

Fig. 7

Transcriptional abundance of tomato DIR gene under chlorothalonil, salt, drought and cold stress (A), Validation of SlDIR genes by qRT-PCR under drought (B), salt (C), cold (D) and chlorothalonil (E) stress"

Fig. 8

Network analysis of tomato DIR gene and transcription factor Red indicates gene and green indicates transcription factor"

Fig. 9

ceRNA network analysis of tomato DIR gene"

[1] DAVIN L B, WANG H B, CROWELL A L, BEDGAR D L, MARTIN D M, SARKANEN S, LEWIS N G. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. The Journal of Supercomputing, 1997, 275(5298): 362-366. doi: 10.1126/science.275.5298.362.
doi: 10.1126/science.275.5298.362
[2] CORBIN C, DROUET S, MARKULIN L, AUGUIN D, LAINÉ É, DAVIN L B, CORT J R, LEWIS N G, HANO C. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation. Plant Molecular Biology, 2018, 97(1/2): 73-101. doi: 10.1007/s11103-018-0725-x.
doi: 10.1007/s11103-018-0725-x
[3] PANIAGUA C, BILKOVA A, JACKSON P, DABRAVOLSKI S, RIBER W, DIDI V, HOUSER J, GIGLI-BISCEGLIA N, WIMMEROVA M, BUDÍNSKÁ E, HAMANN T, HEJATKO J. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. Journal of Experimental Botany, 2017, 68(13): 3287-3301. doi: 10.1093/jxb/erx141.
doi: 10.1093/jxb/erx141 pmid: 28472349
[4] RALPH S G, JANCSIK S, BOHLMANN J. Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry, 2007, 68(14): 1975-1991. doi: 10.1016/j.phytochem.2007.04.042.
doi: 10.1016/j.phytochem.2007.04.042
[5] 穰中文, 周清明. 水稻dirigent基因家族生物信息学分析. 湖南农业大学学报(自然科学版), 2013(2): 111-120.
RANG Z W, ZHOU Q M. Bioinformatic analysis of the dirigent gene family in rice. Journal of Hunan Agricultural University (Natural Sciences Edition), 2013(2): 111-120. (in Chinese)
[6] 董雨青, 强亭燕, 刘久石, 李斌, 魏雪苹, 齐耀东, 刘海涛, 张本刚. 五味子DIR基因家族鉴定及特征分析. 中国中药杂志, 2021, 46(20): 5270-5277. doi: 10.19540/j.cnki.cjcmm.20210723.101.
doi: 10.19540/j.cnki.cjcmm.20210723.101
DONG Y Q, QIANG T Y, LIU J S, LI B, WEI X P, QI Y D, LIU H T, ZHANG B G. Identification and characterization of DIR gene family in Schisandra chinensis. China Journal of Chinese Materia Medica, 2021, 46(20): 5270-5277. doi: 10.19540/j.cnki.cjcmm.20210723.101. (in Chinese)
doi: 10.19540/j.cnki.cjcmm.20210723.101
[7] 陈家璐, 张智俊, 刘笑雨, 朱丰晓. 毛竹Dirigent基因家族的全基因组鉴定与分析. 植物生理学报, 2019(9): 1406-1417.
CHEN J L, ZHANG Z J, LIU X Y, ZHU F X. Genome-wide identification and analysis of Dirigent gene family in moso bamboo (Phyllostachys edulis). Plant Physiology Journal, 2019(9): 1406-1417. (in Chinese)
[8] 郭宝生, 师恭曜, 王凯辉, 刘素恩, 赵存鹏, 王兆晓, 耿军义, 华金平. 黄萎病菌侵染下陆地棉Dirigent-like蛋白基因表达差异分析. 中国农业科学, 2014, 47(22): 4349-4359. doi: 10.3864/j.issn.0578-1752.2014.22.001.
doi: 10.3864/j.issn.0578-1752.2014.22.001
GUO B S, SHI G Y, WANG K H, LIU S E, ZHAO C P, WANG Z X, GENG J Y, HUA J P. Expression differences of dirigent-like protein genes in upland cotton responsed to infection by Verticillium dahliae. Scientia Agricultura Sinica, 2014, 47(22): 4349-4359. doi: 10.3864/j.issn.0578-1752.2014.22.001. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.22.001
[9] 关瑞攀. Dirigent基因参与三七—茄腐镰刀菌互作的分子机理研究[D]. 昆明: 昆明理工大学, 2018.
GUAN R P. Molecular mechanism of Dirigent genes involved in the interaction of Panax notoginseng - Fusarium solani[D]. Kunming: Kunming University of Technology, 2018. (in Chinese)
[10] KHAN A, LI R J, SUN J T, Ma F, ZHANG H X, JIN J H, ALI M, HAQ S U, WANG J E, GONG Z H. Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Scientific Reports, 2018, 8(1): 5500-5521.
doi: 10.1038/s41598-018-23761-0
[11] MCGINNIS S, MADDEN T L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 2004, 32: W20-W25. doi: 10.1093/nar/gkh435.
