Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4550-4566.doi: 10.3864/j.issn.0578-1752.2022.22.018

• RESEARCH NOTES • Previous Articles    

Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions

ZHAO LiMing(),HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng()   

  1. College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong
  • Received:2022-03-14 Accepted:2022-09-05 Online:2022-11-16 Published:2022-12-14
  • Contact: DianFeng ZHENG;


【Objective】 The effects of deep tillage under continuous rotary tillage on growth dynamics, photosynthetic matter production and yield formation of different japonica rice were studied in order to provide the technical support for high yield and high efficiency cultivation of high quality japonica rice in cold regions. 【Method】 A field experiment was conducted in 2018-2019, under the condition of straw returning to the field, on the basis of rotary tillage in the previous stubble for two consecutive years. Here, two tillage practices, namely, deep tillage and rotary tillage, were adopted during the growth stages of three modern japonica varieties Suijing18, Kendao12, and Sanjiang6. The effects of deep tillage and rotary tillage on the growth dynamics and post-anthesis production characteristics of high-quality japonica rice were studied. 【Result】 There was no significant difference in yield between years, but tillage methods had significant effects on the growth and development, photosynthetic dry matter production characteristics and yield characters of high-quality japonica rice in cold regions. Compared with rotary tillage, the deep tillage significantly increased the number of tillers per square meter and the number of effective panicles, the flag leaf unfolded later and lasted longer, and the heading stage was late but the duration did not change; The biomass and dry matter transport capacity of stem and sheath under deep tillage increased, and the biomass and stem-sheath dry matter transport capacity were increased by 8.34% and 5.36% respectively at full heading stage; The output, output rate and transformation rate of stem-sheath matter under deep tillage increased by 13.19%, 6.70% and 9.17%, respectively (P<0.05); The deep tillage increased the leaf area index at full heading and mature stage, prolonged the duration of green leaf area and increased the population growth rate; The internode length, leaf length and width of the third and fourth nodes of the main stem under deep tillage were increased, and the plant height and ear length were increased too; The number of grains per ear and grain weight per ear under deep tillage increased by 7.05% and 3.37%, respectively, the harvest index increased by 1.90%, and the average yield increased by 12.78%. Under the same tillage method, Kendao12 was the best in tiller number, photosynthetic matter production capacity, stem and sheath dry matter accumulation and transport capacity, yield and its composition, followed by Suijing18; However, Sanjiang6 had higher leaf area index after anthesis, grain number per panicle and grain weight at mature stage, but which could not make up for its low dry matter transport capacity, effective panicle number and 1000-grain weight. In terms of interaction effect, the combination of deep tillage × Kendao12 treatment showed higher effective panicles per square meter, strong production and transport capacity of photosynthetic matter after anthesis, high grain-leaf ratio and population growth rate, high 1000-grain weight and harvest index, reasonable allocation of plant agronomic morphological characters and coordination of yield traits, which could achieve a yield increase of 9.15%-27.47%.【Conclusion】 Continuous rotary tillage combined with one-year deep tillage was the most effective and sustainable rice tillage system to improve the yield of high-quality japonica rice in this region.

Key words: rotary tillage, deep tillage, high-quality japonica rice, yield, photosynthesis, characteristics of material production

Fig. 1

Daily rainfall, maximum, minimum and mean temperature during rice growth stage"

Table 1

Summary of the characteristics of the tested varieties"


The data come from the China Rice Data Center.

period (d)
Number of leaves in the main stem
Plant height
Spike length
1000-grain weight (g)
Grain number per plant (No./plant)
Taste score
绥粳18 Suijing18 134 12 104.0 18.1 26.0 109.0 81-83
垦稻12 Kendao12 133 12 96.2 18.6 26.9 84.5 82-86
三江6 Sanjiang6 136 12 94.0 19.5 24.8 200.0 79-82

Fig. 2

Effects of tillage on leaf age and tiller dynamics of rice The error line adopts the average deviation, and the calculation formula is expressed as ∑|x-$\bar{x}$|/n。 The same as below"

Fig. 3

Effects of tillage on productive tiller percentage of stem and tillers and panicles number at maturity stage of rice DT: Deep tillage; RT: Rotary tillage; Y: Year; T: Tillage; V: Variety. *, ** indicate significance at P<0.05 and P<0.01, respectively. ns indicates no significance at 0.05 level. The same as below"

