Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3097-3112.doi: 10.3864/j.issn.0578-1752.2021.14.015

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple

HUANG JinFeng1(),LÜ TianXing1,WANG Xu2,WANG YingDa1,WANG DongMei1,YAN ZhongYe1,LIU Zhi1()   

  1. 1Liaoning Institute of Pomology, Yingkou 115009, Liaoning
    2College of Horticultural Science and Engineering, Shangdong Agricultural University, Tai’an 271018, Shangdong
  • Received:2020-08-30 Accepted:2020-12-29 Online:2021-07-16 Published:2021-07-26
  • Contact: Zhi LIU E-mail:huangfeng1002@163.com;lnliuzhi@163.com

Abstract:

【Objective】 The study was carried out to explore the whole genome characteristics and expression patterns ofLRR-RLKs in apple, to reveal the expression specificity of family members in different tissues and their responses to biological and abiotic stress, and further understand its biological function in apple. 【Method】 The members of LRR-RLK gene family in the whole genome of apple were identified based on the local BLAST database and Pfam database. The LRR-RLK amino acid sequence prediction, subcellular localization prediction, domain analysis, phylogenetic tree and chromosome localization were completed by software of ExPASy Proteomics Server, Cell-PLoc, CD-Search Tool, MEGAX and MG2C. In addition, the expression pattern of 12 LRR-RLK genes in different tissues and stress were analyzed by real-time fluorescent quantitative PCR (qRT-PCR).【Result】 A total of 378 LRR-RLKgenes were identified from apple genome. TheseLRR-RLKgenes encoded proteins containing 318-1 827 amino acid, and the theoretical isoelectric point ranged from 6.14 to 9.01. The prediction subcellular localization of apple LRR-RLK proteins was all distributed in the cell membrane. The gene family could be divided into 15 subgroups, containing 1-111 genes. The 378 genes in this family were distributed on all 17 chromosomes of the apple, and the chromosome 7 contained 40 genes. The LRR-RLK gene family had two conserved domains, namely the leucine-rich repeat structure and the protein kinase domain. Irregular curl and α-helix was the main secondary structure in the LRR-RLK gene family, and the rotation of β-turn was very small. It was found that the 12 selected family members were expressed in all tissues (except MD00G1105400), and most genes were expressed at relatively high levels in stem. Seven genes were up-regulated under low temperature conditions, and the expression of MD09G1153800 was the most obvious. The expression of MD09G1153800 was raised to 6.8 times of that under the control. While MD06G1170200 and MD05G1061600 were both down-regulated. Eight genes were up-regulated under drought conditions, and MD00G1105400 was the most obvious one. The expression of MD00G1105400 was raised to 9.6 times of that under the control; under salt conditions, MD04G1150400, MD13G1108000 and MD02G1071800 were always up-regulated. Among them, MD02G1071800 had the highest expression after 24 hours of salt stress treatment, which was 14.9 times of that under the control. After inoculating Botryosphaeria dothidea, the expression of 12 LRR-RLKgenes increased first and then decreased. After inoculating, the expression level of Wangshanhong was higher on the first day, however the expression level of Jiguan was higher on the third day. The expression of MD09G1153800 and MD05G1065800 were up-regulated significantly in Jiguan, in relative to have no change in Wangshanhong, suggesting that these twoLRR-RLKscould serve as candidate genes for further functional characterization. 【Conclusion】 A total of 378 LRR-RLK members were identified from apple whole genome sequences, which could be divided into 15 groups and distributed on 17 chromosomes, and the most of LRR-RLK genes were responsive to stress stimulus and Botryosphaeria dothidea.