doi: 10.1093/nar/gkh435 pmid: 15215342
[12] LI N H, ZHAO M, LIU T F, DONG L D, CHENG Q, WU J J, WANG L, CHEN X, ZHANG C Z, LU W C, XU P F, ZHANG S Z. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontiers in Plant Science, 2017, 8: 1185.
doi: 10.3389/fpls.2017.01185
[13] HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K. WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[14] BAILEY T L, ELKAN C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings. International Conference on Intelligent Systems for Molecular Biology, 1994, 2: 28-36.
[15] CHEN C, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
doi: S1674-2052(20)30187-8 pmid: 32585190
[16] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4): 772-780. doi: 10.1093/molbev/mst010.
doi: 10.1093/molbev/mst010 pmid: 23329690
[17] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096.
doi: 10.1093/molbev/msy096 pmid: 29722887
[18] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 2019, 47(W1): W256-W259. doi: 10.1093/nar/gkz239.
doi: 10.1093/nar/gkz239
[19] LESCOT M, DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327. doi: 10.1093/nar/30.1.325.
doi: 10.1093/nar/30.1.325 pmid: 11752327
[20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[21] XU W Y, LIU T, ZHANG H Y, ZHU H. Mungbean DIRIGENT gene subfamilies and their expression profiles under salt and drought stresses. Frontiers in Genetics, 2021, 12: 658148. doi: 10.3389/fgene.2021.658148.
doi: 10.3389/fgene.2021.658148
[22] SONG M, PENG X Y. Genome-wide identification and characterization of DIR genes in Medicago truncatula. Biochemical Genetics, 2019, 57(4): 487-506. doi: 10.1007/s10528-019-09903-7.
doi: 10.1007/s10528-019-09903-7
[23] 马金洋, 杨瑾冬, 李卿, 张磊. 丹参Dirigent基因家族的发现与生物信息学分析. 基因组学与应用生物学, 2017, 36(4): 1594-1610.
MA J Y, YANG J D, LI Q, ZHANG L. Discovery and bioinformatics analysis of dirigent multigene family in Salvia miltiorrhiza. Genomics and Applied Biology, 2017, 36(4): 1594-1610. (in Chinese)
[24] THAMIL ARASAN S K, PARK J I, AHMED N U, JUNG H J, HUR Y, KANG K K, LIM Y P, NOU I S. Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiology Biochemistry, 2013, 67: 144-153. doi: 10.1016/j.plaphy.2013.02.030.
doi: 10.1016/j.plaphy.2013.02.030
[25] KIM K W, MOINUDDIN S G A, ATWEL K M, COSTA M A, DAVIN L B, LEWIS N G. Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. The Journal of Biological Chemistry, 2012, 287(41): 33957-33972.
doi: 10.1074/jbc.M112.387423
[26] GUO J L, XU L P, FANG J P, SU Y C, FU H Y, QUE Y X, XU J S. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Reports, 2012, 31(10): 1801-1812. doi: 10.1007/s00299-012-1293-1.
doi: 10.1007/s00299-012-1293-1
[27] 卫昭君, 牛冰洁, 王永新, 赵祥, 朱慧森, 郭秀萍, 乔栋. 茉莉酸甲酯对盐胁迫下偏关苜蓿种子萌发和幼苗生长的影响. 草地学报, 2020, 28(4): 998-1005. doi: 10.11733/j.issn.1007-0435.2020.04.017.
doi: 10.11733/j.issn.1007-0435.2020.04.017
WEI Z J, NIU B J, WANG Y X, ZHAO X, ZHU H S, GUO X P, QIAO D. Effect of methyl jasmonate on seed germination and seedling growth of Medicago sativa 'pianguan'under salt stress. Acta Agrestia Sinica, 2020, 28(4): 998-1005. doi: 10.11733/j.issn.1007-0435.2020.04.017. (in Chinese)
doi: 10.11733/j.issn.1007-0435.2020.04.017
[28] 樊晓培, 邢津溥, 魏铁锁, 李欣洋, 苍晶, 徐庆华, 张达. 外源MeJA对低温胁迫下冬小麦冷响应基因表达的影响. 麦类作物学报, 2020, 40(3): 292-299.
FAN X P, XING J P, WEI T S, LI X Y, CANG J, XU Q H, ZHANG D. Effect of exogenous MeJA on the expression of cold response genes in winter wheat under low temperature stress. Journal of Triticeae Crops, 2020, 40(3): 292-299. (in Chinese)
