Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4083-4091.doi: 10.3864/j.issn.0578-1752.2020.19.020

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Pharmacokinetics of Chlortetracycline Microspheres in Pigs

XU Ying(),YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui()   

  1. College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642
  • Received:2019-10-30 Accepted:2020-06-30 Online:2020-10-01 Published:2020-10-19
  • Contact: XianHui HUANG E-mail:971238309@qq.com;xhhuang@scau.edu.cn

Abstract:

【Objective】A method was developed for the determination of chlortetracycline in swine plasma with high- performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The pharmacokinetics of chlortetracycline in pigs, including chlortetracycline hydrochloride, 10% chlortetracycline microspheres and 15% chlortetracycline microspheres were studied.【Method】Pharmacokinetics of chlortetracycline were investigated after intravenous and oral administration to pigs. Sixteen cross-bred pigs(Duroc×Landrace×Yorkshire) weighing (20±2.5) kg received a dose of 10 mg·kg-1 of chlortetracycline hydrochloride intravenously and 40 mg·kg-1 of 10% chlortetracycline microspheres and 15% chlortetracycline microspheres orally in both the fasted and the feeding condition in a three-way crossover design with one week washout period between each administration. Blood samples were collected in different time set before the experiment. The swine plasma samples were ultrasonic extracted with 0.1 mol·L-1 Na2EDTA-McIlvaine buffer. Then the extract was loaded on the HLB solid phase extraction (SPE) cartridge. After evaporation by nitrogen with water bath at 35℃, the extract was redissolved with methanol. Chlortetracycline was separated using a CNW C18 column with a mobile phase of acetonitrile -0.1% formic acid. The mobile phase was gradient elution at the flow rate of 0.25 mL·min-1. Chlortetracycline was analyzed by mass spectrometry equipped with electrospray ionization in the multiple reaction monitoring and positive ion mode and determined by an external standard quantitation. In the range of 5-500 ng·mL-1, the calibration curves of chlortetracycline from swine plasma showed good linearity (r>0.9990). The limit of detection (LOD) was 5 ng·mL-1 and the limit of quantification (LOQ) was 10 ng·mL-1. The average recovery of chlortetracycline was 76.90%-89.25% at low, medium and high concentration while the inter-day and intra-day coefficient of variations were 2.97%-9.45% and 6.16%-13.39%, respectively. The method was accurate, sensitive and suitable for the determination of chlortetracycline in swine plasma.【Result】Chlortetracycline concentration-time data fitted to a non-compartment model were analyzed by WinNonlin5.2.1 pharmacokinetic program after intravenous and oral administration in both fasted and fed pigs. The main pharmacokinetic parameters for chlortetracycline hydrochloride in fasted pigs and feeding pigs were follows: AUC0-∞ (57.42±23.53) mg·h·mL-1, (37.58±21.30) mg·h·mL-1; V/F (5.67±2.12) L·kg-1, (12.59±6.43) L·kg-1; MRT(13.87±2.00) h, (22.17±14.47) h; t1/2(19.93±5.26 ) h, (27.79±12.82) h, respectively. After receiving 10% chlortetracycline microspheres and 15% chlortetracycline microspheres without feeding, the parameters were as follows: AUC0-∞ (34.46±10.28) mg·h·mL-1, (33.15±12.76) mg·h·mL-1; Cmax (2.48±1.05) mg·mL-1, (2.97±1.88) mg·mL-1, Tmax (4.88±1.25) h, (3.13±1.55) h; V/F (31.53±15.98) L·kg-1, (32.30±9.69) L·kg-1; MRT (19.93±3.83) h, (17.41±1.80) h; t1/2(16.87±3.49) h, (17.13±3.58) h; F(17.03±0.08) %, (15.82±5.16) %, respectively. In feeding group, after receiving 10% chlortetracycline microspheres and 15% chlortetracycline microspheres, the parameters were as follows: AUC0-∞ (20.81±7.46) mg·h·mL-1, (19.72±5.69) mg·h·mL-1; Cmax (1.02±0.38) mg·mL-1, (0.95±0.32) mg·mL-1; Tmax (6.38±4.44) h, (8.00±5.24) h; V/F (52.40±22.90) L·kg-1,(52.47±19.69) L·kg-1; MRT (24.67±9.52) h, (23.37±4.21) h; t1/2 (18.57±10.67) h, (16.64±5.12) h; F (16.07±6.78)%, (15.26±5.26)%, respectively. 【Conclusion】The results of studies showed that chlortetracycline was absorbed slowly, distributed widely and had slow elimination and low bioavailability in pigs after receiving chlortetracycline microspheres orally. Compared with the fasting group, 10% and 15% chlortetracycline microspheres in the feeding group reached a slower peak time and a lower peak concentration, while the apparent distribution volume was larger and the bioavailability was lower, but the difference was not significant. This result indicated the feed did not affect the absorption of chlortetracycline in the gastrointestinal tract of pigs, but changed the pharmacokinetic process of chlortetracycline entering the body.

