Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5054-5067.doi: 10.3864/j.issn.0578-1752.2021.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System

ZHOU YongJie1,2(),XIE JunHong1,2(),LI LingLing1,2,WANG LinLin1,2,LUO ZhuZhu2,3,WANG JinBin1,2   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070
    2State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070
    3College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070
  • Received:2020-11-30 Accepted:2021-02-02 Online:2021-12-01 Published:2021-12-06
  • Contact: JunHong XIE E-mail:1109818358@qq.com;xiejh@gsau.edu.cn

Abstract:

【Objective】 The effects of tillage practices on soil respiration, carbon emission and crop yield under nitrogen reduction were clarified, and the relationship between maize growth and soil carbon emission was revealed.【Method】The long-term tillage practices and reduced fertilization experiment initiated in 2012 within two-year (2018-2019) was conducted at the Rainfed Agricultural Experimental Station of the Gansu Agricultural University in the Gansu province of northwestern China. This experiment is based on the technology of full-film double-ridge and furrow sowing maize with good effect of collecting rainfall and inhibiting evaporation and increasing temperature and soil moisture. The experiment adopted the split plot design, and the main plots were four tillage practices (conventional tillage, rotary tillage, subsoiling, and no-tillage) and the subplot were two nitrogen application levels (nitrogen reduction (200 kg·hm-2) and conventional nitrogen application (300 kg·hm-2)). Based on this experiment, the maize growth, soil respiration rate, carbon emission and soil organic carbon content, carbon emission efficiency (CEE) and net ecosystem productivity (NEP) were assessed.【Result】(1) Tillage practice and nitrogen application level significantly affected the growth of maize, and the effect of tillage practice on dry matter accumulation was mainly in the filling stage and maturity stage. No tillage treatment significantly improved the dry matter accumulation, growth rate and net assimilation rate at these stages, which increased grain yield by 2%-15% compared with other tillage practices; nitrogen application level had a greater effect on dry matter during jointing flowering stage, but the same effect was observed, and there was no significant difference in yield between N1 and N2 under the same tillage practice. (2) The soil respiration rate showed a single-peak curve that first increased and then decreased, reaching its peak in the big bell mouth-flowering period. The effects of tillage practices on soil respiration, carbon emissions and carbon emission efficiency were greater than the nitrogen levels. Compared with rotary tillage, tillage and subsoiling, no tillage decreased soil respiration rate by 4.3%, 12.9% and 24.3%, respectively, and total carbon emission decreased by 21.5%, 13.4% and 31.2%, respectively, while carbon emission efficiency increased by 26.5%-55.9%. Compared with other treatments, no tillage combined with nitrogen reduction reduced total nitrogen and carbon emission by 489-1917.5 kg·hm-2, while the carbon emission efficiency increased by 20.1%-56.2%. (3) All treatments showed a “sink” of atmospheric CO2, but no-tillage and reduced nitrogen fertilizer showed a stronger carbon sink effect. The organic carbon content in 0-5 cm soil layer was significantly increased by 11.3% (P<0.05) compared with conventional tillage; the organic carbon content in 0-10 cm soil layer was increased by 5.8% (P<0.05) compared with conventional tillage. (4) There was a significant positive correlation between the efficiency of carbon emissions and the accumulation of dry matter, the rate of growth and net assimilation rate, and a significant negative correlation between the efficiency of carbon emissions and the organic carbon of the soil. This was mainly because the cultivation practices and application of nitrogen promoted maize’s photosynthetic ability, obtained more CO2, and enhanced maize’s capacity for carbon fixation. 【Conclusion】 Under the condition of 472-491 mm annual precipitation, no tillage combined with nitrogen reduction (200 kg·hm-2) could improve maize yield, improve soil organic carbon content, reduce total carbon emission, and improve carbon emission efficiency. A green yield-increasing technology of full-film double-ridge and furrow sowing maize in the Loess Plateau of Longzhong was recommended to be used in production.

