Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4567-4582.doi: 10.3864/j.issn.0578-1752.2022.23.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties

ZHAO ChunFang1(),ZHAO QingYong1,LÜ YuanDa2,CHEN Tao1,YAO Shu1,ZHAO Ling1,ZHOU LiHui1,LIANG WenHua1,ZHU Zhen1,WANG CaiLin1,ZHANG YaDong1,*()   

  1. 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice/Jiangsu High Quality Rice R&D Center, Nanjing 210014
    2Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2022-07-25 Accepted:2022-09-09 Online:2022-12-01 Published:2022-12-06
  • Contact: YaDong ZHANG E-mail:czhao@jaas.ac.cn;zhangyd@jaas.ac.cn

Abstract:

【Objective】 A set of variety DNA fingerprint identification system based on the core markers of genes regulating rice important traits was constructed, which will establish a foundation for strengthening the germplasm management and protection of the mainly promoted semi-waxy japonica rice varieties with high eating quality.【Method】 34 semi-waxy japonica rice varieties mainly cultivated in Jiangsu, Zhejiang and Shanghai were used as the test materials. The key differential sequence sites in genes regulating rice important traits were screened and core SNP or InDel markers were developed through multiple methods such as polymorphism testing of existing markers, gene sequence alignment from public databases and genome resequencing. SNP markers were developed into simple PCR markers based on electrophoretic bands by As-PCR technology. Genotype information was obtained by electrophoretic band characterization and type analysis, and the DNA fingerprint database of the semi-waxy japonica rice varieties was constructed..【Result】 54 core markers derived from 40 key genes regulating rice important traits were obtained, including 18 SNP and 36 InDel markers; 155 characteristic and effective bands were identified by 54 markers in the tested rice varieties, which were transformed into 155 0/1 data sites. The DNA fingerprint database of each variety was established and could distinguish it from all tested varieties. Genetic diversity analysis showed that the variation range of genetic similarity among varieties was 0.47-0.90, among which the lowest similarity coefficient was detected between Nanjing 7718 and Suxiangjing 100, while the highest similarity coefficient was detected between Nanjing 9308 and Nanjing 9036, among which there were 8 differential data sites. Genetic relationship analysis indicated that 34 varieties were divided into 6 branches, of which Nanjing 7718 was an independent branch, suggesting it has a distant relationship from other varieties. Further verification of the identification effect of core markers showed that the set of markers could effectively distinguish 14 new semi-waxy japonica rice varieties. The cluster diagram showed that they were distributed in three groups of Ⅱ, Ⅲ and Ⅳ, confirming the differences of genotype information among varieties; using this set of markers, the authenticity of an unknown semi-waxy rice variety was also identified. According to genotype and cluster analysis, it was determined as Nanjing 9108.【Conclusion】 After optimization and screening, 54 core markers that could accurately distinguish all the tested semi-waxy japonica varieties were obtained, and developed into simple PCR markers detected by electrophoresis. Using this set of marker combinations, the DNA fingerprints of 34 semi-waxy japonica varieties in Jiangsu, Zhejiang and Shanghai were constructed.

Key words: rice (Oryza sativa L.), semi-waxy japonica rice, DNA fingerprints, molecular markers

Table 1

Primer sequence and detailed information of 54 markers"