Key words: apple, LRR-RLK, gene family, identification, expression analysis

Table 1

Primers sequences of real time fluorescent quantitative PCR"

登录号 Gene number 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′)
MdActin TGACCGAATGAGCAAGGAAATTACT TACTCAGCTTTGGCAATCCACATC
MD09G1153800 TCTTCTTGAGCCATCTCC CGTCGGTCAGTATGTTTT
MD04G1150400 ACCGTTCATTGCTCCTTG GCGAGCCCTATTTCCATC
MD03G1138500 GAAGCCAACAGACGAGAT GGATAATAAGCAAACCCT
MD06G1170200 CCAGTGGACCCATCATTC GCTTGGAGCATTTCTTGTAT
MD03G1036900 GGAAAGGAGGAGCAGATT CAGGACCCAACAGAACAT
MD05G1061600 AGATGTCTACAGCTATGGGATA TGGTTAGTTCGCCTTTGA
MD13G1108000 TTCCCATAGACAGCAAGA GTGGCATCCAAGTAAAGC
MD05G1261100 GTCGAAACCAAGCTATTT TAGTTGAGGCGAACATTA
MD00G1105400 GACTGATAGGTTGGCACTG GACCCTCTGACTATGTCG
MD02G1071800 GAATCCATCATAGAAACT ATTAGCCATGTACTCGTA
MD05G1065800 TTCAATACCTCCGCAACT AAATCCCACTCAGCAAAT
MD15G1288500 GCCTTGAGGATGGCAGAT GTACCCTAACTTGAACAACGAC

Fig. 1

Phylogenetic tree of LRR-RLK gene family in apple"

Table 2

The information of LRR-RLK gene family in apple"

亚家族
Subclade
基因数量
No.of genes
氨基酸数目
Number of amino acids
范围Range
等电点 Isoelectric point 分子量 Molecular weight (Kd) LRR数量 No. of LRRs
I-1 10 697-1022 5.34-8.39 78.68-111.91 1-11
II 39 595-1054 5.16-8.49 66.69-116.19 1-6
III 50 400-1063 5.61-9.66 43.51-115.39 2-9
IV 5 681-683 6.16-7.76 73.96-74.16 3-5
V 12 551-801 5.57-9.39 60.88-86.53 2-6
VI-1 10 700-794 7.61-9.46 77.79-87.25 2-8
VI-2 5 655-716 5.50-5.92 71.84-78.63 1-3
VII-1 7 886-1010 5.28-6.26 96.77-110.12 5-12
VII-2 2 861-862 5.8-6.15 94.58-94.84 7
VII-3 3 1141-1146 5.61-7.56 106.07-123.50 11-16
VIII 9 794-964 5.84-7.24 87.52-105.10 3-7
IX 8 851-977 5.62-8.63 93.01-103.52 5-9
Xa 4 601-627 6.14-8.09 66.09-124.65 1-4
Xb-1 12 1021-1301 5.42-6.74 122.83-141.35 9-19
Xb-2 2 1071-1090 5.76-6.80 117.55-119.70 6
XI 74 614-1258 5.28-9.09 67.92-138.67 4-20
XII 111 318-1827 5.22-9.75 34.95-199.33 2-19
XIII-a 5 532-606 5.44-6.15 58.27-67.22 2-3
XIII-b 1 989 6.05 108.91 8
XIV 4 899-911 6.50-8.10 97.60-98.43 5-9
XV 5 441-1145 6.15-8.37 47.94-125.05 6-10

Fig. 2

Chromosome location of the LRR-RLK gene family in apple "

Fig. 3

Gene structure analysis of LRR-RLK family members in apple"

Fig. 4

Conserved motifs and sequence logo of III subfamily A: III subfamily motif analysis; B: Logo of 15 conserved motif"

Fig. 5

Conservative domains of III subfamily"

Table 3

The secondary structure of LRR-RLK proteins in apple"