Key words: maize, no-tillage, nitrogen fertilizer reducing, soil respiration, carbon balance, yield

Fig. 1

Rainfall of the study area in 2018 and 2019"

Table 1

Effects of different tillage practices and nitrogen levels on dry matter accumulation of maize (g/plant)"

处理 Treatment 拔节期 Jointing stage 开花期 Flowering stage 灌浆期 Filling stage 成熟期 Maturity
T1 38.79a 194.43a 288.7ab 437.96ab
T2 36.08a 190.57a 281.02b 427.97b
T3 39.39a 187.36a 284.00ab 443.89ab
T4 35.85a 196.18a 307.33a 478.05a
N1 37.92a 182.67b 295.18a 445.64a
N2 37.75a 201.61a 285.33a 448.29a
T1N1 37.17ab 192.99ab 302.35a 439.61ab
T1N2 40.41ab 195.87ab 275.05a 436.31ab
T2N1 38.49ab 175.48b 284.33a 420.28b
T2N2 33.67b 205.66a 277.71a 435.65ab
T3N1 37.67ab 174.91b 289.00a 457.58ab
T3N2 41.10a 199.81ab 279.00a 430.20ab
T4N1 35.86ab 187.28ab 305.33a 465.09ab
T4N2 35.84ab 205.08a 309.33a 491.02a
T ns ns * *
N ns * ns ns
N×T * * ns *

Table 2

Effects of different tillage practices and nitrogen levels on growth rate ( g·plant-1·d-1) and net assimilation rate ( g·m-2·d-1)"

处理
Treatment
出苗期—拔节期
Sowing to jointing stage
拔节期—开花期
Jointing to flowering stage
开花期—灌浆期
Flowering to filling stage
灌浆期—成熟期
Filling to maturity
CGR CGR NAR CGR NAR CGR NAR
T1 0.76a 4.45a 7.78a 4.28a 5.34a 3.18a 4.85a
T2 0.71a 4.41a 8.48a 4.11a 5.85a 3.13a 5.19a
T3 0.77a 4.23a 7.59a 4.39a 5.87a 3.4a 5.48a
T4 0.70a 4.58a 8.37a 5.05a 6.69a 3.63a 5.52a
N1 0.73a 4.15a 7.50b 5.11a 6.70a 3.20a 5.08a
N2 0.74a 4.68a 8.61a 3.81b 5.17b 3.47a 5.45a
T1N1 0.73ab 4.45ab 7.35b 4.97a 5.94a 2.92a 4.54a
T1N2 0.79ab 4.44ab 8.20ab 3.60a 4.74a 3.43a 5.16a
T2N1 0.75ab 3.91b 7.43b 4.95a 7.01a 2.89a 4.71a
T2N2 0.66b 4.91a 9.53a 3.28a 4.68a 3.37a 5.67a
T3N1 0.74ab 3.92b 7.24b 5.19a 6.85a 3.59a 5.64a
T3N2 0.81a 4.53ab 7.94ab 3.60a 4.90a 3.22a 5.33a
T4N1 0.70ab 4.32ab 7.97ab 5.36a 7.01a 3.40a 5.43a
T4N2 0.70ab 4.84a 8.77ab 4.74a 6.36a 3.86a 5.62a
T ns ns ns ns ns ns ns
N ns * * * * ns ns
N×T * * * ns ns ns ns

Fig. 2

Effects of different tillage practices on soil (0-30 cm) organic carbon content under nitrogen levels Different small letters in the figure are significantly different at P<0.05. Bars represent standard errors (n =3)"

Table 3

Effects of different tillage practices and nitrogen levels on soil (0-30 cm) organic carbon content (g·kg-1)"

处理
Treatment
土层 Soil layer 平均
Mean
0-5 cm 5-10 cm 10-30 cm
T1 9.07b 9.50a 8.71a 8.90a
T2 9.23b 8.57a 8.57a 8.68a
T3 9.03b 9.19a 7.82a 8.25a
T4 10.09a 8.69a 8.30a 8.66a
N1 9.57a 9.29a 8.32a 8.69a
N2 9.14a 8.69a 8.38a 8.56a
T1N1 9.37b 10.28a 8.60ab 9.00a
T1N2 8.78b 8.73ab 8.82ab 8.80a
T2N1 9.00b 8.55b 8.19ab 8.38a
T2N2 9.46b 8.60b 8.96a 8.98a
T3N1 9.19b 9.19ab 8.23ab 8.55a
T3N2 8.87b 9.19ab 7.41b 7.95a
T4N1 10.73a 9.14ab 8.28ab 8.83a
T4N2 9.46b 8.23b 8.32ab 8.50a
T * ns * ns
N ns ns ns ns
N×T * * * ns

