Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1397-1409.doi: 10.3864/j.issn.0578-1752.2021.07.007

• HIGH QUALITY CULTIVATION • Previous Articles     Next Articles

Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River

LIU QiuYuan1,2,ZHOU Lei1,TIAN JinYu1,CHENG Shuang1,TAO Yu1,XING ZhiPeng1,LIU GuoDong1,WEI HaiYan1(),ZHANG HongCheng1()   

  1. 1Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
    2Agricultural College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan
  • Received:2020-08-30 Accepted:2020-11-23 Online:2021-04-01 Published:2021-04-22
  • Contact: HaiYan WEI,HongCheng ZHANG E-mail:wei_haiyan@163.com;hczhang@yzu.edu.cn

Abstract:

【Objective】The main purpose of this study was to screen out the inbred japonica rice varieties with high grain yield and high nitrogen efficiency in the middle and lower reaches of Yangtze River, so as to provide a reference for the breeding and production application of high grain yield and high nitrogen efficiency varieties in this area.【Method】105 inbred japonica rice varieties (90 in 2017, 105 in 2018) from the middle and lower reaches of Yangtze River were used as experimental materials, and grain yield, dry matter accumulation, nitrogen uptake and utilization efficiency were determined at maturity stage under the treatment of nitrogen and no nitrogen. Nitrogen recovery efficiency, nitrogen agronomic efficiency, nitrogen physiological efficiency, nitrogen grain yield production efficiency and nitrogen dry matter production efficiency were used as the evaluation indexes of nitrogen absorption and utilization efficiency, and the comprehensive evaluation value of nitrogen efficiency (CEV) of each variety (line) was obtained by using the entropy weight fuzzy synthetic evaluation method. Then, the grain yield-nitrogen efficiency index (GYNEI) was calculated by using CEV and grain yield. According to the GYNEI, the varieties (lines) were classified by the method of cluster analysis.【Result】The tested varieties (lines) were divided into three types, and the average values of grain yield, nitrogen recovery efficiency, nitrogen agronomic efficiency, nitrogen physiological efficiency, nitrogen grain yield production efficiency, nitrogen dry matter production efficiency in Type Ⅰ were highest, while those in Type Ⅲ were lowest. Therefore, Type Ⅰ varieties (lines) were characterized by high grain yield and high nitrogen efficiency, and Type Ⅲ varieties (lines) were characterized by low grain yield and low nitrogen efficiency. According to the screening results, 23 and 27 varieties (lines) were divided into high grain yield and high nitrogen efficiency type in 2017 and 2018, respectively, and 19 varieties (lines), such as Nanjing9108, Nanjing5718, Ningjing7, Sidao15, Yangjing239 and so on, were classified into high grain yield and high nitrogen efficiency type in two years. In addition, stem dry matter weight, leaf dry matter weight, panicle dry matter weight, total dry matter weight, spikelet per panicle, grain yield, panicle nitrogen uptake, total nitrogen uptake of high grain yield and high nitrogen efficiency type (TypeⅠ) were significantly higher than those of Type Ⅱ and Type Ⅲ.【Conclusion】 19 varieties (lines) were preliminarily identified as high grain yield and high nitrogen efficiency varieties (lines), such as Nanjing 9108, Nanjing 5718, Ningjing7, Sidao15, and so on. Compared with the low grain yield and low nitrogen efficiency varieties (lines), the high grain yield and high nitrogen efficiency varieties (lines) showed the characteristics of larger biomass, more spikelet per panicle, higher nitrogen uptake, especially higher panicle nitrogen uptake. These results could provide a reference for the selection of inbred middle-ripe japonica rice varieties in the middle and lower reaches of Yangtze River, and also provided materials for the study of the synergistic mechanism of grain yield and nitrogen efficiency.

Key words: grain yield, the Middle and Lower Reaches of Yangtze River, nitrogen efficiency, comprehensive evaluation, japonica

Table 1

List of tested varieties (lines)"