登录号 Gene number α-螺旋 α-helix (%) β-转角 β-turn (%) 无规则卷曲 Random coil (%) 延长链 Extended strand (%)
MD04G1019100 34.88 5.98 43.74 15.39
MD04G1079600 36.80 4.25 44.13 14.81
MD04G1150400 36.25 4.86 43.83 15.06
MD04G1174900 37.82 2.18 45.39 14.61
MD05G1065800 37.14 3.85 46.92 12.09
MD05G1153300 32.27 3.67 45.21 18.85
MD05G1261100 33.66 2.41 52.14 11.79
MD05G1299200 41.63 5.44 41.63 11.30
MD06G1198600 34.16 2.39 49.86 13.59
MD07G1259500 39.01 3.34 45.90 11.75
MD08G1017800 36.67 2.28 47.46 13.60
MD09G1014600 33.97 3.30 46.26 16.48
MD09G1153800 40.07 5.08 39.35 15.50
MD09G1168400 38.16 7.75 38.59 15.49
MD11G1047400 37.23 1.91 48.42 12.44
MD12G1192800 28.75 4.62 52.26 14.38
MD13G1108000 26.88 4.21 49.43 19.48
MD15G1152400 33.84 2.79 51.05 12.33
MD15G1288500 29.64 5.73 50.00 14.63
MD16G1288500 39.36 4.33 42.37 13.94
MD17G1060000 33.74 1.80 51.47 12.99

Fig. 6

Relative expression of LRR-RLKin different tissues of apple Different lowercase letters indicate significant difference (P<0.05). The same as below "

Fig. 7

Relative expression of apple LRR-RLK under different abiotic stresses "

Fig. 8

Expression pattern of LRR-RLKin response to B. dothidea in apple "