Fig. 3

Effects of different tillage practices and nitrogen levels on soil respiration in 2018 Vertical bars indicate the least significant difference value at P<0.05. The same as below"

Fig. 4

Effects of different tillage practices and nitrogen levels on soil respiration in 2019"

Table 4

Effects of different tillage practices and nitrogen levels on carbon emission efficiency"

处理
Treatment
籽粒产量
Grain yield (kg·hm-2)
碳排放总量
Total carbon emission (kg·hm-2)
碳排放效率
Carbon emission efficiency (kg·kg-1)
2018 2019 2018 2019 2018 2019
T1 11386b 9613b 6197b 4947ab 1.89b 1.99b
T2 12457a 9921b 5815bc 4396bc 2.14b 2.27b
T3 12505a 10094ab 7112a 5588a 1.76b 1.82b
T4 12750a 11036a 4993c 3750c 2.59a 2.99a
N1 12031b 10164a 5921a 4632a 2.10a 2.25a
N2 12517a 10168a 6137a 4709a 2.09a 2.28a
T1N1 11345c 9710b 5971abc 4705abcd 2.00bc 2.11c
T1N2 11427c 9515b 6423ab 5189abc 1.78c 1.87c
T2N1 12320abc 9882ab 5671bc 4298cde 2.17c 2.3bc
T2N2 12594ab 9959ab 5958abc 4494bcde 2.11abc 2.23bc
T3N1 11811bc 9780ab 7024ab 5551ab 1.68abc 1.77c
T3N2 13199a 10408ab 7201a 5625a 1.84c 1.87c
T4N1 12651ab 11283a 5018c 3973de 2.55ab 2.84ab
T4N2 12849ab 10790ab 4967c 3528e 2.63a 3.14a
T * * ** ** ** **
N * ns ns ns ns ns
N×T ** * * * * *

Table 5

Changes in carbon budget under different tillage practices and nitrogen levels"

处理
Treatment
总生物量 Total biomass (kg·hm-2) NPP (kg·hm-2) Rm (kg·hm-2) NEP (kg·hm-2)
2018 2019 2018 2019 2018 2019 2018 2019
T1 40301a 37511a 18136a 16880a 5361b 4279ab 12775a 12601b
T2 38691a 39487a 17411a 17769a 5030bc 3803bc 12381a 13967ab
T3 38855a 40643a 17485a 18289a 6152a 4833a 11333a 13456ab
T4 38922a 41337a 17515a 18601a 4319c 3244c 13196a 15358a
N1 39090a 39940a 17591a 17973a 5122a 4007a 12469a 13966a
N2 39295a 39549a 17683a 17797a 5309a 4073a 12307a 13724a
T1N1 40298a 38183a 18134a 17182a 5165abc 4070abcd 12969a 13112b
T1N2 40305a 36839a 18137a 16578a 5556ab 4488abc 12581a 12089b
T2N1 38207a 39801a 17193a 17911a 4906bc 3718cde 12288a 14192ab
T2N2 39175a 39173a 17629a 17628a 5154abc 3887bcde 12475a 13741ab
T3N1 38692a 41353a 17412a 18609a 6075ab 4801ab 11336a 13807ab
T3N2 39018a 39934a 17558a 17970a 6229a 4866a 11329a 13105ab
T4N1 39164a 40422a 17624a 18190a 4341c 3437de 13283a 14753ab
T4N2 38680a 42252a 17406a 19013a 4297c 3052e 13109a 15962a
T ns ns ns ns ** ** ns *
N ns ns ns ns ns ns ns ns
N×T ns ns ns ns * * ns *

Table 6

The relationship among carbon emission efficiency, organic carbon content, and maize growth characteristics under different treatments"