引物
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
物理位置
Physical position (bp)
染色体 Chromosome 扩增片
段长度Amplified fragment (bp)
基因注释
Gene
annotation
出处
Reference
SNP-1 IF: GGCATTCGGTCTAACCGA AAATTGCA IR: CGGTCTTCACTTTTCAA AGACCGAACCC 19368231 2 108/127 淀粉去分支酶基因Ⅲ
Starch debranching enzyme Ⅲ
重测序
Resequencing
OF: ACTTGACACCGAATCCG TTTATCCTCCC OR: TGTTGAATTTCAGTCAA GACCGAGACCGA
SNP-2 IF: CACGGCTCGAACCGCGA CGGCATCAGTAG IR: ATCACGGCGGGCGCCGA CGGCT 31234046 2 143/214 淀粉合成酶基因Ⅱc
Starch synthase Ⅱc
重测序
Resequencing
OF: GCCCGAGCGCGTCGATC ATCCGGTTC OR: CGGACCTGGAGGAGAT GCTGCGGCGGTT
SNP-3 IF: CTCGCGCGCCCGCTCCCG CGCTGA IR: GCGCTGGAGGAGAA GA CCGCGGCGGGCG 7237582 3 104/128 松散株型基因LPA1
Loose plant architecture 1
重测序
Resequencing
OF: GCCTTCTCGAGCTCCCC GCGCGCCCGGT OR: CGCCGCGGCGGCAGGA GGGGAGGAGGAG
SNP-4 IF: AGAATGTTGATCTCTGAC AATATCAAGAAGGTA IR: CTTTGTGGAGGTCCAAA CATTGAGA 31512460 3 184/203 抽穗期基因Hd6
Heading date 6
重测序
Resequencing
OF: ATGAAGGCTCAATGAAG ACCTTGAGTAG OR: TCATCAAGATACTCAA GCCTGTGAAGAA
SNP-5 IF: TTTGGCAATACCAGACA ACTGTCTTCTT IR: GCCGTCTGGTTCAACAA GATTATCG 6942503 4 149/183 水稻抗胁迫基因OsLecRK1
Rice stress resistance gene OsLecRK1
重测序
Resequencing
OF: GACCAGACCGGTCTTTC AGTGAGAG OR: AACTCAGAAGAACATC ACATTGGGCTC
SNP-6 IF: GGTAGGGGTATTGAGATT CTTTACAGTTGACTG IR: TCCACATGTAAGTGACA AAGGCATTAGGT 20430813 4 169/216 籽粒体型控制基因GIF1
Grain incomplete filling 1
重测序
Resequencing
OF: CTCCTAGGCCTGGTTCC ACTCGT OR: GAGTAGGAGGTGAGTG AATGCTTCAACC
SNP-7 IF: CCGCGGGAGGCGGCGGC GGAGA IR: CGGAAGAGGGGTCGAG CTCGACGCCGCAGC 1159544 5 134/172 水稻淀粉调节因子RSR1
Rice starch regulator 1
重测序
Resequencing
OF: AGCTGCTGGTGTTGGTG GTGCGGCGGCG OR: GAGACGGCGGCGAGGA GCGACTCCGGCA
SNP-8 IF: GGGAAAAGCTCAACGGC GGCGA IR: CATTAGGAGCCACGTCA GCTGGCTGC 15615574 5 130/165 G蛋白基因RGA1
G protein gene RGA1
重测序
Resequencing
OF: CACGTGGAACCCACAAG CCAACTAGCAA OR: GGGTGGGGAGAAGGCG AGCAGTTGTAGT
SNP-9 IF: CGTGGCGTGCGACGTGC AGGGGT IR: GCCGGGAGCGGGTTCGC GGATTG 9336850 6 130/183 抽穗期基因Hd1
Heading date 1
重测序
Resequencing
OF: GTACCTGTGCGCGTCGT GCGACGCG OR: TCCACCTCCTCGTCCTT GTCGCCGAGGA
SNP-10 IF: TTATTAATCTACGTTTAA TATTTTGAATGTGTTTC IR: AGTTTTGGTGTGTAACA TCAGATATAGGA 25097788 6 151/191 千粒重基因TGW6
Thousand-grain weight gene TGW6
重测序
Resequencing
OF: AATCTTTTAAGCCTAATT GCTCCATAAT OR: AATTGTTCGTTTTACAT CTTTATACGGA
SNP-11 IF: CCGCCGCGCGCTCCAAGT CTCC IR: CGAGGTGTTCCCCGGCT GCCGGAAAT 6259232 7 109/126 胚乳蛋白基因RAG2
Endosperm protein gene RAG2
重测序
Resequencing
OF: CCAGTAGCAGACACCAC CTGTCCCATTGGGGA OR: CAGGTGCTCGGCGCTC AACCACATGGTT

Continued Table 1

"