[1] SHIU S H, BLEECKER A B. Receptor-like kinases from Arabidopsisform a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19):10763-10768.
[2] XIANG Y, CAO Y L, XU C G, LI X H, WANG S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theoretical and Applied Genetics, 2006, 113(7):1347-1355.
doi: 10.1007/s00122-006-0388-x
[3] DE LORENZO L, MERCHAN F, LAPORTE P, THOMPSON R, CLARKE J, SOUSA C, CRESPI M. A novel plant leucine-rich repeat receptor kinase regulates the response ofMedicago truncatula roots to salt stress. Plant Cell, 2009, 21(2):668-680.
doi: 10.1105/tpc.108.059576
[4] LI X X, SALMAN A, GUO C, YU J, CAO S X, GAO X M, LI W, LI H, GUO Y F. Identification and characterization of LRR-RLKfamily genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 2018, 7:120.
doi: 10.3390/cells7090120
[5] TICHTINSKY G, VANNOOSTHUYSE V, COCK J M, GAUDE T. Making inroads into plant receptor kinase signalling pathways. Trends in Plant Science, 2003, 8(5):231-237.
doi: 10.1016/S1360-1385(03)00062-1
[6] NAPIER R. Plant hormone binding sites. Annals of Botany, 2004, 93:227-233.
doi: 10.1093/aob/mch041
[7] LEHTI-SHIU M D, SHIU S H. Diversity, classification and function of the plant protein kinase superfamily. Philosophical Transactions of The Royal Society Biological Sciences, 2012, 367:2619-2639.
doi: 10.1098/rstb.2012.0003
[8] GISH L A, CLARK S E. The RLK/Pelle family of kinases. The Plant Journal, 2011, 66:117-127.
doi: 10.1111/tpj.2011.66.issue-1
[9] SUN J M, LI L T, WANG P, ZHANG S L, WU J Y. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18:763.
doi: 10.1186/s12864-017-4155-y
[10] GOMEZ-GOMEZ L, BAUER Z, BOLLER T. Both the extracellular leucine-richrepeat domain and the kinase activity of FLS2are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001, 13(5):1155-1163.
doi: 10.1105/tpc.13.5.1155
[11] KUNZE G, ZIPFEL C, ROBATZEK S, NIEHAUS K, BOLLER T, FELIX G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004, 16:3496-3507.
doi: 10.1105/tpc.104.026765
[12] SONG W Y, WANG G L, CHEN L L, KIM H S, PI LY, HOLSTEN T, GARDNER J, WANG B, ZHAI W X, ZHU L H, FAUQUET C, RONALD P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243):1804-1806.
doi: 10.1126/science.270.5243.1804
[13] HU H, WANG J, SHI C, YUAN C, PENG C F, YIN J J, LI W T, HE M, WANG J C, MA B T, WANG Y P, LI S G, CHEN X W. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzaepv.oryzae is essential for Xa21-mediated disease resistance. Rice, 2015, 8: 1. https://doi.org/10.1186/s12284-014-0034-1.
doi: 10.1186/s12284-014-0034-1
[14] CHEN T T, XIAO J, XU J, WAN WT, QIN B, CAO A Z, CHEN W, XING L P, DU C, GAO X Q, ZHANG S Z, ZHANG R Q, SHEN W B, WANG H Y, WANG X E. Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC Plant Biology, 2016, 16:27.
doi: 10.1186/s12870-016-0713-8
[15] BLAUM B S, MAZZOTTA S, NOLDEKE E R, HALTER T, MADLUNG J, KEMMERLING B, STEHLE T. Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling inArabidopsis. Journal of Structural Biology, 2014, 186(1):112-121.
doi: 10.1016/j.jsb.2014.02.005
[16] IMKAMPE J, HALTER T, HUANG S H, SCHULZE S, MAZZOTTA S, SCHMIDT N, MANSTRETTA R, POSTEL S, WIERZBA M, YANG Y, VAN DONGEN W M A M, STAHL M, ZIPFEL C, GOSHE M B, CLOUSE S, DE VRIES S C, TAX F, WANG X F, KEMMERLING B. The Arabidopsis leucine-rich repeat receptor kinase BIR3negatively regulates BAK1 Receptor complex formation and stabilizes BAK1. Plant Cell, 2017, 29(9):2285-2303.
doi: 10.1105/tpc.17.00376
[17] SUN R B, WANG S H, MA D, LIU C L. Genome-wide analysis of LRR-RLK gene family in four Gossypium species and expression analysis during cotton development and stress responses. Genes, 2018, 9:592.
doi: 10.3390/genes9120592
[18] LI H, HAN X D, LIU X X, ZHOU M Y, REN W, ZHAO B B, JU C L, LIU Y, ZHAO J R. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics, 2019, 20:737.
doi: 10.1186/s12864-019-6143-x