项目Item 干物质积累量DMA 生长率CGR 净同化率NAR 有机碳含量SOC 碳排放效率CEE
生长率CGR 0.845** 1
净同化率NAR 0.676** 0.617** 1
有机碳含量SOC -0.134 -0.268 0.018 1
碳排放效率CEE 0.511* 0.408* 0.487* -0.93** 1
[1] XU M, SHANG H. Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology, 2016, 203:16-28. doi: 10.1016/j.jplph.2016.08.007.
doi: 10.1016/j.jplph.2016.08.007
[2] LIU C G, LI F R, ZHOU L M, FENG Q, LI X, PAN C C, WANG L, CHEN J L, LI X G, JIA Y, SIDDIQUE K H M, LI F M. Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions. European Journal of Soil Biology, 2013, 57:9-12. doi: 10.1016/j.ejsobi.2013.03.007.
doi: 10.1016/j.ejsobi.2013.03.007
[3] WANG Y P, LI X G, FU T T, WANG L, TURNER N C, SIDDIQUE K H M, LI F M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 2016, 228/229:42-51. doi: 10.1016/j.agrformet.2016.06.016.
doi: 10.1016/j.agrformet.2016.06.016
[4] XIE J H, WANG L L, LI L L, COULTER J A, CHAI Q, ZHANG R Z, LUO Z Z, CARBERRY P, RAO K P C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil and Tillage Research, 2020, 199:104584. doi: 10.1016/j.still.2020.104584.
doi: 10.1016/j.still.2020.104584
[5] LI F M, LI X G, JAVAID M M, ASHRAF M, ZHANG F. Ridge-furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau. Agronomy Journal, 2020, 112(5):3284-3294. doi: 10.1002/agj2.20310.
doi: 10.1002/agj2.20310
[6] 于爱忠, 柴强, 殷文, 胡发龙, 樊志龙, 赵财. 玉米农田土壤碳排放及碳平衡对地膜覆盖方式及种植行距的响应. 中国农业科学, 2018, 51(19):3726-3735. doi: 10.3864/j.issn.0578-1752.2018.19.010.
doi: 10.3864/j.issn.0578-1752.2018.19.010
YU A Z, CHAI Q, YIN W, HU F L, FAN Z L, ZHAO C. Responses of soil carbon emission and carbon balance of maize field to plastic film mulching pattern and row space. Scientia Agricultura Sinica, 2018, 51(19):3726-3735. doi: 10.3864/j.issn.0578-1752.2018.19.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.010
[7] PLAZA-BONILLA D, ARRÚE J L, CANTERO-MARTÍNEZ C, FANLO R, IGLESIAS A, ÁLVARO-FUENTES J. Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 2015, 35(4):1319-1334. doi: 10.1007/s13593-015-0326-x.
doi: 10.1007/s13593-015-0326-x
[8] 贺美, 王迎春, 王立刚, 李成全, 王利民. 不同耕作措施对黑土碳排放和活性碳库的影响. 土壤通报, 2016, 47(5):1195-1202. doi: 10.19336/j.cnki.trtb.2016.05.27.
doi: 10.19336/j.cnki.trtb.2016.05.27
HE M, WANG Y C, WANG L G, LI C Q, WANG L M. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil. Chinese Journal of Soil Science, 2016, 47(5):1195-1202. doi: 10.19336/j.cnki.trtb.2016.05.27. (in Chinese)
doi: 10.19336/j.cnki.trtb.2016.05.27
[9] 张前兵, 杨玲, 张旺锋, 罗宏海, 张亚黎, 王进. 农艺措施对干旱区棉田土壤有机碳及微生物量碳含量的影响. 中国农业科学, 2014, 47(22):4463-4474. doi: 10.3864/j.issn.0578-1752.2014.22.012.
doi: 10.3864/j.issn.0578-1752.2014.22.012
ZHANG Q B, YANG L, ZHANG W F, LUO H H, ZHANG Y L, WANG J. Effects of agronomic measures on soil organic carbon and microbial carbon content in cotton in arid region. Scientia Agricultura Sinica, 2014, 47(22):4463-4474. doi: 10.3864/j.issn.0578-1752.2014.22.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.22.012
[10] STRUCK I J A, TAUBE F, HOFFMANN M, KLUß C, HERRMANN A, LOGES R, REINSCH T. Full greenhouse gas balance of silage maize cultivation following grassland: Are no-tillage practices favourable under highly productive soil conditions? Soil and Tillage Research, 2020, 200:104615. doi: 10.1016/j.still.2020.104615.
doi: 10.1016/j.still.2020.104615
[11] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677):1623-1627. doi: 10.1126/science.1097396.