年度 Year品种(系)Variety (line)
2017JD6602、JD6614、JD6619、常软07-1 Changruan07-1、常软07-11 Changruan07-11、常软07-2 Changruan07-2、常软07-3 Changruan07-3、常软07-4 Changruan07-4、常软07-5 Changruan07-5、常软07-6 Changruan07-6、丰粳1606 Fengjing1606、沪香粳165 Huxiangjing165、沪早软粳 Huzaoruanjing、沪早香软1号 Huzaoxiangruan1、沪早香软2号 Huzaoxiangruan2、华丰1502 Huafeng1502、华粳295 Huajing295、华粳5号 Huajing5、华粳8号 Huajing8、淮330 Huai330、淮稻5号 Huaidao5、连粳11号 Lianjing11、连粳12号 Lianjing12、连粳13 Lianjing13、连粳13264 Lianjing13264、连粳15 Lianjing15、连粳15113 Lianjing15113、连粳7号 Lianjing7、南繁1604 Nanfan1604、南繁1605 Nanfan1605、南繁1609 Nanfan1609、南繁1610 Nanfan1610、南粳2728 Nanjing2728、南粳505 Nanjing505、南粳5711 Nanjing5711、南粳5833 Nanjing5833、南粳9108 Nanjing9108、南粳3818 Nanjing3818、南粳5718 Nanjing5718、宁5720 Ning5720、宁9003 Ning9003、宁9022 Ning9022、宁9039 Ning9039、宁粳040 Ningjing040、宁粳4号Ningjing4、宁粳7号Ningjing7、圣稻1647 Shendao1647、圣稻18-15 Shendao18-15、圣稻18-4 Shendao18-4、圣稻19 Shendao19、圣稻20 Shendao20、圣稻22 Shendao22、圣稻2620 Shendao2620、泗15-234 Si15-234、泗15-301 Si15-301、泗稻14-211 Sidao14-211、泗稻15号 Sidao15、松早香1号 Songzaoxiang1、苏1795 Su1795、苏粳815 Sujing815、苏香粳3号 Suxiangjing3、苏秀867 Suxiu867、泰粳1152 Taijing1152、泰粳2340 Taijing2340、皖垦粳3号 Wankenjing3、武4610 Wu4610、武6267 Wu6267、武粳004 Wujing004、武育粳3号 Wuyujing3、武运5020 Wuyun5020、武运5051 Wuyun5051、武运粳21 Wuyunjing21、武运粳27号 Wuyunjing27、武运粳32号 Wuyunjing32、武运粳80 Wuyunjing80、新稻22 Xindao22、新科稻31 Xinkedao31、徐36618 Xu36618、徐41368 Xu41368、徐稻9号 Xudao9、徐农33202 Xunong33202、盐粳16号Yanjing16、扬粳1612 Yangjing1612、扬粳239 Yangjing239、扬粳3012 Yangjing3012、扬粳3491 Yangjing3491、扬粳5515 Yangjing5515、扬育粳2号Yangyujing2、镇9471 Zhendao9471、镇稻99 Zhendao99
2018
(新增 Newly added)
早香粳1号 Zaoxiangjing1、福粳1601 Fujing1601、福粳1608 Fujing1608、沪早香181 Huzaoxiang181、宁9036 Ning9036、申粳1221 Shenjing1221、圣稻18 Shendao18、圣稻23 Shendao23、圣稻24 Shendao24、圣香66 Shenxiang66、苏1785 Su1785、武育粳36号Wuyujing36、武运4326 Wuyun4326、徐40398 Xu40398、徐稻10号 Xudao10

Table 2

Grain yield, dry matter production, nitrogen uptake and utilization efficiency of tested varieties (lines)"