Key words: chlortetracycline, pharmacokinetics, HPLC-MS/MS, pig

Table 1

Animals and experimental design"

组别Group A组 (非禁食组)) A group (feeding condition) B组(禁食组) B group (fasted condition)
1、2、3 4、5、6 7、8 10、11、12 13、14、15 16、17
周期1 Period 1 药剂1 Drug1 药剂2 Drug2 药剂3 Drug3 药剂1 Drug1 药剂2 Drug2 药剂3 Drug3
周期2 Period 2 药剂3 Drug3 药剂1 Drug1 药剂2 Drug2 药剂3 Drug3 药剂1 Drug1 药剂2 Drug2
周期3 Period 3 药剂2 Drug2 药剂3 Drug3 药剂1 Drug1 药剂2 Drug2 药剂3 Drug3 药剂1 Drug1

Table 2

Mobile phase gradient elution procedure"

时间
Time (min)
流速
Flow (mL·min-1)
A
(%)
B
(%)
0.0 0.25 90.0 10.0
1.0 0.25 30.0 70.0
4.0 0.25 30.0 70.0
4.5 0.25 90.0 10.0
13.0 0.25 90.0 10.0

Fig. 1

Plasma concentration-time curves of pigs in the fasting group with chlortetracycline Intravenous injection of chlortetracycline hydrochloride (10 mg·kg-1 b.w.) and oral administration of 10% and 15% chlortetracycline micropheres (40 mg·kg-1 b.w.)"

Fig. 2

Plasma concentration-time curves of pigs in the feeding group with chlortetracycline Intravenous injection of chlortetracycline hydrochloride (10 mg·kg-1 b.w.) and oral administration of 10% and 15% chlortetracycline microspheres (40 mg·kg-1 b.w.)"

Table 3

Mean plasma concentrations of ivermectin after receiving single-dose intravenous injection of chlortetracycline hydrochloride (10 mg·kg-1 b.w.) and oral administration of chlortetracycline microspheres (40 mg·kg-1 b.w.) ( mg·mL-1, $\bar{X}$±SD, n=8)"