引物
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
物理位置
Physical position (bp)
染色体 Chromosome 扩增片
段长度Amplified fragment (bp)
基因注释
Gene
annotation
出处
Reference
SNP-12 IF: TTTGACGAATCTAGATAA GGAGCCTGTATG IR: CCTATAATATAAGGGAT TTTTTAGGGAGGGCT 9158633 7 159/218 穗粒数、株高和抽穗期基因Ghd7
Grain number, plant height and heading date 7
重测序
Resequencing
OF: CGCTATAAAGGTTACGT AAACATATCGCAG OR: TTCTTTTTGGAACGGAG GGAGTAAGTAT
SNP-13 IF: ATGGCGGACCAATCTCCG GTGTGCACCC IR: CGCTCCCAGCAGACCTG CGGTGCCC 29617569 7 130/154 抽穗期基因DTH7
Days to heading 7
重测序
Resequencing
OF: CCGCTCATCACAACCAA ACCGCCGGCTC OR: GCAGGGCACTGACCAC CTGCCTGGTGGA
SNP-14 IF: AAAAAAATAATTGGAGT TACAATCTAACATTAC IR: AAGTTCTGCAATTTACA GTGTAAATACGT 4328377 8 128/162 产量和抽穗期基因Ghd8
Gran yield and heading date gene 8
重测序
Resequencing
OF: TACAAAATATCTGGTAT TTGTTGAATGG OR: CAGCATAAAATGACTG TAAAACGTAAAC
SNP-15 IF: AGTGCCAGCGGTGGTGG CCGCA IR: TCATGAACTTCTTGAAA CTGAATCATACCTGAGC 5352201 8 130/180 淀粉合成酶基因Ⅲa
Starch synthase Ⅲa
重测序
Resequencing
OF: AGGAGGCACCGCTAGGT GGTGTGTTCAG OR: AATCTTGCATGCCCCTT CAGAAGGACGA
SNP-16 IF: ATGTTGTGTTCTTGTGTT CTTTGCAGGC IR: GTAGATCTTCTCACCGG TCTTTCCCCAA 1564914 6 125/154 颗粒型淀粉合酶基因GBSSI
Granule-bound starch synthase I
重测序
Resequencing
OF: GGGTGAGGTTTTTCCAT TGCTACAATCG OR: GTCGATGAACACACGG TCGACTCAAT
SNP-17 IF: TTCCCTGTTCAATTGCAG AATAATCAACT IR: AGGACCCTGCAAGGGTT GTCTCT 1797083 9 128/157 抽穗期基因OsFCA
Heading date gene OsFCA
重测序
Resequencing
OF: ACCTTTTACTTTGTAGG GCATGAACCCT OR: GACCAGATAACCTATT CTGGCCAAAAGA
SNP-18 IF: CGCAGCAGGCGGCGGTG GTTGC IR: CCTGCCAGGGTTGCAAC TTCGCCGACA 14739998 10 154/224 早穗期基因Ehd2
Early heading date 2
重测序
Resequencing
OF: TGACACATGCGATCGAT GTGGCATTGGCA OR: GGCGCCGGCTCACTAG GGACTTCCTCGG
InDel-1 F: CGCGGGGTGGCGACGAC AAC R: ACCGCCTATAGACCAAC GAC 24106264 2 176—192 低直链淀粉含量基因du3
Low amylose content gene du3
重测序
Resequencing
InDel-2 F: GGAAGGGATCCGTAATA CAAA R: CCCATATCTACATGACGG TT 30480729 2 125—151 穗粒数、株高和抽穗期基因Ghd2
Grain number, plant height and heading date 2
重测序
Resequencing
InDel-3 F: GGAAATGGGAGTCGCC R: CGAAGAAACCACGCTCA 31242178 6 164—266 淀粉分支酶基因I
Starch branching enzyme I
[22]
InDel-4 F: CAATATGCCTGAAGTCC AC R: TGTGCTCAATTGCTAGC TT 25197305 3 136—145 落粒性基因OsYABBY2
Shattering gene OsYABBY2
NCBI序列比对 NCBI Sequence Alignment
InDel-5 F: CCAAAACGACTTACTTTA GAGC R: TTCCTCCGTACTCATAAG AGC 32998659 3 151—187 酪蛋白激酶基因CKI
Casein kinase I
NCBI序列比对
NCBI Sequence Alignment
InDel-6 F: CTCGATCCCCTAGCTCTC R: TCACCTCGTTCTCGATCC 19168790 12 151—163 MADS转录因子
MADS transcription factor