年份
Year
指标
Trait
N18N0
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
2017有效穗数 Number of effective panicles (×104 hm-2)302.58-467.52365.208.16230.10-426.90303.979.31
千粒重 1000-grain weight (g)20.60-29.8826.385.8720.93-30.2526.885.75
穗粒数 Spikelet per panicle75.38-136.08103.2110.4863.88-114.394.4710.05
结实率 Percentage of filled grains (%)82.43-95.7789.433.3979.34-98.4392.374.27
产量 Grain yield (t·hm-2)6.80-9.898.428.115.25-7.766.696.91
茎干重 SDM (t·hm-2)4.62-7.446.019.293.36-5.304.367.82
叶干重 LDM (t·hm-2)2.24-4.373.2812.341.66-2.992.3910.72
穗干重 PDM (t·hm-2)6.94-10.999.008.935.41-8.367.137.38
总干重 TDM (t·hm-2)14.56-21.2518.297.8910.75-15.8913.896.65
茎吸氮量 SNC (kg·hm-2)43.92-84.9561.5012.7120.28-37.5625.2911.40
叶吸氮量 LNC (kg·hm-2)36.62-70.9852.0012.5721.60-41.7531.8413.11
穗吸氮量 PNC (kg·hm-2)89.19-149.51121.928.6061.64-98.5883.748.73
总吸氮量 TNC (kg·hm-2)194.77-270.38235.426.50117.17-165.88140.877.53
氮肥回收效率 NRE (%)24.55-47.8335.0213.73
氮肥农学利用率 NAE (kg·kg-1)1.70-13.586.3935.17
氮素生理利用率 NPE (kg·kg-1)6.38-32.1617.9225.81
氮素籽粒生产效率 GYE (kg·kg-1)31.52-39.3835.753.97
氮素干物质生产效率 DME (kg·kg-1)69.24-83.7477.663.54
2018有效穗数 Number of effective panicles (×104 hm-2)268.51-456.36350.828.58239.04-403.73288.248.80
千粒重 1000-grain weight (g)20.78-30.1726.626.5722.05-30.8827.866.19
穗粒数 Spikelet per panicle74.19-134.88103.3111.0867.22-119.1391.339.85
结实率 Percentage of filled grains (%)86.84-98.5694.602.6291.69-98.5796.421.59
产量 Grain yield (t·hm-2)6.82-10.288.588.495.04-8.016.608.03
茎干重 SDM (t·hm-2)4.78-7.095.998.343.39-5.464.328.95
叶干重 LDM (t·hm-2)2.15-3.833.0511.431.45-2.431.9811.08
穗干重 PDM (t·hm-2)7.20-11.639.219.725.08-8.707.068.62
总干重 TDM (t·hm-2)14.77-21.2318.257.9410.84-15.9313.367.40
茎吸氮量 SNC (kg·hm-2)37.94-73.8555.9711.6015.61-30.5321.6713.71
叶吸氮量 LNC (kg·hm-2)25.96-58.0142.3313.6114.79-28.3321.0915.84
穗吸氮量 PNC (kg·hm-2)89.37-144.78117.329.7361.02-95.0678.768.27
总吸氮量 TNC (kg·hm-2)175.72-246.13215.636.80100.01-146.65121.517.32
氮肥回收效率 NRE (%)21.06-45.7934.8615.17
氮肥农学利用率 NAE (kg·kg-1)2.27-13.977.3332.29
氮素生理利用率 NPE (kg·kg-1)10.76-30.9620.6522.31
氮素籽粒生产效率 GYE (kg·kg-1)36.28-44.2639.774.27
氮素干物质生产效率 DME (kg·kg-1)77.15-91.9384.593.60

Table 3

Weights of evaluation indexes for nitrogen uptake and utilization efficiency"

年份
Year
氮肥回收效率
NRE
氮肥农学利用率
NAE
氮素生理利用率
NPE
氮素籽粒生产效率
GYE
氮素干物质生产效率
DME
20170.2470.2190.1860.1690.178
20180.1860.1920.2300.2110.182

Table 4

CEV, GYNEI of tested varieties (lines)"

指标 Trait年份 Year变幅 Range变异系数 CV (%)平均值 Mean
氮效率综合值CEV20170.485-0.95212.280.707
20180.535-0.97711.630.752
产量-氮效率综合指数GYNEI20170.569-1.58319.451.008
20180.628-1.54118.801.007

Table 5

Grain yield and nitrogen efficiency types of tested varieties (lines)"