采血时间Time(h) 禁食组 Fasting group 非禁食组 Feeding group
静注盐酸
金霉素溶液
CTC, i.v.
灌服10%金霉素
微囊颗粒
10% CTC Micropheres, p.o.
灌服15%金霉素
微囊颗粒
15% CTC Micropheres, p.o.
静注盐酸
金霉素溶液
CTC, i.v.
灌服10%金霉素
微囊颗粒
10% CTC Micropheres, p.o.
灌服15%金霉素
微囊颗粒
15% CTC Micropheres, p.o.
0.083 21.96±10.25 0.05±0.03 0.08±0.06 15.07±9.43 0.06±0.03 0.06±0.04
0.167 13.60±6.41 0.09±0.04 0.22±0.16 9.12±5.88 0.08±0.06 0.09±0.07
0.25 11.03±5.02 0.15±0.09 0.34±0.27 6.72±3.65 0.12±0.07 0.12±0.09
0.333 10.23±4.42 0.28±0.21 0.44±0.41 5.78±2.91 0.16±0.10 0.17±0.17
0.5 8.62±3.67 0.40±0.32 0.73±0.56 4.68±2.22 0.24±0.12 0.23±0.20
0.75 7.84±3.60 0.64±0.44 0.94±0.62 4.23±1.82 0.38±0.19 0.34±0.31
1 6.28±2.82 0.75±0.48 1.16±0.89 3.70±1.83 0.53±0.23 0.42±0.37
1.5 5.42±2.80 0.92±0.56 1.83±0.85 3.30±1.57 0.53±0.17 0.48±0.30
2 4.71±2.99 0.99±0.71 2.04±1.09 2.95±1.47 0.63±0.21 0.58±0.32
3 4.55±2.72 1.44±0.91 2.27±1.04 2.32±0.90 0.83±0.28 0.72±0.33
4 3.33±1.01 1.96±0.85 2.80±1.93 2.09±1.07 0.88±0.34 0.82±0.37
6 2.26±0.93 2.32±1.07 1.87±0.75 1.35±0.76 0.84±0.46 0.73±0.36
8 1.58±0.75 1.81±0.77 1.46±0.56 1.00±0.69 0.84±0.49 0.78±0.31
12 1.02±0.63 1.00±0.36 0.91±0.27 0.56±0.29 0.53±0.26 0.55±0.22
16 0.73±0.44 0.78±0.25 0.56±0.17 0.39±0.23 0.46±0.21 0.52±0.27
24 0.35±0.23 0.36±0.08 0.29±0.07 0.20±0.20 0.30±0.15 0.31±0.12
36 0.18±0.13 0.14±0.01 0.12±0.04 0.10±0.07 0.12±0.05 0.12±0.07
48 0.12±0.06 0.10±0.03 0.09±0.04 0.07±0.03 0.12±0.08 0.08±0.05
72 0.08±0.04 0.07±0.03 0.06±0.04 0.10±0.10 0.05±0.03 0.04±0.02

Table 4

Ivermectin kinetic parameters after receiving single-dose intravenous injection of chlortetracycline hydrochloride (10 mg ·kg-1 b.w.) and oral administration of chlortetracycline micropheres (40 mg·kg-1 b.w.) ($\bar{X}$±SD, n=8)"