Table 2

Effects of tillage methods on flag leaf spreading rate and heading rate of rice"


SJ18: Suijing18; KD12: Kendao12; SJ6: Sanjiang6. The same as below

深耕 DT 旋耕 RT
2018 2019 2018 2019
SJ18 KD12 SJ6H SJ18 KD12 SJ6H SJ18 KD12 SJ6H SJ18 KD12 SJ6H
Sword leaf expansion rate (%)
07-14 3.9 4.8
07-15 1.3 2.6 2.8 5.1 19.8 25.6 4.1
07-16 2.2 3.9 11.6 15.9 1.5 17.5 24.1 3.7 32.5 37.7 23.9
07-17 13.4 19.8 4.3 23.8 28.4 13.8 35.0 38.9 20.3 38.7 49.7 33.3
07-18 24.7 30.3 23.8 30.6 39.9 24.9 44.9 50.1 30.4 51.1 61.7 43.6
07-19 33.3 41.1 32.1 42.6 58.6 35.6 55.6 63.3 41.7 76.3 81.0 67.4
07-20 48.7 55.4 44.3 67.1 70.2 54.4 73.6 79.2 58.8 88.6 93.3 82.2
07-21 69.9 69.2 60.5 80.1 83.9 71.1 85.3 91.5 69.9 96.8 100.0 92.6
07-22 81.4 82.2 71.4 92.5 93.6 85.6 92.1 100.0 81.5 100.0 100.0
07-23 91.2 93.1 83.5 100.0 100.0 91.5 100.0 92.8
07-24 100.0 100.0 93.8 100.0 100.0
07-25 100.0
Heading rate (%)
07-22 2.9
07-23 2.1 3.7 15.9
07-24 4.5 2.3 3.5 2.7 10.1 11.2 27.7 4.8
07-25 3.7 15.1 11.7 14.9 1.1 11.9 21.7 25.3 56.3 18.9
07-26 12.5 27.3 30.0 36.5 9.5 21.5 57.3 3.6 43.5 73.5 37.0
07-27 23.5 59.9 2.1 49.2 59.0 23.0 42.3 85.1 20.5 72.2 87.3 56.9
07-28 37.5 85.0 11.3 60.6 85.4 37.2 69.7 95.3 43.5 86.4 100.0 83.3
07-29 60.2 97.4 39.5 85.3 95.9 79.0 82.6 100.0 68.6 94.8 95.5
07-30 86.8 100.0 59.6 97.3 100.0 92.3 93.8 87.3 100.0 100.0
07-31 95.7 75.6 100.0 100.0 100.0 96.5
08-01 100.0 90.3 100.0
08-02 100.0

Table 3

Effects of tillage methods on dry matter production and transport of rice"


BY: Biological yield; DAS: Dry matter accumulation of stem and sheath; ET: Exportation; ER: Export rate; TR: Translocation rate. Different letters within the same column indicate statistical significance at P<0.05. The same as below