品种(系)
Variety (line)
产量-氮效率类型
GYNET
品种(系)
Variety (line)
产量-氮效率类型
GYNET
品种(系)
Variety (line)
产量-氮效率类型
GYNET
201720182017201820172018
常软07-3 Changruan07-3连粳13264 Lianjing13264沪早软粳Huzaoruanjing
华丰1502 Huafeng1502连粳15113 Lianjing15113沪早香软1号Huzaoxiangruan1
华粳8号Huajing8南繁1610 Nanfan1610华粳295 Huajing295
南繁1605 Nanfan1605南粳505 Nanjing505华粳5号Huajing5
南粳5711 Nanjing5711南粳5833 Nanjing5833连粳15 Lianjing15
南粳9108 Nanjing9108南粳3818 Nanjing3818连粳7号 Lianjing7
南粳5718 Nanjing5718宁5720 Ning5720南繁1604 Nanfan1604
宁粳040 Ningjing040宁9003 Ning9003南繁1609 Nanfan1609
宁粳4号Ningjing4宁9022 Ning9022南粳2728 Nanjing2728
宁粳7号Ningjing7宁9039 Ning9039圣稻18-4 Shendao18-4
泗稻15号Sidao15圣稻1647 Shendao1647圣稻2620 Shendao2620
苏1795 Su1795圣稻18-15 Shendao18-15泗稻14-211 Sidao14-211
泰粳1152 Taijing1152圣稻19 Shendao19苏粳815 Sujing815
泰粳2340 Taijing2340圣稻20 Shendao20苏香粳3号 Suxiangjing3
武粳004 Wujing004圣稻22 Shendao22苏秀867 Suxiu867
武运5020 Wuyun5020泗15-234 Si15-234武育粳3号 Wuyujing3
武运5051 Wuyun5051泗15-301 Si15-301武运粳27号 Wuyunjing27
徐36618 Xu36618松早香1号 Songzaoxiang1新稻22 Xindao22
徐41368 Xu41368皖垦粳3号 Wankenjing3新科稻31 Xinkedao31
扬粳1612 Yangjing1612武4610 Wu4610徐稻9号Xudao9
扬粳239 Yangjing239武6267 Wu6267福粳1601 Fujing1601
扬粳3491 Yangjing3491武运粳21 Wuyunjing21福粳1608 Fujing1608
扬粳5515 Yangjing5515武运粳32号 Wuyunjing32沪早香181 Huzaoxiang181
JD6602武运粳80 Wuyunjing80宁9036 Ning9036
常软07-1 Changruan07-1徐农33202 Xunong33202申粳1221 Shenjing1221
常软07-2 Changruan07-2盐粳16号 Yanjing16圣稻18 Shendao18
常软07-4 Changruan07-4扬粳3012 Yangjing3012圣稻23 Shendao23
常软07-6 Changruan07-6扬育粳2号 Yangyujing2圣稻24 Shendao24
丰粳1606 Fengjing1606镇9471 Zhendao9471圣香66 Shenxiang66
沪早香软2号 Huzaoxiangruan2镇稻99 Zhendao99苏1785 Su1785
淮330 Huai330JD6614武育粳36号 Wuyujin36
淮稻5号 Huaidao5JD6619武运4326 Wuyun4326
连粳11号 Lianjing11常软07-11 Changruan07-11徐40398 Xu40398
连粳12号 Lianjing12常软07-5 Changruan07-5徐稻10号Xudao10
连粳13 Lianjing13沪香粳165 Huxiangjing165早香粳1号 Zaoxiangjing1

Table 6

Grain yield and nitrogen efficiency index of different grain yield and nitrogen efficiency types"

年份
Year
产量-氮
效率类型GYNET
指标
Trait
产量-氮效率
综合指数
GYNEI
产量
Grain yield
(t·hm-2)
氮肥回收效率
NRE (%)
氮肥农学
利用率
NAE (kg·kg-1)
氮素生理
利用率
NPE (kg·kg-1)
氮素籽粒
生产效率GYE
(kg·kg-1)
氮素干物质
生产效率
DME (kg·kg-1)
2017变幅 Range1.142-1.5838.51-9.8930.65-47.837.41-13.5818.53-32.1635.40-39.3876.91-83.74
变异系数 CV (%)9.363.8810.4618.5613.462.912.59
平均值 Mean1.271a9.27a39.18a9.15a23.33a37.19a79.97a
变幅Range0.882-1.1077.41-9.1626.90-42.484.37-8.5212.60-24.4233.75-37.5672.97-81.41
变异系数 CV (%)7.094.229.8817.9515.012.702.55
平均值 Mean0.993b8.38b35.51b6.30b17.74b35.47b77.32b
变幅 Range0.569-0.8676.80-8.3224.55-36.851.70-5.276.38-17.7231.52-36.9369.24-81.52
变异系数 CV (%)8.845.2510.2121.0120.593.974.08
平均值 Mean0.791c7.70c30.36c4.01c13.25c34.88b76.10b
2018变幅 Range1.156-1.5418.90-10.2830.10-45.797.71-13.9719.83-30.9639.43-44.2683.75-91.58
变异系数 CV (%)7.163.599.7816.0911.492.471.81
平均值 Mean1.256a9.50a39.45a9.95a25.20a41.30a87.02a
变幅 Range0.940-1.1307.47-9.5126.92-41.975.76-10.1215.83-26.3236.28-42.8179.93-88.64
变异系数 CV (%)5.544.199.9613.6911.543.572.89
平均值 Mean1.042b8.65b36.51b8.02b22.02b39.69b84.35b
变幅 Range0.628-0.9246.82-8.7121.06-35.582.27-7.3110.76-22.4736.53-43.1377.15-91.93
变异系数 CV (%)9.125.1612.7124.3319.984.093.98
平均值 Mean0.823c7.94c30.62c5.13c16.68c38.87b83.27b