药动参数
Parameter
禁食组 Fasting Group 非禁食组 Feeding Group
静注盐酸
金霉素溶液
CTC, i.v.
灌服10%金霉素
微囊颗粒
10%CTC Micropheres, p.o.
灌服15%金霉素
微囊颗粒
15%CTC Micropheres, p.o.
静注盐酸
金霉素溶液
CTC, i.v.
灌服10%金霉素
微囊颗粒
10%CTC Micropheres, p.o.
灌服15%金霉素
微囊颗粒
15%CTC Micropheres, p.o.
Kel (1/h) 0.04±0.01 0.04±0.01 0.04±0.01 0.03±0.01 0.04±0.01 0.05±0.01
t1/2 (h) 19.93±5.26 16.87±3.49 17.13±3.58 27.79±12.82 18.57±10.67 16.64±5.21
Tmax (h) 4.88±1.25 3.13±1.55 6.38±4.44 8.00±5.24
Cmax (mg·mL-1) 21.96±10.25 2.48±1.05 2.97±1.88 15.07±9.43 1.02±0.38 0.95±0.32
AUC0–∞ (h·mg·mL-1) 57.42±23.53 34.46±10.28 33.15±12.76 37.58±21.30 20.81±7.46 19.72±5.69
V/F (L·kg-1) 5.67±2.12 31.53±15.98 32.30±9.69 12.59±6.43 52.40±22.90 52.47±19.69
MRT (h) 13.87±2.00 19.93±3.83 17.41±1.80 22.17±14.47 24.67±9.52 23.37±4.21
F (%) 17.03±0.08 15.82±5.16 16.07±6.78 15.26±5.26
[1] CHOPRA I, ROBERTS M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232-260.
doi: 10.1128/MMBR.65.2.232-260.2001 pmid: 11381101
[2] DEWEY C E, COX B D, STRAW B E, BUSH E J, HURD S. Use of antimicrobials in swine feeds in the United States. Swine Health Production, 1999, 7: 19-25.
[3] APLEY M D, BUSH E J, MORRISON R B, SINGER R S, SNELSON H. Use estimates of in-feed antimicrobials in swine production in the United States. Foodborne Pathog, 2012, 9: 272-279.
[4] JACELA J Y, DEROUCHEY J M, TOKACH M D, GOODBAND R D, NELSSEN J L, RENTER D G, DRITZ S S. Feed additives for swine: fact sheets-acidifires and antibiotics. Swine Health Production, 2009, 17: 270-275.
[5] WINKELMAN N, GEBHART C, WOLFF T, SKINNER J. An evaluation of BMD (R) plus Aureomycin((R)) chlortetracycline (CTC), Tylan((R)) or Lincomix((R)) for control of challenge-induced porcine proliferative enteropathy (PPE or ileitis) in swine//Annual Meeting of the American-Association-of-Swine-Veterinarians. ORLANDO, FL: 2003: 175-179.
[6] 卢建军, 许梓荣. 日粮添加金霉素对断奶仔猪肠道核因子NF-κB活化的影响. 畜牧兽医学报, 2006(9): 933-939.
LU J J, XU Z R. Effects of chlortetracycline on the activity of intestinal nuclear factor NF-κB in weaning piglets. Acta Veterinaria et Zootechnica Sinica, 2006(9): 933-939. (in Chinese)
[7] DEL POZO SACRISTÁN R, RODRÍGUEZ A L, SIERENS A, VRANCKX K, BOYEN F, DEREU A, HAESEBROUCK F, MAES D G D. Efficacy of in-feed medication with chlortetracycline in a farrow-to-finish herd against a clinical outbreak of respiratory disease in fattening pigs. Veterinary Record, 2012, 171(25): 645.
doi: 10.1136/vr.100976 pmid: 23136309
[8] THACKER E L, THACKER B J, WOLFF T. Efficacy of a chlortetracycline feed additive in reducing pneumonia and clinical signs induced by experimental Mycoplasma hyopneumoniae challenge. Journal of Swine Health and Production, 2006, 14(3): 140-144.
[9] DEL POZO SACRISTÁN R, RODRÍGUEZ A L, SIERENS A, VRANCKX K, BOYEN F, DEREU A, HAESEBROUCK F, MAES D G D. Efficacy of in-feed medication with chlortetracycline in a farrow-to-finish herd against a clinical outbreak of respiratory disease in fattening pigs. Veterinary Record, 2012, 171(25): 645.
doi: 10.1136/vr.100976 pmid: 23136309
[10] 卢文勇, 邓子伟, 李琼华. 空怀母猪饲喂金霉素对繁殖性能的影响研究. 养猪, 2001(1): 19.
LU W Y, DENG Z W, LI Q H. Study on the effect of feeding chlortetracycline in empty pregnant sows on reproductive performance. Swine Production, 2001(1): 19. (in Chinese)