[19] LIN F M, LI S, WANG K, TIAN H, GAO J F, ZHAO Q Z, DU C Q. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Science, 2020, 296:110465.
doi: 10.1016/j.plantsci.2020.110465
[20] LI R, AN J P, YOU C X, WANG X F, HAO Y J. Molecular cloning and functional characterization of the CEP RECEPTOR1 gene MdCEPR1 of apple (Malus × domestica). Plant Cell, Tissue and Organ Culture, 2020, 140(3):539-550.
doi: 10.1007/s11240-019-01745-w
[21] LIAO Y L, HU C Q, ZHANG X W, CAO X F, XU Z J, GAO X L, LI L H, ZHU J Q, CHEN R J. Isolation of a novel leucine-rich repeat receptorlike kinase (OsLRR2) gene from rice and analysis of its relation to abiotic stress responses. Biotechnology & Biotechnological Equipment, 2017, 31(1):51-57.
[22] WANG J H, KUCUKOGLU M, ZHANG L B, CHEN P, DANIEL D, NILSSON O, JONES B, SANDBERG G, ZHENG B. The ArabidopsisLRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biology, 2013, 13:94.
doi: 10.1186/1471-2229-13-94
[23] 杨敏, 韩玉珍, 阿依江, 哈拜克, 王翠玲. LRR-RLKs亚家族基因RLK6在拟南芥开花过程中的作用. 核农学报, 2017, 31(4):654-662.
YANG M, HAN Y Z, A Y J, HA B K, WANG C L. Study of RLK6, one member of leucine-rich repeat receptor-like kinases(LRR-RLKs) subfamily gene, on process of flowering in Arabidopsis . Journal of Nuclear Agricultural Sciences, 2017, 31(4):654-662. (in Chinese)
[24] YU Y X, SONG J L, TIAN X H, ZHANG H W, LI L G, ZHU H F. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when over expressed. Science China-Life Sciences, 2018, 61:100-112.
doi: 10.1007/s11427-016-9107-3
[25] DIMITROVA I, TAX F E. Lateral root growth in Arabidopsisis controlled by short and long distance signaling through the LRR RLKs XIP1/CEPR1 and CEPR2. Plant Signaling and Behavior, 2018, 13(6):e1489667.
doi: 10.1080/15592324.2018.1489667
[26] ZOU Y, LIU X Y, WANG Q, CHEN Y, LIU C, QIU Y, ZHANG W. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014, 1840(6):1676-1685.
doi: 10.1016/j.bbagen.2014.01.003
[27] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, RI A D, GOREMYKIN V, et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010, 42(10):833-839.
doi: 10.1038/ng.654
[28] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, VAN DE GEEST H, BIANCO L, MICHELETTI D, WELASCO R, DI PIERRO E A, GOUZY J, REES D J G, GUERIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, VAN DE WEG E, TROGGIO M, BUCHER E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49:1099-1106.
doi: 10.1038/ng.3886
[29] 袁高鹏, 韩晓蕾, 卞书迅, 张利义, 田义, 张彩霞, 丛佩华. 苹果LIM基因家族生物信息学及表达分析. 中国农业科学, 2019, 52(23):4322-4332.
YUAN G P, HAN X L, BIAN S X, ZHANG L Y, TIAN Y, ZHANG C X, CONG P H. Bioinformatics and expression analysis of theLIMgene family in apple . Scientia Agricultura Sinica, 2019, 52(23):4322-4332. (in Chinese)
[30] WAI C M, POWELL B, MING R, MIN X J. Genome-wide identification and analysis of genes encoding proteolytic enzymes in pineapple. Tropical Plant Biology, 2016, 9:161-175.
doi: 10.1007/s12042-016-9172-5
[31] 张娅, 黄天虹, 张西林, 刘同坤, 侯喜林, 李英. 不结球白菜BcSERK1基因的克隆及表达分析. 南京农业大学学报, 2019, 42(6) : 1014-1021.
ZHANG Y, HUANG T H, ZHANG X L, LIU T K, HOU X L, LI Y. Cloning and expression analysis of BcSERK1 from non-heading Chinese cabbage . Journal of Nanjing Agricultural University, 2019, 42(6):1014-1021. (in Chinese)
[32] ZHOU F l, GUO Y, QIU L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biology, 2016, 16:58.
doi: 10.1186/s12870-016-0744-1
[33] YUAN N, RAI K M, BALASUBRAMANIAN V K, UPADHYAY S K, LUO H, MENDU V. Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIFsubfamily in cotton (Gossypium hirsutum). BMC Plant Biology, 2018, 18:185.
doi: 10.1186/s12870-018-1395-1
[34] ARGOUT X, SALSE J, AURY J M, GUILTINAN M J, DROC G, GOUZY J, ALLEGRE M, CHAPARRO C, LEGAVRE T, MAXIMOVA S N, ABROUK M, MURAT F, FOUET O, POULAIN J, RUIZ M, ROGUET Y, RODIER-GOUD M, BARBOSA-NETO J F, SABOT F, KUDRNA D, AMMIRAJU J S S, SCHUSTER S C, CARLSON J E, SALLET E, SCHIEX T, DIEVART A, KRAMER M, GELLEY L, SHI Z, BERARD A, et al. The genome of Theobroma cacao. Nature Genetics, 2011, 43:101-108.