Table 7

Yield components of different grain yield and nitrogen efficiency types"

年份
Year
产量-氮效率类型
GYNET
指标
Trait
有效穗数
Number of effective panicles (×104 hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Spikelet per panicle
结实率
Percentage of filled grains (%)
2017变幅 Range313.50-410.2524.15-29.8894.55-136.0883.55-93.44
变异系数 CV (%)7.215.638.853.21
平均值 Mean363.20a26.81a111.18a88.77a
变幅 Range317.34-429.5824.00-29.1383.32-128.3182.43-95.61
变异系数 CV (%)6.615.019.483.25
平均值 Mean369.49a26.46a102.36b88.99a
变幅 Range302.58-467.5220.60-29.3875.38-112.3084.52-95.77
变异系数 CV (%)11.037.049.543.43
平均值 Mean359.82a25.86a97.31c90.80a
2018变幅 Range286.46-386.8324.15-30.1795.95-134.8888.93-97.03
变异系数 CV (%)7.845.918.992.43
平均值 Mean347.67a27.09a112.31a94.31a
变幅 Range308.83-425.5323.98-30.0690.77-119.4790.22-97.92
变异系数 CV (%)7.466.838.422.48
平均值 Mean350.85a26.69a103.94b94.42a
变幅 Range268.51-456.3620.78-29.6574.19-126.0286.84-98.56
变异系数 CV (%)9.886.6110.702.85
平均值 Mean352.78a26.26a97.14c94.93a

Table 8

Dry matter weight and nitrogen content of different grain yield and nitrogen efficiency types"