年份Year 耕作Tillage 品种
齐穗期Full heading 成熟期 Maturity 输出量
ET (g·m-2)
ER (%)
TR (%)
BY (g·m-2) DAS (g·m-2) BY (g·m-2) DAS (g·m-2)
2018 DT SJ18 912.56ab 687.93a 1441.33abc 502.42ab 185.51ab 25.84abc 22.31a
KD12 968.50a 674.03ab 1497.17a 489.02bcd 185.01ab 27.11ab 20.46abc
SJ6 828.88cd 662.03b 1493.47ab 515.31a 146.72c 22.17d 18.62bcd
RT SJ18 838.74c 636.82c 1379.32de 472.00de 164.82bc 25.88abc 21.07ab
KD12 850.10bc 663.38b 1430.87cd 473.43de 189.95a 28.63a 20.77ab
SJ6 746.12e 621.20cd 1427.46cd 513.82a 107.37d 17.27f 14.33e
2019 DT SJ18 851.09bc 622.72cd 1438.60bc 477.21cde 145.51c 23.34cd 17.07de
KD12 763.23de 608.82de 1361.61ef 462.21ef 146.60c 24.04bcd 17.59cd
SJ6 848.13bc 596.82e 1415.24cde 490.17bcd 106.65de 17.88ef 13.97ef
RT SJ18 771.13de 569.61f 1308.09f 450.79f 118.82d 20.85de 15.74de
KD12 750.66e 596.17e 1315.91f 452.22f 143.95c 24.14bcd 18.08bcd
SJ6 817.56cd 569.02f 1409.17cde 492.23bc 84.33e 14.82f 10.82f
2018 857.48a 657.56a 1444.94a 494.33a 163.23a 24.48a 19.59a
2019 800.30b 593.86b 1374.77b 470.80b 124.31b 20.85b 15.55b
DT 862.07a 642.06a 1441.23a 489.39a 152.67a 23.40a 18.34a
RT 795.72b 609.37b 1378.47b 475.75b 134.88b 21.93b 16.80a
SJ18 843.38a 629.67a 1391.84b 475.61b 153.67b 23.98b 19.05a
KD12 833.12ab 635.60a 1401.39b 469.22b 166.38a 25.98a 19.23a
SJ6 810.17b 612.27b 1436.33a 502.88a 111.27c 18.04c 14.44b
年份Year (Y) 22.75* 2544.41** 370.50** 8994.71** 5389.16** 59.31* 87.18*
耕作 Tillage (T) 66.29** 44.31** 513.23** 70.95** 15.50* 8.18* 6.05ns
品种 Variety (V) 4.12* 23.09** 4.42* 24.46** 52.64** 59.07** 42.25**
年份×耕作 Y×T 9.65* 0.09ns 0.53ns 1.83ns 0.02ns 0.47ns 0.11ns
年份×品种 Y×V 34.96** 0.75ns 4.64* 0.00ns 0.65ns 0.05ns 2.26ns
耕作×品种 T×V 0.37ns 16.32** 1.89ns 3.95* 4.45* 5.00* 6.13*
年份×耕作×品种 Y×T×V 2.79ns 0.76ns 2.18ns 0.01ns 0.75ns 1.12ns 0.15ns

Table 4

Effects of different tillage methods on leaf area index, grain leaf ratio, population growth rate and net assimilation rate of rice"

年份Year 耕作Tillage 品种
Leaf area index at full heading stage
Leaf area index at maturity
Grain leaf ratio (mg·cm-2)
Population growth rate (g·m-2·d-1)
Net assimilation rate (g·m-2·d-1)
2018 DT SJ18 4.46b 2.08e 17.96de 12.12bc 3.88de
KD12 4.50b 1.65g 20.11b 13.31a 4.69bc
SJ6 4.75a 2.85a 16.58f 13.43a 3.61e
RT SJ18 4.29c 1.56h 18.32cd 12.13bc 4.48c
KD12 4.17d 1.31k 21.63a 13.29a 5.39a
SJ6 4.47b 2.36d 16.79ef 13.43a 4.06d
2019 DT SJ18 3.66fg 1.93f 22.70a 13.21ab 4.88b
KD12 3.70fg 1.50i 22.54a 13.22ab 5.43a
SJ6 3.95e 2.70b 19.32bc 12.31abc 3.74de
RT SJ18 3.74f 1.66g 20.27b 11.96c 4.82bc
KD12 3.62g 1.41j 22.67a 12.55abc 5.47a
SJ6 3.92e 2.46c 19.90b 12.74abc 4.06d
2018 4.44a 1.97a 18.57b 12.96a 4.35b
2019 3.76b 1.94a 21.23a 12.67a 4.74a
DT 4.17a 2.12a 19.87a 12.94a 4.37b
RT 4.03b 1.79b 19.93a 12.69a 4.72a
SJ18 4.03b 1.81b 19.81b 12.36b 4.52b
KD12 3.99b 1.47c 21.74a 13.10a 5.25a
SJ6 4.27a 2.60a 18.15c 12.98a 3.87c
年份Year (Y) 240.46** 395.82** 201.50** 2.98 ns 60.16*
耕作 Tillage (T) 60.38** 75.34** 0.06ns 5.90ns 40.14**
品种 Variety (V) 111.44** 6419.81** 136.79** 4.66* 180.48**
年份×耕作 Y×T 52.62** 75.34** 5.60ns 5.60ns 19.54*
年份×品种 Y×V 0.00ns 0.00ns 7.37** 3.52ns 8.79**
耕作×品种 T×V 8.06** 44.97** 10.06** 1.35ns 0.40ns
年份×耕作×品种 Y×T×V 0.00ns 0.00ns 6.61** 1.33ns 2.17ns

Fig. 4

Effects of tillage methods on SPAD of rice leaves at full heading stage and wax ripening stage"

