Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2538-2546.doi: 10.3864/j.issn.0578-1752.2021.12.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Increasing Planting Density on Grain Yield, Leaf Area Index and Photosynthetic Rate of Maize in China

HOU JiaMin(),LUO Ning,WANG Su,MENG QingFeng(),WANG Pu   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2020-08-10 Accepted:2020-09-24 Online:2021-06-16 Published:2021-06-24
  • Contact: QingFeng MENG E-mail:hhhjm2468@163.com;mengqf@cau.edu.cn

Abstract:

【Objective】This study aimed to explore the change of the above-ground canopy structure and function together with increasing planting density of maize in China, so as to provide a theoretical basis for reasonable density in maize production.【Method】In this paper, a total of 82 publicly published academic articles were collected, and a total of 1 338 sets of yield-density data were obtained, including 1 200 sets of maximum leaf area index (LAImax) -density data, and 475 sets of maximum leaf photosynthesis rate (Pnmax) -density data. According to the date of sowing, the total samples were divided into two groups: spring and summer maize. Comprehensive analysis of the relationship between maize yield, planting density and photosynthetic characteristics was carried out by using boundary line analysis and various curve fitting methods. 【Result】(1) The agronomic planting density in China was 100 000 plants/hm2 for a maximum yield of 11.5 t·hm-2. Although the optimal planting density of spring and summer maize was similar, the grain yield of spring maize was 13.0% higher than summer maize. (2) When the planting density reached 110 000 plants/hm2, LAImax no longer increased with planting density increasing. When LAImax reached 6.4, the highest yield could be obtained. The platform value of LAImax for spring maize was 17.6% higher than that for summer maize. The logarithmic function was used to analyze the relationship between LAImax and density, as well as Pnmax and LAImax, and the results showed Pnmax decreased with increasing density and LAImax. (3) Grain yield, LAImax and Pnmax were all significantly improved through analyzing the data of different varieties in recent decades. 【Conclusion】Increasing planting density was one of important ways to increase maize yield. When the density was out the rational range, the photosynthetic characteristics of leaf was altered, which limited yield improvement. Comprehensive analysis of quantitative relationships among maize yield, planting density, and photosynthetic characteristics of ear leaf was important to guide high-yield and high-efficiency maize system with high density.

Key words: maize, planting density, grain yield, leaf area index, net photosynthetic rate

Fig. 1

Trend of maize yield, maximum leaf area index, and maximum net photosynthetic rate of panicle leaf under different planting densities"

Fig. 2

Distribution of Pnmax, LAImax, planting density and grain yield"

Table 1

Descriptive statistics of sample size"

数据分类
Data classification
样本量
Sample number
均值
Mean value
标准差
Standard deviation
中位数
Median
临界值
Critical value
密度 Planting density (×104 plants/hm2)
样本总体 Total sample 1338 7.7 2.2 7.5
春玉米 Spring maize 589 7.8 2.2 7.5 9.9
夏玉米 Summer maize 749 7.6 2.1 7.5 9.9
产量 Grain yield ( t·hm-2)
总体 Total 1338 10.4 2.6 10.3
春玉米 Spring maize 589 11.2 2.6 11.5 12.2
夏玉米 Summer maize 749 9.7 2.5 9.5 10.8
最大叶面积指数 LAImax
总体 Total 1200 5 1.3 5
春玉米 Spring maize 491 5.1 1.3 5.1 8
夏玉米 Summer maize 709 4.9 1.3 5 6.8
最大净光合速率 Pnmax
总体 Total 475 30.9 5.5 31.1
春玉米 Spring maize 188 28.4 5.1 28.4
夏玉米 Summer maize 287 32.6 5.1 32.8

Fig. 3

Relationship between maize yield and planting density in China"

Fig. 4

Relationship between maize yield and maximum leaf area index"

Fig. 5

Relationship between maximum leaf area index and planting density"

Fig. 6

Relationship between maximum net photosynthetic rate of panicle leaves and planting density"

Fig. 7

Relationship between maximum net photosynthetic rate of panicle leaves and maximum leaf area index"

Table 2

Analysis of planting density and yield related information of maize varieties in different ages"