NCBI序列比对
NCBI Sequence Alignment

Continued Table 1

"

引物
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
物理位置
Physical position (bp)
染色体 Chromosome 扩增片
段长度Amplified fragment (bp)
基因注释
Gene
annotation
出处
Reference
InDel-7 F: CCAGTGTCGCCTTCTCCG GCTT R: GGGGAAACGAGACGGCG GTCCA 6946008 4 159—175 水稻抗胁迫基因OsLecRK1
Rice stress resistance gene OsLecRK1
NCBI序列比对
NCBI Sequence Alignment
InDel-8 F: TATGTGCAGCGTTCATTG ACCT R: AGGGTCAGTCATAACCT CAGT 33631382 4 150—161 谷氨酰胺合成酶基因OsGS2
Glutamine synthase 2
NCBI序列比对
NCBI Sequence Alignment
InDel-9 F: AGCAGCAAACATCCAAA GGCA R: GGGTGTCAAGTCGAATC CAGC 9336223 6 116—125 抽穗期基因Hd1
Heading date 1
重测序
Resequencing
InDel-10 F: GATAACCATCGGTAATTG CT R: GGCAATCATGAAGATTC GAAG 5360339 5 155—167 粒重基因GW5
Grain weight gene GW5
重测序
Resequencing
InDel-11 F: GGAACAATTGGTTAAATA CTTCA R: AGAAAAAATTGGATCTT TGTCA 25379188 7 135—144 直立型密穗基因DEP2
Dense and erect
panicle 2
NCBI序列比对
NCBI Sequence Alignment
InDel-12 F: TCCGAATATATTTCTGGA TTGTG R: GGAAAAATAATAATGGC TTC 29615978 7 152—167 抽穗期控制基因DTH7
Days to heading 7
重测序
Resequencing
InDel-13 F: AGCAGGTTATAAGCTAGG CC R: CTACCAACAAGTTCATC AAA 9811234 12 877/1052 稻瘟病抗性基因Pita
Rice blast resistance-ta
[25]
InDel-14 F: GTGCGTGACCCTTTGCTG TT R: ATCTTCCAGGTTCCAATT CTTC 271526 8 138—145 早穗基因Ehd3
Early heading date 3
重测序
Resequencing
InDel-15 F: CGGGGCATAAACTTCAC CT R: ATTACTCCCAAATGTTTG TCGAT 8049753 9 116—121 组蛋白甲基转移酶基因SDG724
Histone Methyltransferase gene SDG724
NCBI序列比对
NCBI Sequence Alignment
InDel-16 F: TAACTGACTCCTTTGGCTA R: TATATGCATGAAGAACA TGTC 17081627 10 120—131 早穗基因Ehd1
Early heading date 1
重测序
Resequencing
InDel-17 F: GAACAATGCCCAAACTTG AGA R: GGGTCCACATGTCAGTG AGC 37285710 2 452—550 稻瘟病抗性基因Pib
Rice blast resistance-b
[26]
InDel-18 F: CGTCTTGCAACCAACGCC GA R: GAGCGTGTGTAGGGAAG GAGCT 5360550 5 759/1970 粒重基因GW5
Grain weight gene GW5
[27]
InDel-19 F: AAGCAATGTAAGTTCAAG TAGC R: GATTAGGGATGATGGTT TTC 5358972 8 177—197 淀粉合成酶基因Ⅲa
Starch synthase Ⅲa
NCBI序列比对
NCBI Sequence Alignment
InDel-20 F: GGGAGGCGCTGAAGAG GA R: GGGTAGTCACCACCCTA CCTTG 20380278 8 100—107 香味基因OsBADH2
Fragrance gene OsBADH2
[28]
InDel-21 F: ATACCCCATCAATCGAA AT R: GAAAAGGACAACATTGA GAA 20382842 8 195—204 香味基因OsBADH2
Fragrance gene OsBADH2
[28]
InDel-22 F: CTTCTATCCATTCCTTAAT CCCA R: ATGCTATTGATGTTAAGA GGGC 3080720 6 69—76 淀粉合成酶基因Ⅰ
Starch synthaseⅠ
[23]
InDel-23 F: TGCTACATAACACGCATA CAAAGT R: AGACAAAAGCGAAAGG TAATGAG 30906227 6 280—290 淀粉分支酶基因Ⅰ
Starch branching enzymeⅠ
NCBI序列比对
NCBI Sequence Alignment