年份
Year
产量-氮
效率类型
GYNET
指标
Trait
茎干重
SDM
(t·hm-2)
叶干重
LDM
(t·hm-2)
穗干重
PDM
(t·hm-2)
总干重
TDM
(t·hm-2)
茎吸氮量
SNC
(kg·hm-2)
叶吸氮量
LNC
(kg·hm-2)
穗吸氮量
PNC
(kg·hm-2)
总吸氮量
TNC
(kg·hm-2)
2017变幅 Range5.63-7.442.96-4.378.68-10.9918.56-21.2552.45-84.9543.89-67.41113.42-149.51227.38-270.38
变异系数 CV (%)7.339.146.013.9812.2011.697.384.72
平均值 Mean6.44a3.54a9.95a19.93a64.35a53.48a131.60a249.42a
变幅 Range4.79-6.972.49-4.147.35-9.7615.28-20.1149.90-76.2036.62-67.0699.58-135.63207.82-253.72
变异系数 CV (%)7.4110.165.544.7211.2212.475.974.44
平均值 Mean6.06b3.32b8.90b18.27b63.44a52.04a120.88b236.37b
变幅 Range4.62-6.282.24-3.896.93-9.0214.56-18.3143.92-66.8238.06-70.9889.19-129.54194.77-242.98
变异系数 CV (%)7.9313.006.085.9410.3113.488.145.44
平均值 Mean5.54c2.97c8.30c16.80c55.60b50.58a114.75c220.93c
2018变幅 Range5.61-7.113.02-3.839.29-11.6318.63-21.2346.63-68.8037.03-55.14108.10-144.78208.18-246.13
变异系数 CV (%)5.786.155.163.189.658.927.373.79
平均值 Mean6.37a3.33a10.32a20.02a57.48 a44.64 a128.00 a230.12 a
变幅 Range5.16-6.942.42-3.837.78-10.0816.54-20.1244.90-73.8535.27-58.0199.49-133.55193.36-239.16
变异系数 CV (%)7.6811.095.164.4911.6215.577.684.93
平均值 Mean6.03 b3.10 b9.25 b18.39 b57.20 a43.44 a117.48 b218.11 b
变幅 Range4.78-6.642.15-3.307.20-9.7314.77-18.5037.95-66.3425.96-49.0889.37-125.45175.72-220.35
变异系数 CV (%)7.679.896.445.3012.1312.568.145.46
平均值 Mean5.70 c2.83 c8.48 c17.01 c54.03 a39.97 b110.49 c204.50 c
[1] TIROL-PADRE A, LADHA J K, SINGH U, LAURELES E, PUNZALAN G, AKITA S.Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Research, 1996, 46(1/3): 127-143.
[2] LIU X J, ZHANG Y, HAN W X, TANG A H, SHEN J L, CUI Z L, VITOUSEK P M, ERISMAN J W, GOULDING K W, CHRISTIE P, FANGMEIER A, ZHANG F S.Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
[3] 李红莉, 张卫峰, 张福锁, 杜芬, 李亮科. 中国主要粮食作物化肥施用量与效率变化分析. 植物营养与肥料学报, 2010, 16(5): 1136-1143.
LI H L, ZHANG W F, ZHANG F S, DU F, LI L K.Chemical fertilizer use and efficiency change of main grain crops in China. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1136-1143. (in Chinese)
[4] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171.
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S.The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. (in Chinese)
[5] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W, VITOUSEK P M, ZHANG F S.Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[6] 王碧茜, 范晓荣, 徐国华, 沈其荣. 不同氮效率水稻品种旗叶的衰老特征. 南京农业大学学报, 2010, 33(2): 8-12.
WANG B Q, FAN X R, XU G H, SHEN Q R.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency. Journal of Nanjing Agricultural University, 2010, 33(2): 8-12. (in Chinese)
[7] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45(2): 267-273.
ZHANG Y L, FAN J B, DUAN Y H, WANG D S, YE L T, SHEN Q R.Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedologica Sinica, 2008, 45(2): 267-273. (in Chinese)
[8] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 严田蓉, 蒋明金, 郭长春, 王春雨, 马均. 不同氮效率水稻根系形态和氮素吸收利用与产量的关系. 中国农业科学, 2017, 50(14): 2683-2695.
LI N, YANG Z Y, DAI Z, SUN Y J, XU H, HE Y, YAN T R, JIANG M J, GUO C C, WANG C Y, MA J.The relationships between root morphology, N absorption and utilization and grain yield in rice with different N use efficiencies. Scientia Agricultura Sinica, 2017, 50(14): 2683-2695. (in Chinese)
[9] 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报, 2007, 33(11): 1802-1809.
WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, HANG J, MA Q, ZHANG S F, ZHANG Q, LIU Y Y.Characteristics of matter production and accumulation in rice genotypes with different N use efficiency. Acta Agronomica Sinica, 2007, 33(11): 1802-1809. (in Chinese)
[10] 徐富贤, 熊洪, 谢戎, 张林, 朱永川, 郭晓艺, 杨大金, 周兴兵, 刘茂. 水稻氮素利用效率的研究进展及其动向. 植物营养与肥料学报, 2009, 15(5): 1215-1225.
XU F X, XIONG H, XIE R, ZHANG L, ZHU Y C, GUO X Y, YANG D J, ZHOU X B, LIU M.Advance of rice fertilizer-nitrogen use efficiency. Plant Nutrition and Fertilizer Science, 2009, 15(5): 1215-1225. (in Chinese)
[11] 江立庚, 戴廷波, 韦善清, 甘秀芹, 徐建云, 曹卫星. 南方水稻氮素吸收与利用效率的基因型差异及评价. 植物生态学报, 2003, 27(4): 466-471.
JIANG L G, DAI T B, WEI S Q, GAN X Q, XU J Y, CAO W X.Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecologica Sinica, 2003, 27(4): 466-471. (in Chinese)