年代
Time
品种
Variety
参考文献
Reference
密度
Planting density
(×104 plants/hm2)
产量
Grain yield
(t·hm-2)
最大叶面积指数
LAImax
(m2·m-2)
最大净光合速率
Pnmax (μmol·m-2·s-1)
1950s 金皇后,小粒红,白马牙等
Jinhuanghou, Xiaolihong, Baimaya et al.
[4], [19] 5.6(5.25-6) 4.2(2.1-4.9) 16.9
1960s 沈单7号,丹玉13号,中单2号等
Shendan 7, Danyu 13, Zhongdan 2 et al.
[19], [20], [21] 5.2(3.5-6.75) 6.3(4.4-7.1) 4.7(4.6-4.7) 17.7(16-19.3)
1970s 群单105,郑单2号,烟三6号等
Qundan 105, Zhengdan 2, Yansan 6 et al.
[4], [19], [20], [22] 5.5(4.5-6.75) 6.3(4.5-7.2) 18.7
1980s 掖单2号,鲁玉3号,鲁玉5号等
Yedan 2, Luyu 3, Luyu 5 et al.
[19], [20], [21], [22] 5.3(3.5-6.75) 7.2(5.1-7.9) 5.1(5-5.3) 21.4(20.7-22)
1990s 本玉9号,吉单180,掖单13等
Benyu 9, Jidan 180, Yedan 13 et al.
[4], [19], [20], [22] 5.7(4.5-6.75) 8.4(4.7-10.3) 20.5
2000s 郑单958,农大108,掖单13号
Zhengdan 958, Nongda 108, Yedan 13 et al.
[19], [20], [21] 5.4(4.5-6.75) 9.8(7.5-10.9) 5.9(5.7-6.2) 23.1(22.1-24.1)
[1] MENG Q F, CUI Z L, YANG H S, ZHANG F S, CHEN X P. Establishing high-yielding maize system for sustainable intensification in China. Advances in Agronomy, 2018,148:85-109.
[2] TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002,75(2):161-169.
doi: 10.1016/S0378-4290(02)00024-2
[3] ASSEFA Y, VARA PRASAD P V, CARTER P, HINDS M, BHALLA G, SCHON R, JESCHKE M, PASZKIEWICZ S, CIAMPITTI I A. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Science, 2016,56(5):2802-2817.
doi: 10.2135/cropsci2016.04.0215
[4] 王空军, 董树亭, 胡昌浩, 刘开昌, 孙庆泉. 我国1950s-1990s推广的玉米品种叶片光合特性演进规律研究. 植物生态学报, 2001,25(2):247-251.
WANG K J, DONG S T, HU C H, LIU K C, SUN Q Q. Improvement in photosynthetic characteristics among maize varieties in China form the 1950s to the 1990s. Chinese Journal of Plant Ecology, 2001,25(2):247-251. (in Chinese)
[5] TOLLLENAAR M, WU J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 1999,39(6):1597-1604.
doi: 10.2135/cropsci1999.3961597x
[6] DUVICK D N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005,86:83-145.
[7] QIAN C R, YU Y, GONG X J, JIANG Y B, ZHAO Y, YANG Z L, HAO Y B, LI L, SONG Z W, ZHANG W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. The Crop Journal, 2016,4(6):459-467.
doi: 10.1016/j.cj.2016.04.004
[8] ASSEFA Y, CARTER P, HINDS M, BHALLA G, SCHON R, JESCHKE M, PASZKIEWICZ S, SMITH S, CIAMPITTI I A. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Scientific Reports, 2018,8(1):1-11.
[9] SANGOI L. Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciência Rural, 2001,31(1):159-168.
doi: 10.1590/S0103-84782001000100027
[10] RAYMOND F D, ALLEY M M, PARRISH D J, THOMASON W E. Plant density and hybrid impacts on corn grain and forage yield and nutrient uptake. Journal of Plant Nutrition, 2009,32(3):395-409.
doi: 10.1080/01904160802660727
[11] LUO N, WANG X Y, HOU J M, WANG Y Y, WANG P, MENG Q F. Agronomic optimal plant density for yield improvement in the major maize regions of China. Crop Science, 2020,60(3):1580-1590.
doi: 10.1002/csc2.v60.3
[12] 郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005,13(2):55-59.
GUO J, XIAO K, GUO X Y, ZHANG F L, ZHAO C J. Review on maize canopy structure, light distributing and canopy photosynthesis. Journal of Maize Sciences, 2005,13(2):55-59. (in Chinese)
[13] DENG J M, RAN J Z, WANG Z Q, FAN Z X, WANG G X, JI M F, LIU J, WANG Y, LIU J Q, BROWN J H. Models and tests of optimal density and maximal yield for crop plants. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(39):15823-15828.
[14] LIU B H, CHEN X P, MENG Q F, YANG H S, VAN WART J. Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agricultural and Forest Meteorology, 2017,239:108-117.
doi: 10.1016/j.agrformet.2017.02.035
[15] 王珍, 武志海, 徐克章. 玉米群体冠层光合速率与叶面积指数关系的初步研究. 吉林农业大学学报, 2001,23(2):9-12, 16.
WANG Z, WU Z H, XU K Z. Relationship between leaf area index and photosynthetic rate of maize canopies. Journal of Jilin Agricultural University, 2001,23(2):9-12, 16. (in Chinese)
[16] https://github.com/ ankitrohatgi/WebPlotDigitizer/releases