Continued Table 1

"

引物
Primer
正向引物
Forward primer (5'-3′)
反向引物
Reverse primer (5′-3′)
物理位置
Physical position (bp)
染色体 Chromosome 扩增片
段长度Amplified fragment (bp)
基因注释
Gene
annotation
出处
Reference
InDel-24 F: GTGGGGAAAACAAGTAA GTCTG R: AGTTCCATCAGAAGAAT CAGGG 30904211 6 279—294 淀粉分支酶基因Ⅰ
Starch branching enzymeⅠ
NCBI序列比对
NCBI Sequence Alignment
InDel-25 F: GTCGCCGCCGTCGTCAGC AC R: AGCTCTGCCTCCGTCCCT T 31242110 2 127—140 淀粉合成酶基因Ⅱc
Starch synthaseⅡc
NCBI序列比对
NCBI Sequence Alignment
InDel-26 F: CCATCACCTCAAATACAT CACTC R: AGACTGGAATGCCCCTT AGG 20066875 4 93—106 淀粉分支酶基因Ⅳ
Starch branching enzyme Ⅳ
NCBI序列比对
NCBI Sequence Alignment
InDel-27 F: CCAATACCGTAAACTAGC GACTATG R: TACAGGTAGAATGGCAG TGGTG 6747791 6 81—90 淀粉合成酶基因Ⅱa
Starch synthaseⅡa
[22]
InDel-28 F: GCACTCCTGCCTGTTTATC TGAAG R: GTCGTACAGCTTGAAGT GATCCAG 6750552 6 160—171 淀粉合成酶基因Ⅱa
Starch synthaseⅡa
NCBI序列比对
NCBI Sequence Alignment
InDel-29 F: GGTTCTCGGTGAAGATG GC R: GTGGTCCCAGCTGAGGT CC 6751745 6 310—326 淀粉合成酶基因Ⅱa
Starch synthaseⅡa
NCBI序列比对
NCBI Sequence Alignment
InDel-30 F: CTTTGATAGTTCGAATGG TT R: CAATGTTTCTCCGTGATG AT 6742084 6 242—344 淀粉合成酶基因Ⅱa
Starch synthaseⅡa
NCBI序列比对
NCBI Sequence Alignment
InDel-31 F: GAACTTGTGCCTTAAGCT GACTG R: GGAATAGTAAGCCGAAG GACTT 5619311 8 177—197 淀粉合成酶基因Ⅲa
Starch synthaseⅢa
[22]
InDel-32 F: AAGTCCTTCGGCTTACTA TTCC R: GGAGAAGGAACATAAC AGGGAC 5619486 8 700—902 淀粉合成酶基因Ⅲa
Starch synthase Ⅲa
[23]
InDel-33 F: GACCAACCGATTACCTTC TT R: TTGCTCTTTTCTCAACCT GT 5619157 8 366—386 淀粉合成酶基因Ⅲa
Starch synthase Ⅲa
NCBI序列比对
NCBI Sequence Alignment
InDel-34 F: TACGCTATGCTCTTGAA AC R: TATCTTCCCAGTAACCAT CA 7247406 9 184—215 ADP葡萄糖焦磷酸化酶小亚基基因
ADP-glucose pyrophosphorylase small subunit 1
[23]
InDel-35 F: AAGGTTAGCATTGGTTGG TGAG R: TCTCCTTGAACAGCGAC AGC 19354696 2 210—238 淀粉分支酶基因Ⅲ
Starch branching enzyme Ⅲ
NCBI序列比对
NCBI Sequence Alignment
InDel-36 F: CACCAATTATATTAGCGT GCTCC R: CGTGGCTCTTGGCTCTC TTG 20066321 4 233—255 淀粉分支酶基因Ⅳ
Starch branching enzyme Ⅳ
[23]