[12] DEDATTA S K D, BROADBENT F E. Methodology for evaluating nitrogen utilization efficiency by rice genotypes. Agronomy Journal, 1988, 80(5): 793-798.
[13] MOLL R H, KAMPRATH E J, JACKSON W A.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74(3): 562-564.
[14] RAKOTOSON T, DUSSERRE J, LETOURMY P, RAMONTA I R, CAO T V, RAMANANTSOANIRINA A, ROUMET P, AHMADI N, RABOIN L M.Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Research, 2017, 213: 194-203.
[15] 陈琛, 张家星, 李万元, 唐东南, 罗刚, 王祥菊, 莫兰婧, 吕旻珈, 周娟, 梁国华, 黄建晔, 王余龙, 姚友礼, 董桂春. 氮高效水稻主要源库性状的基本特点及其调控. 中国水稻科学, 2017, 31(2): 185-194.
CHEN C, ZHANG J X, LI W Y, TANG D N, LUO G, WANG X J, MO L J, LÜ M J, ZHOU J, LIANG G H, HUANG J Y, WANG Y L, YAO Y L, DONG G C.Fundamental features of source-sink characters and their regulation in high nitrogen efficiency rice lines. Chinese Journal of Rice Science, 2017, 31(2): 185-194. (in Chinese)
[16] 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24(10): 1347-1355.
CHEN C, GONG H Q, ZHANG J Z, XU Y J, GAO H J.Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1347-1355. (in Chinese)
[17] 高长波, 陈新庚, 韦朝海, 彭晓春. 熵权模糊综合评价法在城市生态安全评价中的应用. 应用生态学报, 2006, 17(10): 1923-1927.
GAO C B, CHEN X G, WEI C H, PENG X C.Application of entropy weight and fuzzy synthetic evaluation in urban ecological security assessment. Chinese Journal of Applied Ecology, 2006, 17(10): 1923-1927. (in Chinese)
[18] 张先起, 梁川. 基于熵权的模糊物元模型在水质综合评价中的应用. 水利学报, 2005, 36(9): 1057-1061.
ZHANG X Q, LIANG C.Application of fuzzy matter-element model based on coefficients of entropy in comprehensive evaluation of water quality. ShuiLi XueBao, 2005, 36(9): 1057-1061. (in Chinese)
[19] 万春雁, 糜林, 郭达, 乔玉山, 霍恒志, 陈丙义, 李金凤, 陈雪平. 基于果实品质模糊综合评判的砂梨熟期配套品种初步筛选. 西北农林科技大学学报(自然科学版), 2018, 46(9): 99-107.
WANG C Y, MI L, GUO D, QIAO Y S, HUO H Z, CHEN B Y, LI J F, CHEN X P.Preliminary screening of Pyrus pyrifolia Nakai combination with different mature periods based on fuzzy synthetic evaluation of fruit quality. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 99-107. (in Chinese)
[20] 余健, 房莉, 仓定帮, 朱琳, 卞正富. 熵权模糊物元模型在土地生态安全评价中的应用. 农业工程学报, 2012, 28(5): 260-266.
YU J, FANG L, CANG D B, ZHU L, BIAN Z F.Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 260-266. (in Chinese)
[21] FAGERIA N K, SANTOS A B.Lowland rice genotypes evaluation for nitrogen use efficiency. Journal of Plant Nutrition, 2014, 37(9): 1410-1423.
[22] 程建峰, 戴廷波, 曹卫星, 姜东, 刘宜柏. 不同类型水稻种质氮素营养效率的变异分析. 植物营养与肥料学报, 2007, 13(3): 175-183.
CHENG J F, DAI T B, CAO W X, JIANG D, LIU Y B.Variations of nitrogen nutrition efficiency in different rice germplasm types. Plant Nutrition and Fertilizer Science, 2007, 13(3): 175-183. (in Chinese)
[23] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10): 1190-1199.
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C.Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1190-1199. (in Chinese)
[24] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017, 43(8): 1205-1215.
ZHANG C, ZHANG Y Q, LU Z J, LIU L Q.Screening fagopyrum tararicum genotypes tolerant to low nitrogen stress at seedling stage and its evaluating indices. Acta Agronomica Sinica, 2017, 43(8): 1205-1215. (in Chinese)
[25] 林海明, 杜子芳.主成分分析综合评价应该注意的问题. 统计研究. 2013, 30(8): 25-31.
LIN H M, DU Z F.Some problems in comprehensive evaluation in the principal component analysis. Statistical Research, 2013, 30(8): 25-31. (in Chinese)
[26] INTHAPANYA P, SIPASEUTH, SIHAVONG P, SIHATHEP V, CHANHPHENGSAY M, FUKAI S, BASNAYAKE J.Genotype differences in nutrient uptake and utilization for grain yield production of rain fed lowland rice under fertilized and non fertilized conditions. Field Crops Research, 2000, 65(1): 57-68.
[27] 吴越, 胡静, 陈琛, 张家星, 李万元, 唐东南, 仲军, 羊彬, 朱正康, 姚友礼, 王余龙, 董桂春. 江苏省早熟晚粳高产水稻新品种氮素吸收利用特征及成因分析. 中国水稻科学, 2017, 31(6): 63-74.
WU Y, HU J, CHEN C, ZHANG J X, LI W Y, TANG D N, ZHONG J, YANG B, ZHU Z K, YAO Y L, WANG Y L, DONG G C.Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chinese Journal of Rice Science, 2017, 31(6): 63-74. (in Chinese)