Table 5

Effects of tillage methods on agronomic traits of rice"


FI: First internode from top; SI: Second internode from top; TI: Third internode from top; FTI: Fourth internode from top; FL: First leaf from top; SL: Second leaf from top; TL: Third leaf from top; FTL: Fourth leaf from top

年份Year 耕作Tillage 品种
节间长Internode length (cm) FL (cm) SL (cm) TL (cm) FTL (cm)
FI SI TI FTI 长Length 宽Width 长Length 宽Width 长Length 宽Width 长Length 宽Width
2018 DT SJ18 98.17b 19.23c 34.90a 24.53a 21.40ab 8.87ab 28.77a 1.46b 34.57b 1.27b 34.07b 1.13a 27.00ab 1.07a
KD12 100.33a 20.87b 33.57a 25.13a 20.33b 7.20b 26.90a 1.28c 36.00ab 1.13b 30.90c 1.05b 26.01b 0.97a
SJ6 95.67c 21.90a 33.53a 24.47a 22.23a 10.50a 25.23a 1.60a 39.00a 1.43a 38.00a 1.05b 33.43a 1.03a
RT SJ18 96.67a 18.23b 34.33a 22.43a 19.07a 6.37a 34.77a 1.47b 33.83a 1.30a 30.83b 1.10a 25.33a 1.00ab
KD12 95.87a 19.73a 30.80b 25.20a 18.57a 6.03ab 29.00b 1.33c 35.57a 1.13b 29.83b 1.00b 24.60a 0.90b
SJ6 93.33b 20.20a 33.17b 18.60a 15.63b 4.37b 31.73ab 1.54a 35.57a 1.23ab 34.67a 1.02b 29.33a 1.03a
2019 DT SJ18 98.67a 19.63b 34.73a 24.73a 21.40ab 8.20b 27.67b 1.41b 33.67b 1.22a 32.89b 1.11a 24.56b 0.99a
KD12 98.33a 20.90a 33.77ab 25.20a 20.20b 7.67b 29.78b 1.28c 33.39b 1.08b 30.39c 1.01b 23.61b 0.90a
SJ6 96.00a 21.43a 33.33b 24.33a 21.97a 10.27a 35.28a 1.61a 39.56a 1.19ab 34.66a 1.08a 28.89a 0.97a
RT SJ18 97.00a 18.60 b 34.40a 22.63a 19.20a 6.57a 27.92b 1.30b 32.36b 1.17a 31.67b 1.07a 23.78a 1.01a
KD12 96.90a 19.73a 30.50c 22.50a 18.53a 6.07ab 24.40c 1.20b 31.85b 1.02b 30.66b 0.97b 23.95a 0.89b
SJ6 94.83a 19.80a 33.70b 18.37b 15.57b 4.73b 38.44a 1.48a 41.22a 1.13ab 35.33a 0.97b 25.78a 0.93ab
2018 96.67a 20.03a 33.38a 22.95a 19.54a 7.22a 29.40a 1.45a 35.76a 1.25a 33.05a 1.06a 27.62a 1.01a
2019 96.96a 20.02a 33.33a 22.96a 19.48a 7.25a 30.58a 1.38a 35.34a 1.13a 32.60a 1.03b 25.09a 0.95b
DT 97.86a 20.66a 33.97a 24.73a 21.26a 8.78a 28.94a 1.44a 36.03a 1.22a 33.48a 1.07a 27.25a 0.99a
RT 95.77b 19.38b 32.74b 21.18b 17.76b 5.69b 31.04a 1.39a 35.07a 1.16a 32.17a 1.02b 25.46a 0.96a
SJ18 97.63a 18.93c 34.59a 23.58a 20.27a 7.50a 29.78b 1.41b 33.61b 1.24a 32.36b 1.10a 25.17b 1.02a
KD12 97.86a 20.31b 32.16c 23.84a 19.41ab 6.70a 27.52c 1.27c 34.20b 1.09b 30.45c 1.01b 24.54b 0.91b
SJ6 94.96b 20.83a 33.33b 21.44a 18.85b 7.45a 32.67a 1.56a 38.84a 1.25a 35.67a 1.03b 29.36a 1.00a
年份Year (Y) 0.34ns 0.00ns 0.01ns 0.00ns 0.07ns 0.01ns 14.44ns 7.95ns 0.42ns 13.48ns 0.54ns 88.36* 11.69ns 208.00**
耕作 Tillage (T) 19.31* 205.84** 46.08** 15.47** 128.37** 21.80* 2.13ns 4.05ns 1.04ns 5.03ns 3.37ns 18.08* 2.22ns 7.19ns
品种 Variety (V) 9.87** 46.91** 22.35** 6.40* 5.96* 2.06ns 13.31** 96.32** 23.54** 14.12** 38.33** 18.89** 7.22* 8.62**
年份×耕作 Y×T 1.99ns 0.00ns 0.00ns 0.00ns 0.06ns 0.07ns 3.66ns 3.89ns 0.36ns 0.00ns 2.92ns 0.96ns 0.25ns 4.44ns
年份×品种 Y×V 0.48ns 2.02ns 0.00ns 0.02ns 0.04ns 0.17ns 20.58** 1.69ns 7.38* 1.13ns 0.85ns 0.22ns 0.47ns 0.96ns
耕作×品种 T×V 0.53ns 1.42ns 9.11** 2.70ns 20.04** 16.09** 5.62* 2.00ns 0.00ns 1.81ns 1.15ns 0.64ns 0.68ns 0.05ns
Y ×T×V
0.61ns 0.01ns 0.19ns 0.00ns 0.00ns 0.33ns 0.54ns 0.24ns 2.12ns 1.85ns 0.66ns 1.03ns 0.01ns 0.37ns