doi: 10.1038/ng.736
[35] MAGALHAES D M, SCHOLTE L L S, SILVA N V, OLIVEIRA G C, ZIPFEL C, TAKITA M A, DE SOUZA A A. LRR-RLK family from two Citrus species: Genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17:623.
doi: 10.1186/s12864-016-2930-9
[36] WEI Z R, WANG J H, YANG S H, SONG Y J. Identification and expression analysis of the LRR-RLK gene family in tomato (Solanum lycopersicum) Heinz 1706. Genome, 2015, 58(4):121-134.
doi: 10.1139/gen-2015-0035
[37] LIU P L, DU L, HUANG Y, GAO S M, YU M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, 2017, 17:47.
doi: 10.1186/s12862-017-0891-5
[38] BETTEMBOURG M, DAL-SOGLIO M, BUREAU C, VERNET A, DARDOUX A, PORTEFAIX M, BES M, MEYNARD D, MIEULET D, CAYROL B, PERIN C, COURTOIS B, MA J F, DIEVART A. Root cone angle is enlarged in docs1 LRR-RLK mutants in rice. Rice, 2017, 10:50.
doi: 10.1186/s12284-017-0190-1
[39] HOU B Z, CHENG X, SHEN Y Y. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany, 2018, 69(7):1569-1582.
doi: 10.1093/jxb/erx488
[40] PARK S J, MOON J C, PARK Y C, KIM J, KIM D S, JANG C S. Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. Journal of Plant Physiology, 2014, 171(17):1645-1653.
doi: 10.1016/j.jplph.2014.08.002
[41] XIE R J, LI Y J, HE S L, ZHENG Y Q, YI S L, LV Q, DENG L. Genome-wide analysis of citrusR2R3MYBgenes and their spatiotemporal expression under stresses and hormone treatments. PLoS ONE, 2014, 9(12):e113971.
doi: 10.1371/journal.pone.0113971
[42] 刘河, 朵虎, 赵丹, 孙娥, 马富鹏, 马春玲, 左存武. 梨CRK家族基因及其腐烂病菌侵染响应成员的鉴定. 园艺学报, 2020, 47(4):963-973.
LIU H, DUO H, ZHAO D, SUN E, MA F P, MA C L, ZUO C W. Identification ofCRKgene family in pear and its members in response to signals of Valsa pyri . Acta Horticulturae Sinica, 2020, 47(4):963-973. (in Chinese)
[43] LIN H, LENG H, GUO Y S, KONDO S, ZHAO Y H, SHI G L, GUO X W. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Scientia Horticulturae, 2019, 244:200-207.
doi: 10.1016/j.scienta.2018.09.045
[44] FAIZE M, FAIZE M, FAIZE L, ISHII H. Characterization of a leucine-rich repeat receptor-like protein kinase (LRPK) gene from Japanese pear and its possible involvement in scab resistance. Journal of General Plant Pahtology, 2007, 73(2):104-112.
[45] KOMJANC M, FESTI S, RIZZOTTI L, CATTIVELLI L, CERVONE F, DE LORENZO G. A leucine-rich repeat receptor-like protein kinase(LRPKm1) gene is induced in Malus × domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Molecular Biology , 1999, 40:945-957.
doi: 10.1023/A:1006275924882
[46] PADMARASU S, SARGENT D J, PATOCCHI A, TROGGOI M, BALDI P, LINSMITH G, POLES L, JANSCH M, KELLERHALS M, TATTARINI S, VELASCO R. Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12(Vb)-based apple scab resistance. Molecular Breeding, 2018, 38:73.
doi: 10.1007/s11032-018-0825-y
[47] COVA V, PARIS R, PASSEROTTI S, ZINI E, GESSLER C, PERTOT I, LOI N, MUSETTI R, KOMJANC M. Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genetics & Genomes, 2010, 6:389-403.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[3] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[6] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[7] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[8] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[9] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[10] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[11] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[12] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[13] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[14] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[15] YANG JingYa,HU Qiong,WEI HaoDong,CAI ZhiWen,ZHANG XinYu,SONG Qian,XU BaoDong. Consistency Analysis of Classification Results for Single and Double Cropping Rice in Southern China Based on Sentinel-1/2 Imagery [J]. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!