[17] WEBB R A. Use of the boundary line in the analysis of biological data. Journal of Horticultural Science, 1972,47(3):309-319.
doi: 10.1080/00221589.1972.11514472
[18] TASISTRO A. Use of boundary lines in field diagnosis and research for Mexican farmers. Better Crops Plant Food, 2012,96(2):11-13.
[19] 孙琦, 张世煌, 李新海, 孟昭东, 慈晓科, 张德贵, 郝转芳, 翁建峰, 白丽, 李明顺. 中国不同年代主推玉米品种品质性状的变化趋势. 中国农业科学, 2014,47(14):2723-2730.
SUN Q, ZHANG S H, LI X H, MENG Z D, CI X K, ZHANG D G, HAO Z F, WENG J F, BAI L, LI M S. The trend of quality traits of maize varieties released extensively in different eras in China. Scientia Agricultura Sinica, 2014,47(14):2723-2730. (in Chinese)
[20] 丰光, 刘志芳, 李妍妍, 景希强, 邢锦丰, 黄长玲. 中国不同时期玉米单交种的产量变化. 中国农业科学, 2010,43(2):277-285.
FENG G, LIU Z F, LI Y Y, JING X Q, XING J F, HUANG C L. Study on the trends in yield change of maize single cross hybrids in different periods in China. Scientia Agricultura Sinica, 2010,43(2):277-285. (in Chinese)
[21] 李从锋, 赵明, 刘鹏, 张吉旺, 杨今胜, 柳京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应. 中国农业科学, 2013,46(12):2421-2429.
LI C F, ZHAO M, LIU P, ZHANG J W, YANG J S, LIU J G, WANG K J, DONG S T. Responses of main traits of maize hybrids and their parents to density in different eras of China. Scientia Agricultura Sinica, 2013,46(12):2421-2429. (in Chinese)
[22] 史新海, 李可敬, 孙为森, 赵尧先, 王金姣, 李勇. 山东省不同年代玉米杂交种主要农艺性状演变规律的研究. 玉米科学, 2000,8(2):33-35, 42.
SHI X H, LI K J, SUN W S, ZHAO Y X, WANG J J, LI Y. Studies on development law for main agronomic characters of maize hybrid in different areas in Shandong province. Journal of Maize Sciences, 2000,8(2):33-35, 42. (in Chinese)
[23] 李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009,42(6):1941-1951.
LI S K, WANG C T. Evolution and development of maize production techniques in China. Scientia Agricultura Sinica, 2009,42(6):1941-1951. (in Chinese)
[24] 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示. 玉米科学, 2009,17(5):156-159, 163.
ZHAO J R, WANG R H. Factors promoting the steady increase of American maize and their enlightenments for China. Journal of Maize Sciences, 2009,17(5):156-159, 163. (in Chinese)
[25] LIU G Z, HOU P, XIE R Z, MING B, WANG K R, XU W J, LIU W M, YANG Y S, LI S K. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg·ha-1. Field Crops Research, 2017,213:221-230.
doi: 10.1016/j.fcr.2017.08.011
[26] MADDONNI G A, OTEGUI M E. Leaf area, light interception, and crop development in maize. Field Crops Research, 1996,48(1):81-87.
doi: 10.1016/0378-4290(96)00035-4
[27] 张冬梅, 张伟, 刘恩科, 姜春霞, 陈琼, 韩彦龙, 黄学芳, 刘化涛, 赵聪, 池宝亮. 早熟区不同播期旱地玉米产量对施肥水平和种植密度的响应. 中国生态农业学报, 2013,21(12):1449-1458.
ZHANG D M, ZHANG W, LIU E K, JIANG C X, CHEN Q, HAN Y L, HUANG X F, LIU H T, ZHAO C, CHI B L. Response of dryland maize yield to fertilization rate and planting density at different sowing dates in early-maturity areas. Chinese Journal of Eco-Agriculture, 2013,21(12):1449-1458. (in Chinese)
[28] 胡树平, 青格尔, 高聚林, 侯昆仑. 播期对不同品种春玉米生长发育和产量形成的影响. 内蒙古农业科技, 2015,43(1):1-5, 31.
HU S P, QING G E, GAO J L, HOU K L. The effects of sowing on the growth and yield of different hybrids of spring maize. Inner Mongolia Agricultural Science and Technology, 2015,43(1):1-5, 31. (in Chinese)
[29] REN B Z, LIU W, ZHANG J W, DONG S T, LIU P, ZHAO B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Science of Nature, 2017,104(3/4):12.
doi: 10.1007/s00114-017-1445-9
[30] ASSEFA Y, PRASAD P V V, CARTER P, HINDS M, BHALLA G, SCHON R, JESCHKE M, PASZKIEWICZ S, CIAMPITTI I. A new insight into corn yield: Trends from 1987 through 2015. Crop Science, 2017,57(5):2799-2811.
doi: 10.2135/cropsci2017.01.0066
[31] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013,143:91-97.
doi: 10.1016/j.fcr.2012.09.023
[32] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50(11):1960-1972.
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China. Scientia Agricultura Sinica, 2017,50(11):1960-1972. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[10] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!