Table 6

Effects of tillage methods on yield and its components of rice"

年份Year 耕作Tillage 品种
Grain number per plant (No.·plant-1)
Grain weight per plant (g)
1000-grain weight (g)
Seed setting rate (%)
Grain weight
2018 DT SJ18 103.28b 2.23a 25.25b 85.49ef 0.603c 8842.59b
KD12 80.06d 1.88de 27.18a 86.33def 0.661a 9491.59a
SJ6 112.16a 2.20a 23.41c 84.10f 0.587d 8295.24cd
RT SJ18 93.44c 2.08c 25.28b 88.11cde 0.576e 7658.92efg
KD12 73.83ef 1.78f 27.12a 89.06cd 0.650b 8273.36cd
SJ6 103.38b 2.11bc 23.30c 88.16cde 0.575e 7339.87g
2019 DT SJ18 100.00b 2.25a 24.83b 90.08bc 0.525g 8509.41bc
KD12 77.96de 1.94d 26.93a 92.56ab 0.608c 9448.15a
SJ6 102.00b 2.22a 23.32c 93.90a 0548f 8193.42cd
RT SJ18 94.86c 2.24a 25.56b 92.82ab 0526g 8034.17cde
KD12 72.36f 1.81ef 26.73a 93.53a 0.608c 7977.06def
SJ6 99.67b 2.20a 23.90c 92.79ab 0.534g 7518.53fg
2018 94.36a 2.05a 25.26a 86.88b 0.609a 8316.93a
2019 91.14b 2.11a 25.21a 92.61a 0.559b 8280.12a
DT 95.91a 2.12a 25.15a 88.74b 0.589a 8796.73a
RT 89.59b 2.04b 25.32a 90.74a 0.578b 7800.32b
SJ18 97.90b 2.20a 25.23b 89.13b 0.558b 8261.27b
KD12 76.05c 1.85b 26.99a 90.37a 0.632a 8797.54a
SJ6 104.30a 2.18a 23.49c 89.74b 0.561b 7836.77c
年份Year (Y) 19.59* 15.87ns 0.05ns 82.33* 6745.14** 0.20ns
耕作 Tillage (T) 484.94** 67.40** 2.72ns 17.40* 17.00* 161.73**
品种 Variety (V) 593.38** 230.80** 644.90** 3.28ns 606.00** 70.68**
年份×耕作 Y×T 46.87** 7.69* 4.56ns 5.62ns 5.79ns 2.45ns
年份×品种 Y×V 7.15** 0.87ns 4.36* 3.71* 12.56** 1.02ns
耕作×品种 T×V 0.71ns 1.55ns 3.67* 0.80ns 1.52ns 6.94**
年份×耕作×品种 Y×T×V 1.50ns 2.92ns 3.04ns 3.81* 4.77* 4.42*
[1] PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in china. Plant Production Science, 2009, 12(1): 3-8.
doi: 10.1626/pps.12.3
[2] 韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[3] 田慎重, 郭洪海, 董晓霞, 董亮, 郑东峰, 孙泽强, 王学君, 刘盛林. 耕作方式转变和秸秆还田对土壤活性有机碳的影响. 农业工程学报, 2016, 32(增刊2): 39-45.
TIAN S Z, GUO H H, DONG X X, DONG L, ZHENG D F, SUN Z Q, WANG X J, LIU S L. Effect of tillage method change and straw return on soil labile organic carbon. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (Suppl.2): 39-45. (in Chinese)
[4] 张丽, 张中东, 郭正宇, 宫帅, 王若男, 陶洪斌, 王璞. 深松耕作和秸秆还田对农田土壤物理特性的影响. 水土保持通报, 2015, 35(1):102-106, 117.
ZHANG L, ZHANG Z D, GUO Z Y, GONG S, WANG R N, TAO H B, WANG P. Effects of subsoiling tillage and straw returning to field on soil physical properties. Bulletin of Soil and Water Conservation, 2015, 35(1): 102-106, 117. (in Chinese)
[5] BÜCHI L, WENDLING M, AMOSSÉ C, JEANGROS B, SINAJ S, CHARLES R. Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland. Soil & Tillage Research, 2017, 174: 120-129.
[6] LOVARELLI D, BACENETTI J, FIALA M. Effect of local conditions and machinery characteristics on the environmental impacts of primary soil tillage. Journal of Cleaner Production, 2017, 140: 479-491.
doi: 10.1016/j.jclepro.2016.02.011
[7] 汤军, 黄山, 谭雪明, 石庆华, 潘晓华. 不同耕作方式对机插双季水稻产量的影响. 江西农业大学学报, 2014, 36(5): 996-1001.