doi: 10.1126/science.1097396
[12] WILSON H M, AL-KAISI M M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa. Applied Soil Ecology, 2008, 39(3):264-270. doi: 10.1016/j.apsoil.2007.12.013.
doi: 10.1016/j.apsoil.2007.12.013
[13] XIAO H B, SHI Z H, LI Z W, WANG L, CHEN J, WANG J. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China. Applied Soil Ecology, 2020, 150:103484. doi: 10.1016/j.apsoil.2019.103484.
doi: 10.1016/j.apsoil.2019.103484
[14] YONG P, SONG S Y, LI Z Y, LI S, CHEN G T, HU H L, XIE J L, CHEN G, LIU L, TU L H. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 2020, 142:107694. Doi: 10.1016/j.soilbio.2019.107694.
doi: 10.1016/j.soilbio.2019.107694
[15] 樊志龙, 赵财, 刘畅, 于爱忠, 殷文, 胡发龙, 柴强. 一膜两年用少耕轮作对水氮减投小麦产量形成的促进效应. 中国农业科学, 2018, 51(19):3651-3662. doi: 10.3864/j.issn.0578-1752.2018.19.003.
doi: 10.3864/j.issn.0578-1752.2018.19.003
FAN Z L, ZHAO C, LIU C, YU A Z, YIN W, HU F L, CHAI Q. Enhanced effect of two years plastic film mulching with reduced tillage on grain yield formation of wheat rotation under reduced irrigation and N application. Scientia Agricultura Sinica, 2018, 51(19):3651-3662. doi: 10.3864/j.issn.0578-1752.2018.19.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.003
[16] 张庆忠, 吴文良, 王明新, 周中仁, 陈淑峰. 秸秆还田和施氮对农田土壤呼吸的影响. 生态学报, 2005, 25(11):2883-2887. doi: 10.3321/j.issn:1000-0933.2005.11.013.
doi: 10.3321/j.issn:1000-0933.2005.11.013
ZHANG Q Z, WU W L, WANG M X, ZHOU Z R, CHEN S F. The effects of crop residue amendment and N rate on soil respiration. Acta Ecologica Sinica, 2005, 25(11):2883-2887. doi: 10.3321/j.issn:1000-0933.2005.11.013. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2005.11.013
[17] NAN W G, YUE S C, HUANG H Z, LI S Q, SHEN Y F. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China. Journal of Integrative Agriculture, 2016, 15(2):451-464. doi: 10.1016/S2095-3119(15)61106-6.
doi: 10.1016/S2095-3119(15)61106-6
[18] 曹卫星. 作物栽培学总论. 2版. 北京: 科学出版社, 2011.
CAO W X. General Introduction of Crop Cultivation. 2nd ed. Beijing: Science Press, 2011. (in Chinese)
[19] 胡发龙, 柴强, 甘延太, 殷文, 赵财, 冯福学. 少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征. 中国农业科学, 2016, 49(1):120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011.
doi: 10.3864/j.issn.0578-1752.2016.01.011
HU F L, CHAI Q, GAN Y T, YIN W, ZHAO C, FENG F X. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention. Scientia Agricultura Sinica, 2016, 49(1):120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.01.011
[20] WOODWELL G M, WHITTAKER R H, REINERS W A, LIKENS G E, DELWICHE C C, BOTKIN D B. The biota and the world carbon budget. Science, 1978, 199(4325):141-146. doi: 10.1126/science.199.4325.141.
doi: 10.1126/science.199.4325.141
[21] KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods. Soil Biology and Biochemistry, 2002, 34(11):1621-1631. doi: 10.1016/S0038-0717(02)00146-3.
doi: 10.1016/S0038-0717(02)00146-3
[22] CAI Z C, QIN S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 2006, 136(3/4):708-715. doi: 10.1016/j.geoderma.2006.05.008.
doi: 10.1016/j.geoderma.2006.05.008
[23] 李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143.
doi: 10.3724/SP.J.1006.2010.02143
LI X L, ZHAO M, LI C F, GE J Z, HOU H P, LI Q, HOU L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agronomica Sinica, 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02143