[28] 叶利庭, 宋文静, 吕华军, 栗艳霞, 沈其荣, 张亚丽. 不同氮效率水稻生育后期氮素积累转运特征. 土壤学报, 2010, 47(2): 303-310.
YE L T, SONG W J, LÜ H J, LI Y X, SHEN Q R, ZHANG Y L.Accumulation and translocation of nitrogen at late-growth stage in rice different in cultivar nitrogen use efficiency. Acta Pedologica Sinica, 2010, 47(2): 303-310. (in Chinese)
[29] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010, 43(1): 39-50.
YIN C Y, ZHANG Q, WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, MA Q, HANG J, ZHANG S F.Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Scientia Agricultura Sinica, 2010, 43(1): 39-50. (in Chinese)
[30] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 44(22): 4570-4582.
DONG G C, WANG Y, YU X F, ZHOU J, PENG B, LI J Q, TIAN H, ZHANG Y, YUAN Q M, WANG Y L.Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Scientia Agricultura Sinica, 2011, 44(22): 4570-4582. (in Chinese)
[31] 陈温福, 徐正进, 张龙步, 张文忠, 马殿荣. 北方粳型稻超高产育种理论与实践. 中国农业科学, 2007, 40(5): 869-874.
CHEN W F, XU Z J, ZHANG L B, ZHANG W Z, MA D R.Theories and practices of breeding japonica rice for super high yield. Scientia Agricultura Sinica, 2007, 40(5): 869-874. (in Chinese)
[32] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 85-91.
LING Q H. Crop Population Quality.Shanghai: Shanghai Science and Technology Press, 2000: 85-91. (in Chinese)
[33] MAE T, INABA A, KANETA Y, MASAKI S, SASAKI M, AIZAWA M, OKAWA S, HASEGAWA S, MAKINO A.A large grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Research, 2006, 97(2/3): 227-237.
[34] 单玉华, 王海候, 龙银成, 王余龙, 潘学彪. 不同库容量类型水稻在氮素吸收利用上的差异. 扬州大学学报(农业与生命科学版), 2004, 25(1): 41-45.
SHAN Y H, WANG H H, LONG Y C, WANG Y L, PAN X B.Differences of nitrogen uptake and utilization in rice lines with various sink potentials. Journal of Yangzhou University (Agricultural and Life Science Edition), 2004, 25(1): 41-45. (in Chinese)
[35] 董桂春, 于小凤, 董燕萍, 李进前, 田昊, 周娟, 王云霞, 杨连新, 黄建晔, 王余龙. 不同库容量类型常规籼稻品种氮素吸收与分配的差异. 中国农业科学, 2009, 42(10) : 3432-3441.
DONG G C, YU X F, DONG Y P, LI J Q, TIAN H, ZHOU J, WANG Y X, YANG L X, HUANG J Y, WANG Y L.A difference in nitrogen uptake and distribution in conventional indica rice cultivars with different sink-potentials. Scientia Agricultura Sinica, 2009, 42(10): 3432-3441. (in Chinese)
[36] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43: 266-276.
WU G C, ZHANG H C, QIAN Y F, LI D J, ZHOU Y Y, XU J, WU W G, DAI Q G, HUO Z Y, XU K, GAO H, XU Z J, QIAN Z H, SUN J Y, ZHAO P H.Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Scientia Agricultura Sinica, 2010, 43: 266-276. (in Chinese)
[37] 王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 早、中、晚稻施氮增产效应及氮肥利用率研究. 植物营养与肥料学报, 2011, 17(3): 545-553.
WANG W N, LU J W, LU M X, LI X K, LI Y C, LI H.Study on effect of nitrogen fertilizer and nitrogen use efficiency of early, mid and late season rice. Plant Nutrition and Fertilizer Science, 2011, 17(3): 545-553. (in Chinese)
[38] 董桂春, 王余龙, 周娟, 张彪, 张传胜, 张岳芳, 杨连新, 黄建晔. 不同氮素籽粒生产效率类型籼稻品种氮素分配与运转的差异. 作物学报, 2009, 35(1): 149-155.
DONG G C, WANG Y L, ZHOU J, ZHANG B, ZHANG C S, ZHANG Y F, YANG L X, HUANG J Y.Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agronomica Sinica, 2009, 35(1): 149-155. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[6] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[7] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[8] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[9] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[10] WANG Juan,CHEN HaoNing,SHI DaChuan,YU TianYi,YAN CaiXia,SUN QuanXi,YUAN CuiLing,ZHAO XiaoBo,MOU YiFei,WANG Qi,LI ChunJuan,SHAN ShiHua. Functional Analysis of AhNRT2.7a in Response to Low-Nitrogen in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372.
[11] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[12] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[13] SHAO XiaoLong,XU Wen,WANG Xiao,YANG XiaoJing,SHEN Fei,LIU Qin. Fissure Development of Three Japonica Rice Grain during Water Desorption [J]. Scientia Agricultura Sinica, 2022, 55(2): 390-402.
[14] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[15] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!