TANG J, HUANG S, TAN X M, SHI Q H, PAN X H. Effect of different tillage regimes on rice yield under mechanical transplanting in a double rice cropping system. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(5): 996-1001. (in Chinese)
[8] 黄佑岗, 冯跃华, 许桂玲, 李杰, 叶勇, 牟桂婷, 张佳凤, 管正策. 不同耕作方式对杂交籼稻生长特性和产量形成的影响. 中国稻米, 2017, 23(4): 139 -143.
doi: 10.3969/j.issn.1006-8082.2017.04.028
HUANG Y G, FENG Y H, XU G L, LI J, YE Y, MU G T, ZHANG J F, GUAN Z C. Effects of different tillage methods on growth characteristics and yield formation of indica hybrid rice. China Rice, 2017, 23(4): 139-143. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2017.04.028
[9] 刘金花, 秦江涛, 张斌, 夏桂龙, 陆金贵, 甘三芽, 余瑞新. 赣东北双季水稻轻型种植和耕作模式评价. 土壤, 2012, 44(3): 482-491.
LIU J H, QIN J T, ZHANG B, XIA G L, LU J G, GAN S Y, YU R X. Effects of different light cultivation on rice growth, yields and economic benefits in Northeast area of Jiangxi province. Soils, 2012, 44(3): 482-491. (in Chinese)
[10] 谷子寒, 王元元, 帅泽宇, 陈平平, 敖和军, 屠乃美, 易镇邪, 周文新. 土壤耕作方式对水稻产量形成特性的影响初探. 作物研究, 2017, 31(2): 103-109.
GU Z H, WANG Y Y, SHUAI Z Y, CHEN P P, AO H J, TU N M, YI Z X, ZHOU W X. Preliminary study about the effects of soil tillage ways on the yield formation characteristics of rice. Crop Research, 2017, 31(2): 103-109. (in Chinese)
[11] 徐尚起, 张明园, 孙国峰, 汤文光, 陈阜, 张海林. 应用耕作指数评价耕作措施对双季稻田土壤质量的影响. 中国农业科学, 2011, 44(19): 3999-4006.
XU S Q, ZHANG M Y, SUN G F, TANG W G, CHEN F, ZHANG H L. Assessment of tillage effects on soil quality for double-rice paddy with tilth index. Scientia Agricultura Sinica, 2011, 44(19): 3999-4006. (in Chinese)
[12] 周群. 不同栽培模式对水稻产量的影响及其生理基础[D]. 扬州: 扬州大学, 2015.
ZHOU Q. Effects of different cultivation patterns on rice yield and their physiological bases[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[13] 唐海明, 肖小平, 李超, 汤文光, 郭立君, 汪柯, 程凯凯, 潘孝晨, 孙耿. 不同土壤耕作模式对双季水稻生理特性与产量的影响. 作物学报, 2019, 45(5): 740-754.
doi: 10.3724/SP.J.1006.2019.82030
TANG H M, XIAO X P, LI C, TANG W G, GUO L J, WANG K, CHENG K K, PAN X C, SUN G. Effects of different soil tillage systems on physiological characteristics and yield of double- cropping rice. Acta Agronomica Sinica, 2019, 45(5): 740-754. (in Chinese)
doi: 10.3724/SP.J.1006.2019.82030
[14] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11.
LING Q H, ZHANG H C, CAI J Z, SU Z F, LING L. Investigation on the population quality of high yield and its optimizing control programme in rice. Scientia Agricultura Sinica, 1993, 26(6): 1-11. (in Chinese)
[15] PENG S, CASSMAN K G, VIRMANI S S, SHEEHY J, KHUSH G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 1999, 39: 1552-1559.
doi: 10.2135/cropsci1999.3961552x
[16] 陈温福, 徐正进, 张文忠, 马殿荣, 张树林. 中国超级稻育种研究进展与前景. 沈阳农业大学学报, 2007, 38(5): 662-666.
CHEN W F, XU Z J, ZHANG W Z, MA D R, ZHANG S L. Advances and prospects in research of rice breeding for super high yield in China. Journal of Shenyang Agricultural University, 2007, 38(5): 662-666. (in Chinese)
[17] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32(7): 949-955.
YANG J C, WANG P, LIU L J, WANG Z Q, ZHU Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agronomica Sinica, 2006, 32(7): 949-955. (in Chinese)