[24] 谢军红, 张仁陟, 李玲玲, 罗珠珠, 蔡立群, 柴强. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响. 中国生态农业学报, 2015, 23(11):1384-1393. doi: 10.13930/j.cnki.cjea.150021.
doi: 10.13930/j.cnki.cjea.150021
XIE J H, ZHANG R Z, LI L L, LUO Z Z, CAI L Q, CHAI Q. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2015, 23(11):1384-1393. doi: 10.13930/j.cnki.cjea.150021. (in Chinese)
doi: 10.13930/j.cnki.cjea.150021
[25] UWAMUNGU J Y, NARTEY O D, UWIMPAYE F, DONG W X, HU C S. Evaluating biochar impact on topramezone adsorption behavior on soil under no-tillage and rotary tillage treatments: Isotherms and kinetics. International Journal of Environmental Research and Public Health, 2019, 16(24):5034. doi: 10.3390/ijerph16245034.
doi: 10.3390/ijerph16245034
[26] 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海. 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13):2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005.
doi: 10.3864/j.issn.0578-1752.2018.13.005
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13):2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.005
[27] 颉健辉, 李玲玲, 谢军红, 彭正凯, 邓超超, 沈吉成, 王进斌, Eunice Essel. 氮肥运筹对旱作覆膜玉米产量及固碳减排效应研究. 中国土壤与肥料, 2019(6):134-141. doi: 10.11838/sfsc.1673-6257.19002.
doi: 10.11838/sfsc.1673-6257.19002
XIE J H, LI L L, XIE J H, PENG Z K, DENG C C, SHEN J C, WANG J B, ESSEL E. Effects of nitrogen fertilizer management on yield, carbon sequestration and emission reduction of dryland mulched maize. Soils and Fertilizers Sciences in China, 2019(6):134-141. doi: 10.11838/sfsc.1673-6257.19002. (in Chinese)
doi: 10.11838/sfsc.1673-6257.19002
[28] 周宝元, 孙雪芳, 丁在松, 马玮, 赵明. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017, 50(11):2129-2140. doi: 10.3864/j.issn.0578-1752.2017.11.018.
doi: 10.3864/j.issn.0578-1752.2017.11.018
ZHOU B Y, SUN X F, DING Z S, MA W, ZHAO M. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea mays L.). Scientia Agricultura Sinica, 2017, 50(11):2129-2140. doi: 10.3864/j.issn.0578-1752.2017.11.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.018
[29] 邵国庆, 李增嘉, 宁堂原, 张民, 江晓东, 王芸, 赵建波, 吕美蓉, 赵杰. 不同水分条件下常规尿素和控释尿素对玉米根冠生长及产量的影响. 作物学报, 2009, 35(1):118-123. doi: 10.3724/SP.J.1006.2009.00118.
doi: 10.3724/SP.J.1006.2009.00118
SHAO G Q, LI Z J, NING T Y, ZHANG M, JIANG X D, WANG Y, ZHAO J B, (LÜ/LV/LU/LYU) M R, ZHAO J. Effects of normal urea and release-controlled urea on root and shoot growth and yield of maize in different water conditions. Acta Agronomica Sinica, 2009, 35(1):118-123. doi: 10.3724/SP.J.1006.2009.00118. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00118
[30] HAN G X, ZHOU G S, XU Z Z, YANG Y, LIU J L, SHI K Q. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 2007, 291(1):15-26. doi: 10.1007/s11104-006-9170-8.
doi: 10.1007/s11104-006-9170-8
[31] 张俊清, 朱平, 张夫道. 有机肥和化肥配施对黑土有机氮形态组成及分布的影响. 植物营养与肥料学报, 2004, 10(3):245-249.
ZHANG J Q, ZHU P, ZHANG F D. Effect of organic manure and chemical fertilizer combined application on the form and distribution of organic nitrogen of black soil. Plant Nutrition and Fertilizer Science, 2004, 10(3):245-249. (in Chinese)
[32] 郑洪兵, 刘武仁, 罗洋, 李瑞平, 李伟堂, 王浩, 郑金玉. 耕作方式对农田土壤水分变化特征及水分利用效率的影响. 水土保持学报, 2018, 32(3):264-270. doi: 10.13870/j.cnki.stbcxb.2018.03.040.
doi: 10.13870/j.cnki.stbcxb.2018.03.040