Fig. 1

DNA bands and effective characterization sites of SNP-1-SNP-3 markers in 20 semi-waxy japonica varieties M: DNA marker; D1-D20 match 20 semi-waxy japonica varieties; *: Effective characterization site; ×: Invalid site"

Fig. 2

DNA bands and effective characterization sites of InDel-1-InDel-3 and InDel-6 markers in 20 semi-waxy japonica varieties M: DNA marker; D1-D20 match 20 semi-waxy japonica varieties; *: Effective characterization site; ×: Invalid site"

Table 2

DNA fingerprint database of 20 semi-waxy japonica varieties"

品种 Variety 指纹信息 Fingerprint information
南粳46
Nanjing 46 (D1)
01100-11001-01000-10010-01010-00000-10001-00010-00100-01000-01001-00101-01010-10101-10010-10110-01100-10110-01010-10110-01100-11010-10100-10101-00101-10101-01010-01011-01001-10101-00110
南粳5055
Nanjing 5055 (D2)
01100-11001-00100-01001-00110-00000-10010-00010-01001-00000-10000-11001-01011-00101-01010-10110-01011-01010-01011-01010-01100-11010-10100-10101-01001-10101-00110-01100-10110-10011-01010
南粳9108
Nanjing 9108 (D3)
10100-11001-00100-10010-01010-00000-10001-00010-01000-10001-00001-00101-10010-10101-10100-10101-01100-11010-01010-10110-01100-11010-10100-10101-00101-10101-01010-10100-10101-01100-11010
南粳505
Nanjing 505 (D4)
01100-11000-10100-10001-01010-00000-10010-00011-00001-00000-01001-00101-01011-00110-10100-10110-10101-01010-00010-11010-01100-11010-01001-10011-00101-10101-00101-10100-10110-10101-00110
南粳2728
Nanjing 2728 (D5)
01100-11001-01000-01001-01000-01000-10001-00011-00000-01000-00100-10101-10100-10110-10100-10101-01010-10110-11010-10110-10100-11010-01001-10011-00101-01101-01001-10100-11001-10011-00110
南粳5718
Nanjing 5718 (D6)
10010-11001-00100-01001-00100-10001-00000-10100-10000-00100-10001-01001-01011-00110-01010-10110-10100-10110-00010-11010-01011-01010-10100-10101-00101-10101-00110-01100-11001-01100-11010
南粳56
Nanjing 56 (D7)
01100-10011-01000-10000-11001-00000-10000-11000-01010-00001-00000-10101-01100-11010-10100-10101-01100-11010-00010-10110-01100-11010-10100-01101-00101-10101-01010-01100-10110-01100-11010
南粳9308
Nanjing 9308 (D8)
10100-10101-01000-10000-11010-00000-10000-10010-10000-10000-10001-00101-10010-10101-10100-10101-01100-10110-01010-10110-10100-11010-10100-10101-00101-10101-01010-01011-00110-01011-00110
南粳9036
Nanjing 9036 (D9)
01100-11001-00010-01001-01001-00000-10010-00011-00001-00000-01000-10110-01101-00110-10101-01010-10101-00110-11010-11010-01100-11010-01010-10010-11010-10101-00110-10100-11001-10100-11001
南粳7718
Nanjing 7718 (D10)
10100-10101-00100-10010-01000-00010-10001-00011-00000-10000-10000-10101-10010-10101-10010-10101-01100-10110-01010-10110-10100-11010-10100-10101-00101-10101-01010-01010-10110-01011-00110
嘉58
Jia 58 (D11)
01100-11001-01000-10001-01001-00001-00001-00011-00001-00000-10001-01001-01011-00110-01100-11001-10010-10110-01011-00110-01100-11010-10010-10100-11010-10101-00101-01011-01001-10101-00110
沪早香软1号
Huzaoxiangruan 1 (D12)
01100-10101-01000-01001-00101-00000-10001-00010-01001-00000-01001-01001-01010-10101-01011-01010-01100-11010-00010-10101-01100-11010-10100-10101-00101-10100-11001-01010-10110-10101-00110
武香粳113
Wuxiangjing 113 (D13)
01100-11001-01000-01001-01000-10000-10000-10011-00000-00010-01001-00101-01101-00101-10011-01010-10100-11001-11100-10110-01100-11010-10100-10101-00110-10101-00110-01011-00101-10100-11010
金香玉1号
Jinxiangyu 1 (D14)
10100-11001-00100-10010-01010-00000-10001-00010-01000-10001-00000-11001-10010-10101-10100-10101-01100-11010-01100-10110-01100-11010-10100-10100-10110-10101-01010-01010-11010-10010-10101
苏香粳100
Suxiangjing 100 (D15)
01010-11001-00100-10010-00100-10001-00001-00100-10000-10000-00100-11001-01010-10101-01010-10101-10100-11010-11010-10110-10100-11010-10100-10101-00101-10100-11010-01010-10110-10011-01010
宁粳8号
Ningjing 8 (D16)
10100-11001-01000-01001-01000-01001-00001-00011-00000-00010-10000-11001-01100-10110-01100-10110-10101-01010-10010-11010-10011-00110-10100-10101-00101-10101-00110-01101-00110-10011-00110
徐稻9号
Xudao 9 (D17)
01101-01001-01000-00101-00101-00000-10000-10010-00101-00000-10001-00101-01101-00110-10010-10110-10100-10110-00010-10110-01100-11010-10100-10101-00110-10100-10110-01100-11010-01101-00110
沪软1212
Huruan 1212 (D18)
10101-01000-11000-10001-00110-00000-10000-10100-10000-10000-10001-01001-01011-00101-01100-10101-01100-10110-00100-11010-01100-11010-10100-10101-00101-10100-10110-01011-01001-10101-01010
苏香粳3号
Suxiangjing 3 (D19)
10101-01001-00101-00001-00100-00101-00001-00010-00100-01000-00011-01001-01010-10101-10010-10110-01100-10110-10100-10110-10100-11010-10100-10101-01001-10101-01001-01011-00101-01100-10110
早香粳1号
Zaoxiangjing 1 (D20)
10100-11001-01000-01001-01000-10001-00100-00010-10001-00000-00101-01001-01011-00101-10010-10110-01100-10110-01010-10110-10010-11010-10100-10101-01010-10010-10110-01101-00101-01101-01010