[18] BADSHAH M A, TU N M, ZOU Y B, IBRAHIM M, WANG K. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods. The Crop Journal, 2014, 2(1): 79-86.
doi: 10.1016/j.cj.2013.11.004
[19] WANG F, CHENG F M, ZHANG G P. Difference in grain yield and quality among tillers in rice genotypes differing in tillering capacity. Rice Science, 2007, 14(2): 135-140.
[20] AHMAD S, HUSAIN A, ALI H, AHMAD A. Transplanted fine rice (Oryza sativa L.) productivity as affected by plant density and irrigation regimes. International Journal of Agriculture & Biology, 2005, 7(3): 445-447.
[21] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000.
LING Q H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. (in Chinese)
[22] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t·hm-2 以上超高产群体的生育特征. 作物学报, 2014, 40(12): 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
WANG X Y, WEI H H, ZHANG H C, SUN J, ZHANG J M, LI C, LU H B, YANG Y W, MA R R, XU J F, WANG Y, XU Y J, SUN Y H. Population characteristics for super-high yielding hybrid rice Yongyou12 (>13.5 t·hm-2). Acta Agronomica Sinica, 2014, 40(12): 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
[23] 王瑾瑜, 程文龙, 槐圣昌, 武红亮, 邢婷婷, 于伟家, 武际, 李敏, 卢昌艾. 深翻、 有机无机肥配施对稻田水分渗漏和氮素淋溶的影响. 中国农业科学 2021, 54(20): 4385-4395.
WANG J Y, CHENG W L, HUAI S C, WU H L, XING T T, YU W J, WU J, LI M, LU C A. Effects of deep plowing and organic-inorganic fertilization on soil water and nitrogen leaching in rice field. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395. (in Chinese)
[24] SHARMA A P, SINGH S P. Relationship of physiological attributes with grain yield in rice. Agricultural Science Digest, 2000, 20(3): 191-192.
[25] YING J F, PENG S B, HE Q R, YANG H, YANG C D, VISPERAS R M, CASSMAN K G. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crops Research, 1998, 57(1): 71-84.
doi: 10.1016/S0378-4290(98)00077-X
[26] YANG J C, PENG S B, ZHANG Z J, WANG Z Q, VISPERAS R M, ZHU Q S. Grain yields and dry matter and partitioning of assimilates in japonica/indica hybrid rice. Crop Science, 2002, 42(3): 766-772.
doi: 10.2135/cropsci2002.7660
[27] KARLEN D L, SADLER E J, CAMP C R. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk Loamy Sand. Agronomy Journal, 1987, 79(4): 649-656.
doi: 10.2134/agronj1987.00021962007900040014x
[28] HUANG L, LIU L, ZHANG T, ZHAO D, LI H, SUN H, KINNEY P, PITIRANGGON M, CHILLRUD S, MA L, NAVAS-ACIEN A, BI J, YAN B. An interventional study of rice for reducing cadmium exposure in a Chinese industrial town. Environment International, 2019, 122: 301-309.
doi: S0160-4120(18)31206-6 pmid: 30477816
[29] PAL R, MAHAJAN G, SARDANA V, CHAUHAN B S. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Research, 2017, 206: 138-148.
doi: 10.1016/j.fcr.2017.01.025
[30] ZHAI H Q, ZHANG R X, KUANG T Y, CHENG S H, CAO S Q, LU W, MIN S K, WAN J M, LI L B, ZHU D F. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice (Oryza sativa L). Series C: Life Sciences), 2002, 45(6): 637-646.