ZHENG H B, LIU W R, LUO Y, LI R P, LI W T, WANG H, ZHENG J Y. Effect of different tillage methods on soil water content and water use efficiency in cropland. Journal of Soil and Water Conservation, 2018, 32(3):264-270. doi: 10.13870/j.cnki.stbcxb.2018.03.040. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2018.03.040
[33] OHWAKI A. Ground arthropod communities in paddy fields during the dry period: Comparison between different farming methods. Journal of Asia-Pacific Entomology, 2015, 18(3):413-419. doi: 10.1016/j.aspen.2015.05.001.
doi: 10.1016/j.aspen.2015.05.001
[34] PAUSTIAN K, SIX J, ELLIOTT E T, HUNT H W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 2000, 48(1):147-163. doi: 10.1023/A:1006271331703.
[35] LIU Y, YANG L, GU D D, WU W, WEN X X, LIAO Y C. Influence of tillage practice on soil CO2 emission rate and soil characteristics in a dryland wheat field. International Journal of Agriculture & Biology, 2013, 15(4):680-686.
[36] WANG H, WANG S L, YU Q, ZHANG Y J, WANG R, LI J, WANG X L. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 2020, 261:110261. doi: 10.1016/j.jenvman.2020.110261.
doi: 10.1016/j.jenvman.2020.110261
[37] 王立刚, 邱建军, 马永良, 王迎春. 应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响. 中国农业大学学报, 2004, 9(6):15-19. doi: 10.3321/j.issn:1007-4333.2004.06.004.
doi: 10.3321/j.issn:1007-4333.2004.06.004
WANG L G, QIU J J, MA Y L, WANG Y C. Apply DNDC model to analysis long-term effect of soil organic carbon content under different fertilization and plough mode. Journal of China Agricultural University, 2004, 9(6):15-19. doi: 10.3321/j.issn:1007-4333.2004.06.004. (in Chinese)
doi: 10.3321/j.issn:1007-4333.2004.06.004
[38] KHAN S A, MULVANEY R L, ELLSWORTH T R, BOAST C W. The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 2007, 36(6):1821-1832. doi: 10.2134/jeq2007.0099.
doi: 10.2134/jeq2007.0099
[39] PAMPOLINO M F, LAURELES E V, GINES H C, BURESH R J. Soil carbon and nitrogen changes in long-term continuous lowland rice cropping. Soil Science Society of America Journal, 2008, 72(3):798-807. doi: 10.2136/sssaj2006.0334.
doi: 10.2136/sssaj2006.0334
[40] LUO Q P, GONG J R, YANG L L, LI X B, PAN Y, LIU M, ZHAI Z W, BAOYIN T T. Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem. Biology and Fertility of Soils, 2017, 53(8):911-927. doi: 10.1007/s00374-017-1233-x.
doi: 10.1007/s00374-017-1233-x
[41] 张晓丽, 孔凡磊, 刘晓林, 胡立峰, 李玉义. 生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响. 中国生态农业学报(中英文), 2019, 27(11):1732-1743. doi: 10.13930/j.cnki.cjea.190248.
doi: 10.13930/j.cnki.cjea.190248
ZHANG X L, KONG F L, LIU X L, HU L F, LI Y Y. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan. Chinese Journal of Eco-Agriculture, 2019, 27(11):1732-1743. doi: 10.13930/j.cnki.cjea.190248. (in Chinese)
doi: 10.13930/j.cnki.cjea.190248
[42] 李银坤, 陈敏鹏, 夏旭, 梅旭荣, 李昊儒, 郝卫平. 不同氮水平下夏玉米农田土壤呼吸动态变化及碳平衡研究. 生态环境学报, 2013, 22(1):18-24. doi: 10.16258/j.cnki.1674-5906.2013.01.013.
doi: 10.16258/j.cnki.1674-5906.2013.01.013
LI Y K, CHEN M P, XIA X, MEI X R, LI H R, HAO W P. Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition. Ecology and Environmental Sciences, 2013, 22(1):18-24. doi: 10.16258/j.cnki.1674-5906.2013.01.013. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2013.01.013
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[14] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[15] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!