[11] WASINSKI B, WALACHOWSKI M, PEJSAK Z. Efficacy of chlortetracycline in controlling the epidemiological situation of a swine head infected with Leptospira. Medycyna Weterynaryjna, 2005, 61(5): 518-521.
[12] ALEXOPOULOS C, FTHENAKIS G C, BURRIEL A, BOURTZI HATZOPOULOU E, KRITAS S K, SBIRAKI A, KYRIAKIS S C. The effects of the periodical use of in-feed chlortetracycline on the reproductive performance of gilts and sows of a commercial pig farm with a history of clinical and subclinical viral and bacterial infections. Reproduction in Domestic Animals, 2003, 38(3): 187-192.
pmid: 12753551
[13] NIELSEN P, GYRD-HANSEN N. Bioavailability of oxytetracycline, tetracycline and chlortetracycline after oral administration to fed and fasted pigs. Journal of Veterinary Pharmacology and Therapeutics, 1996, 19(4): 305-311.
doi: 10.1111/j.1365-2885.1996.tb00054.x pmid: 8866460
[14] ANADÓN A, GAMBOA F, MARTÍNEZ M A, CASTELLANO V, MARTÍNEZ M, ARES I, RAMOS E, SUAREZ F H, MARTÍNEZ- LARRAÑAGA M R. Plasma disposition and tissue depletion of chlortetracycline in the food producing animals, chickens for fattening. Food and Chemical Toxicology, 2012, 50(8): 2714-2721.
doi: 10.1016/j.fct.2012.05.007 pmid: 22595330
[15] REINBOLD J B, COETZEE J F, GEHRING R, HAVEL J A, HOLLIS L C, OLSON K C, APLEY M D. Plasma pharmacokinetics of oral chlortetracycline in group fed, ruminating, Holstein steers in a feedlot setting. Journal of Veterinary Pharmacology and Therapeutics, 2010, 33(1): 76-83.
doi: 10.1111/j.1365-2885.2009.1116.x pmid: 20444029
[16] KILROY C R, HALL W F, BANE D P, BEVILL R F, KORITZ G D. Chlortetracycline in swine‐bioavailability and pharmacokinetics in fasted and fed pigs. Journal of Veterinary Pharmacology and Therapeutics, 1990, 13(1): 49-58.
doi: 10.1111/j.1365-2885.1990.tb00747.x pmid: 2319636
[17] 方炳虎, 陈杖榴, 冯淇辉. 金霉素、氯霉素联合应用在健康和霉形体病鸡的药动学. 畜牧兽医学报, 1995(1): 53-58.
FANG B H, CHEN Z L, FENG Q H. Pharmacokinetic studies of chlortetracycline and chloramphenical combination in healthy and diseased broilers infected with mycoplasma gallisepticum. Acta Veterinaria et Zootechnica Sinica, 1995(1): 53-58. (in Chinese)
[18] WASHBURN K, FAJT V R, PLUMMER P, COETZEE J F, WULF L W, WASHBURN S. Pharmacokinetics of oral chlortetracycline in nonpregnant adult ewes. Journal of Veterinary Pharmacology and Therapeutics, 2014, 37(6): 607-610.
doi: 10.1111/jvp.12144 pmid: 25131164
[19] DYER D C. Pharmacokinetics of chlortetracycline in the turkey: evaluation of biliary secretion. American Journal of Veterinary Research, 1988, 49(1): 36-37.
pmid: 3354964
[20] POLLET R A, GLATZ C E, DYER D C. The pharmacokinetics of chlortetracycline orally administered to turkeys: influence of citric acid and Pasteurella multocida infection. Journal of Pharmacokinetics and Biopharmaceutics, 1985, 13(3): 243.
pmid: 4087164
[21] 易金娥, 袁慧. 兽用微囊制剂的研究进展. 中兽医医药杂志, 2007(5): 28-30.
YI J E, YUAN H. Research and development of veterinary microcapsule preparations. Journal of Traditional Chinese Veterinary Medicine, 2007(5): 28-30. (in Chinese)
[22] 刘辉, 汤韧, 聂淑芳, 杨星钢, 潘卫三. 药物制剂新技术在中药制剂现代化中的应用. 医药导报, 2007(10): 1198-1201.