Fig. 3

Cluster analysis of semi-waxy japonica varieties The 20 semi-waxy japonica varieties (D1-D20) in bold indicate the varieties used for screening core markers, while the other 14 varieties (D21-D34) are the varieties used for testing the markers; The red box indicates the facticity identification of an unknown semi-waxy japonica rice variety DX"

Table 3

DNA fingerprint database of 14 other semi-waxy japonica varieties"

品种 Variety 指纹信息 Fingerprint information
南粳晶谷
Nanjing jinggu (D21)
01100-11001-01000-10001-01010-00000-10001-00010-00101-00000-10001-00110-01011-00101-01100-11010-10101-01010-01010-11010-01100-11010-10100-10101-00101-10101-00110-01100-11010-10101-00110
南粳518
Nanjing 518 (D22)
01100-11001-00010-01001-01000-10000-01000-10010-00100-01001-00000-11001-01100-11001-10100-10110-01100-10110-11010-10110-10100-11010-10100-10101-00101-10101-00110-01100-10101-10011 -01010
南粳3908
Nanjing 3908 (D23)
01100-11001-00100-01001-01000-00100-10000-10011-00010-00000-10001-01001-01011-00101-01100-10110-10101-01010-01010-11010-01100-11010-10100-10101-00101-10101-00110-01100-11010-10101-00110
南粳5713
Nanjing 5713 (D24)
01100-11001-01000-01001-01010-00000-10000-10010-01001-00001-00001-00110-01010-10101-01011-01010-01100-10110-11010-10110-10100-11010-10100-10101-00101-10101-01010-01011-01001-10101-00110
南粳66
Nanjing 66 (D25)
10100-10101-01000-10010-01000-00100-10000-11000-01000-01000-01000-10101-10010-10101-10100-10110-01100-10110-01010-10110-01100-11010-10100-10101-00101-10101-01010-01100-10110-10011-00110
南粳5818
Nanjing 5818 (D26)
10100-11001-00100-10010-01000-00010-10001-00011-00000-01000-10000-10101-10010-10101-10100-10101-01100-11010-01010-10110-01100-11010-10100-10100-10110-10101-01010-10100-11001-01100-11001
松早香1号
Songzaoxiang 1 (D27)
10101-01001-01000-01001-01010-00000-10000-10011-00001-00000-10000-11010-01011-00101-10010-11010-01010-10110-11101-01010-10100-11001-10100-10100-11010-10101-01001-01011-00110-01100-10110
嘉农早香
Jianongzaoxiang (D28)
10101-01001-00100-10010-01000-10001-00001-00011-00010-00001-00001-01001-01010-10110-10010-10110-01100-10110-10010-10110-10100-11010-10100-01100-11010-10101-01001-01101-01001-01011-00101
松香粳1018
Songxiangjing 1018 (D29)
01100-10101-01000-01010-01000-01001-00001-01001-00001-00001-00000-10110-01100-10101-01101-01010-10100-10110-11010-10110-10100-11010-10100-10101-00101-10100-10110-01100-10101-10101-01001
嘉农粳6号
Jianongjing 6 (D30)
10100-11000-11001-00001-01001-00000-10100-00010-10001-00001-00001-00101-01011-00101-10101-01010-01100-10110-00010-10110-01100-11010-10100-10101-00101-01100-11010-01011-01001-01100-10110
宁香粳9号
Ningxiangjing 9 (D31)
01100-11001-01000-00101-00100-01000-10000-10101-00000-00010-00010-10101-10100-10110-10100-10110-10100-10110-10010-10110-10010-11010-10100-10101-00101-10010-10110-01100-10110-01011-00110
扬农香粳28
Yangnongxiangjing 28 (D32)
10010-11001-01000-10010-01000-00101-00001-00010-01000-01000-10000-11001-10100-10101-01100-10110-01100-11010-11100-10110-01100-11010-10100-10101-01001-10100-11010-10011-01001-10100-11001
丰粳1606
Fengjing 1606 (D33)
10100-10011-01000-00101-01001-00000-10010-00011-00000-10000-10001-01001-10101-00101-01100-11010-10101-01010-01010-11010-10100-11010-10100-10101-01001-10010-10110-01101-00110-01011-01010
常香粳1813
Changxiangjing 1813 (D34)
01010-10101-00100-10010-01000-10000-10001-00100-10001-00000-00100-10101-10010-10110-01100-10101-10100-10110-01010-10110-10100-11010-10100-10101-00101-10100-10110-01100-11001-10101-00110
[1] 赵春芳, 岳红亮, 田铮, 顾明超, 赵凌, 赵庆勇, 朱镇, 陈涛, 周丽慧, 姚姝, 梁文化, 路凯, 张亚东, 王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析. 作物学报, 2020, 46(6): 75-85.
ZHAO C F, YUE H L, TIAN Z, GU M C, ZHAO L, ZHAO Q Y, ZHU Z, CHEN T, ZHOU L H, YAO S, LIANG W H, LU K, ZHANG Y D, WANG C L. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu province and northeast of China. Acta Agronomica Sinica, 2020, 46(6): 75-85. (in Chinese)
[2] 王才林, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 赵凌, 赵春芳, 周丽慧, 魏晓东, 路凯, 梁文化. 姊妹系间杂交快速培育优良 食味半糯粳稻新品种的育种效果. 中国水稻科学, 2021, 35(5): 455-465.
doi: 10.16819/j.1001-7216.2021.210405
WANG C L, ZHANG Y D, CHEN T, ZHU Z, ZHAO Q Y, YAO S, ZHAO L, ZHAO C F, ZHOU L H, WEI X D, LU K, LIANG W H. Rapid breeding of new semi-glutinous japonica rice varieties with good eating quality by crossing between sister lines. Chinese Journal of Rice Science, 2021, 35(5): 455-465. (in Chinese)
doi: 10.16819/j.1001-7216.2021.210405