[31] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38(10): 1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
DENG F, WANG L, LIU L, LIU D Y, REN W J, YANG W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agronomica Sinica, 2012, 38(10): 1930-1942. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01930
[32] 李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37(7): 1235-1248.
LI J, ZHANG H C, CHANG Y, GONG J L, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agronomica Sinica, 2011, 37(7): 1235-1248. (in Chinese)
[33] GIUNTA F, MOTZO R, PRUNEDDU G. Has long-term selection for yield in durum wheat also induced changes in leaf and canopy traits. Field Crops Research, 2007, 106(1): 68-76.
doi: 10.1016/j.fcr.2007.10.018
[34] 李志宏, 刘宏斌, 张云贵. 叶绿素仪在氮肥推荐中的应用研究进展. 植物营养与肥料学报, 2006, 12(1): 125-132.
LI Z H, LIU H B, ZHANG Y G. A review on chlorophyll meter application on nitrogen fertilizer recommendation. Plant Nutrition and Fertilizer Science, 2006, 12(1): 125-132. (in Chinese)
[35] HUANG M, JIANG L G, XIA B, ZOU Y B, JIANG P, AO H J. Yield gap analysis of super hybrid rice between two subtropical environments. Australian Journal of Crop Science, 2013, 7(5): 600-608.
[36] XU L, ZHAN X W, YU TT, NIE L X, HUANG J, CUI K H, WANG F, LI Y, PENG S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Research, 2018, 227: 49-55.
doi: 10.1016/j.fcr.2018.08.002
[37] LYNCH J P, DOYLE D, MCAULEY S, MCHARDY F, DANNEELS Q, BLACK L C, WHITE E M, SPINK J. The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of ireland. European Journal of Agronomy, 2007, 87: 40-49.
doi: 10.1016/j.eja.2017.05.001
[38] BORG J, KIAR L P, LECARPETIER C, GOLDRINGER I, GAUFFRETEAU A, SAINT J S, BAROT S, ENJABERT J. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Research, 2018, 221: 298-313.
doi: 10.1016/j.fcr.2017.09.006
[39] 闫平, 张书利, 于艳敏, 牟凤臣, 武洪涛, 徐振华, 周劲松. 不同水稻品种干物质积累与产量性状的相关研究. 中国农学通报, 2015, 31(18): 1-6.
YAN P, ZHANG S L, YU Y M, MU F C, WU H T, XU Z H, ZHOU J S. Correlation research on dry matter accumulation and yield characters of different rice varieties. Chinese Agricultural Science Bulletin, 2015, 31(18): 1-6. (in Chinese)
[40] TAO Z Q, MA S K, CHANG X H, WANG D M, WANG Y J, YANG Y S, ZHAO G C, YANG J C. Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. The Crop Journal, 2019, 7(4): 480-493.
doi: 10.1016/j.cj.2018.12.006
[41] ZHU Y G, CHU J P, DAI X L, HE M R. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. European Journal of Agronomy, 2019, 104: 49-62.
doi: 10.1016/j.eja.2019.01.006
[42] GRAVOIS K A, HELMS R S. Path analysis of rice yield and yield components as affected by seeding rate. Agronomy Journal, 1992, 84(1): 1-4.
doi: 10.2134/agronj1992.00021962008400010001x
[43] LI G H, ZHANG J, YANG C D, SONG Y P, ZHENG C Y, WANG S H, LIU Z H, DING Y F. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis. The Crop Journal, 2014, 2(4): 235-243.
doi: 10.1016/j.cj.2014.03.006
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Full text



No Suggested Reading articles found!