[29] 朱菲菲, 刘奕清, 陈泽雄, 兰建彬. 外源脱落酸对盐胁迫下灰毡毛忍冬幼苗生理特性的影响. 中药材, 2013, 36(7): 1043-1046.
ZHU F F, LIU Y Q, CHEN Z X, LAN J B. Effect of abscisic acid on physiological characteristics in Lonicera macranthoides seedlings under salt stress. Journal of Chinese Medicinal Materials, 2013, 36(7): 1043-1046. (in Chinese)
[30] WANG Y L, MA F W, LI M J, LIANG D, ZOU J. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 2011, 64(1): 63-74.
doi: 10.1007/s10725-010-9537-y
[31] 刘春红. 黄瓜低霜霉威残留性相关基因CsDIR16的鉴定及功能分析[D]. 哈尔滨: 东北农业大学, 2017.
LIU C H. Identification and functional analysis of the propamcarb- related gene CsDIR16 in cucumber[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[32] YU G B, CHEN R N, CHEN Q S, CHEN F Q, LIU H L, REN C Y, ZHANG Y X, YANG F J, WEI J P. Jasmonic acid promotes glutathione assisted degradation of chlorothalonil during tomato growth. Ecotoxicology and Environmental Safety, 2022, 233: 113296.
doi: 10.1016/j.ecoenv.2022.113296
[33] YADAV V, WANG Z Y, YANG X Z, WEI C H, CHANGQING X, ZHANG X. Comparative analysis, characterization and evolutionary study of dirigent gene family in Cucurbitaceae and expression of novel dirigent peptide against powdery mildew stress. Genes, 2021, 12(3): 326.
doi: 10.3390/genes12030326
[34] GUTTMAN M, DONAGHEY J, CAREY B W, GARBER M, GRENIER J K, MUNSON G, YOUNG G, LUCAS A B, ACH R, BRUHN L, YANG X, AMIT I, MEISSNER A, REGEV A, RINN J L, ROOT D E, LANDER E S. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477(7364): 295-300. doi: 10.1038/nature10398.
doi: 10.1038/nature10398
[35] 陈瑞兵. Dirigent蛋白催化菘蓝有效成分木脂素生物合成的机制研究[D]. 上海: 中国人民解放军海军军医大学, 2018.
CHEN R B. Study on the mechanism of the Dirigent proteins tocatalyze lignans in Isatisindigotica[D]. Shanghai: Naval Military Medical University of the Chinese people’s Liberation Army, 2018. (in Chinese)
[36] MARIAM C, MARIAM S, SAFA C, DONIA B, RADHIA G B. Ectopic expression of StERF94 transcription factor in potato plants improved resistance to Fusarium solani infection. Plant Molecular Biology Reporter, 2019, 37(5/6): 450-463. doi: 10.1007/s11105-019-01171-4.
doi: 10.1007/s11105-019-01171-4
[37] GOU J Y, FELIPPES F F, LIU C J, WEIGEL D, WANG J W. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156- targeted SPL transcription factor. The Plant Cell, 2011, 23(4): 1512-1522. doi: 10.1105/tpc.111.084525.
doi: 10.1105/tpc.111.084525
[38] HSIEH L C, LIN S I, SHIH A C, CHEN J W, LIN W Y, TSENG C Y, LI W H, CHIOU T J. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology, 2009, 151(4): 2120-2132.
doi: 10.1104/pp.109.147280
[39] CUI L G, SHAN J X, SHI M, GAO J P, LIN H X. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal, 2014, 80(6): 1108-1117.
doi: 10.1111/tpj.12712
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[5] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[6] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[7] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[8] ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060.
[9] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[10] HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586.
[11] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[12] YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889.
[13] SHAO ChenBing,HUANG ZhiNan,BAI XueYing,WANG YunPeng,DUAN WeiKe. Identification, Systematic Evolution and Expression Analysis of HD-Zip Gene Family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004-1017.
[14] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[15] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!