LIU H, TANG R, NIE S F, YANG X G, PAN W S. Application of new technology of pharmaceutical preparations in modernization of traditional Chinese medicine preparations. Herald of Medicine, 2007(10): 1198-1201. (in Chinese)
[23] 刘志国, 梁敦素, 甘崎峰, 杨灿宇. 金霉素在鸡体内的药代动力学研究. 武汉粮食工业学院学报, 1993(1): 10-13.
LIU Z G, LIANG D S, GAN Q F, YANG C Y. A study of the pharmacokinetics of chlorotetracycline in hens. Journal of Wuhan Food Industry Institute, 1993(1): 10-13. (in Chinese)
[24] 高强, 庞茂达, 裴燕, 王冉, 王波, 张杨杨, 谢恺舟, 张跟喜, 戴国俊, 王金玉. 金霉素和代谢物差向金霉素在肉鸡肌肉和肝脏中的残留分布. 中国兽药杂志, 2016, 50(1): 24-30.
GAO Q, PANG M D, PEI Y, WANG R, WANG B, ZHANG Y Y, XIE K Z, ZHANG G X, DAI G J, WANG J Y. Residue distribution of chlortetracycline and its metabolite 4-epi- chlortetracycline in broiler chicken muscle and liver. Chinese Journal of Veterinary Medicine, 2016, 50(1): 24-30. (in Chinese)
[25] CASTILLO J R, ELSENER J, MARTINEAU G P. Pharmacokinetic modeling of in-feed tetracyclines in pigs using a meta-analytic compartmental approach. Journal of Swine Health and Production, 1998, 5(6): 189-202.
[26] 刘倚帆, 徐良, 朱海燕, 张立可, 汪以真. 抗菌肽与抗生素对革兰氏阴性菌和革兰氏阳性菌的体外协同抗菌效果研究. 动物营养学报, 2010, 22(5): 1457-1463.
LIU Y F, XU L, ZHU H Y, ZHANG L K, WANG Y Z. An in vitro study on combination of antimicrobial peptides and antibiotics against gram-negative and gram-positive bacteria. Chinese Journal of Animal Nutrition, 2010, 22(5): 1457-1463. (in Chinese)
[27] 韦建强, 王志强. 替米考星及其他抗菌药对猪肺炎支原体的体外联合抑菌试验. 兽药与饲料添加剂, 2006(6): 3-4.
WEI J Q, WANG Z Q. In vitro combined bacteriostatic test of tilmicosin and other antibacterial drugs againstMycoplasma hyopneumoniae. Veterinary Medicine and Feed Additives, 2006(6): 3-4. (in Chinese)
[28] HAYER S S, ROVIRA A, OLSEN K, JOHNSON T J, VANNUCCI F, RENDAHL A, PEREZ A, ALVAREZ J. Prevalence and time trend analysis of antimicrobial resistance in respiratory bacterial pathogens collected from diseased pigs in USA between 2006-2016. Research in Veterinary Science, 2020, 128: 135-144.
doi: 10.1016/j.rvsc.2019.11.010 pmid: 31785428
[29] KUNIN C M, FINLAND M. Clinical pharmacology of the tetracycline antibiotics. Clinical Pharmacology and Therapeutics, 1961, 2: 51.
doi: 10.1002/cpt19612151 pmid: 13755136
[30] 陈杖榴. 兽医药理学. 第三. 北京: 中国农业出版社, 2010.
CHEN Z L. Veterinary Pharmacology.3rd ed. Beijing: China Agricultural Press, 2010. (in Chinese)
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[4] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[5] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[6] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[7] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[8] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[9] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[10] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[11] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[12] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[13] QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676.
[14] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[15] ZHANG TieYing,ZHANG LiYang,LIU JunLi,LIAO ChaoYong,LÜ Lin,LIAO XiuDong,LUO XuGang. A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4507-4515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!