[3] 王才林, 张亚东, 朱镇, 赵凌, 陈涛, 林静. 优质水稻新品种南粳46的选育与应用. 中国稻米, 2008(3): 38-40.
WANG C L, ZHANG Y D, ZHU Z, ZHAO L, CHEN T, LIN J.Breeding and application of a new high quality rice variety Nanjing 46. China Rice, 2008(3): 38-40. (in Chinese)
[4] 张丽霞, 费剑华, 周锋利, 王凯, 胡泽军, 曹黎明, 闫影, 吴书俊. 优良食味粳稻新品种‘沪软1212’的选育及其品质特性. 分子植物育种, 2021, 19(13): 4443-4448.
ZHANG L X, FEI J H, ZHOU F L, WANG K, HU Z J, CAO L M, YAN Y, WU S J. Breeding and quality characteristics of a new high eating quality japonica rice variety ‘Huruan1212’. Molecular Plant Breeding, 2021, 9(13): 4443-4448. (in Chinese)
[5] 王才林, 张亚东, 赵春芳, 魏晓东, 姚姝, 周丽慧, 朱镇, 陈涛, 赵庆勇, 赵凌. 江苏省优良食味粳稻的遗传与育种研究. 遗传, 2021, 43(5): 442-458.
WANG C L, ZHANG Y D, ZHAO C F, WEI X D, YAO S, ZHOU L H, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L. Inheritance and breeding of japonica rice with good eating quality in Jiangsu province. Hereditas, 2021, 43(5): 442-458. (in Chinese)
[6] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48(8): 1853-1870.
XU Y B, WANG B B, ZHANG J, ZHANG J N, LI J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agronomica Sinica, 2022, 48(8): 1853-1870. (in Chinese)
[7] 滕海涛, 吕波, 赵久然, 徐岩, 王凤格, 堵苑苑, 杨坤, 唐浩, 李祥羽. 利用DNA指纹图谱辅助植物新品种保护的可能性. 生物技术通报, 2009(1): 1-6.
TENG H T, LÜ B, ZHAO J R, XU Y, WANG F G, DU Y Y, YANG K, TANG H, LI X Y. DNA fingerprint profile involved in plant variety protection practice. Biotechnology Bulletin, 2009(1): 1-6. (in Chinese)
[8] 李茂柏, 王慧, 白建江, 朴钟泽. 利用SSR分子标记构建水稻品种DNA指纹图谱的研究进展. 中国稻米, 2011, 17(1): 4-6.
LI M B, WANG H, BAI J J, PIAO Z Z. Research progress in constructing DNA fingerprints of rice varieties using SSR molecular markers. China Rice, 2011, 17(1): 4-6. (in Chinese)
[9] 杨梦婷, 黄洲, 干建平, 徐君驰, 庞基良. SSR分子标记的研究进展. 杭州师范大学学报(自然科学版), 2019, 18(4): 429-435.
YANG M T, HUANG Z, GAN J P, XU J C, PANG J L. Research progress of SSR molecular markers. Journal of Hangzhou Normal University (Natural Science Edition), 2019, 18(4): 429-435. (in Chinese)
[10] 李梓榕, 袁雄, 陈叶, 郑兴飞, 胡中立, 李兰芝. 基于全基因组SNP高效鉴定水稻种质资源并构建指纹图谱. 分子植物育种, 2020, 18(18): 6050-6057.
LI Z R, YUAN X, CHEN Y, ZHENG X F, HU Z L, LI L Z. Effective identification for varieties by genome-wide SNPs and establishment of fingerprint for rice germplasm. Molecular Plant Breeding, 2020, 18(18): 6050-6057. (in Chinese)
[11] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定. 作物学报, 2022, 48(2): 342-352.
doi: 10.3724/SP.J.1006.2022.02085
ZHENG X H, YE J H, CHENG Z P, WEI X H, YE X F, YANG Y L. Xian-geng identification by SNP markers in Oryza sativa L.. Acta Agronomica Sinica, 2022, 48(2): 342-352. (in Chinese)
doi: 10.3724/SP.J.1006.2022.02085
[12] 王富强, 樊秀彩, 张颖, 刘崇怀, 姜建福. SNP分子标记在作物品种鉴定中的应用和展望. 植物遗传资源学报, 2020, 21(5): 1308-1320.
WANG F Q, FAN X C, ZHANG Y, LIU C H, JIANG J F. Application and prospect of SNP molecular markers in crop variety identification. Journal of Plant Genetic Resources, 2020, 21(5): 1308-1320. (in Chinese)
[13] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建. 作物学报, 2020, 46(7): 1006-1015.
doi: 10.3724/SP.J.1006.2020.93048
TIAN H L, YANG Y, WANG L, WANG R, YI H M, XU L W, ZHANG Y L, GE J R, WANG F G, ZHAO J R. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties. Acta Agronomica Sinica, 2020, 46(7): 1006-1015. (in Chinese)
doi: 10.3724/SP.J.1006.2020.93048
[14] 樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证. 中国农业科学, 2021, 54(8): 1751-1760.
FAN X J, YU W T, CAI C P, LIN Y, WANG Z H, FANG W P, ZHANG J M, YE N X. Construction of Molecular ID for Tea Cultivars by Using of Single nucleotide Polymorphism (SNP) Markers. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760. (in Chinese)
[15] 朱勇良, 谢裕林, 黄凌哲, 吴建祥, 乔中英, 王建平, 黄萌, 陈培峰. 太湖稻区及国内部分香稻SSR指纹图谱构建及遗传多样性初析. 植物遗传资源学报, 2012, 13(4): 666-671.
ZHU Y L, XIE Y L, HUANG L Z, WU J X, QIAO Z Y, WANG J P, HUANG M, CHEN P F. Establishment of SSR fingerprint map and preliminary analysis of genetic diversity among aromatic rice from Taihu and other areas in China. Journal of Plant Genetic Resources, 2012, 13(4): 666-671. (in Chinese)
[16] LI Z J, CHEN Y H, ZHANG D J, ZHANG G F, LU B X. Genetic diversity analysis and DNA fingerprinting of the main japonica rice varieties in Heilongjiang province. Quality Assurance and Safety of Crops & Foods, 2018, 11(1): 23-29.
[17] 左示敏, 周娜娜, 陈宗祥, 许明, 许学宏, 毛从亚, 汤义华, 张亚芳, 叶凯, 顾世梁, 潘学彪. SSR标记在江苏粳稻品种鉴定中的应用研究. 扬州大学学报(农业与生命科学版), 2014, 35(4): 46-51.
ZUO S M, ZHOU N N, CHEN Z X, XU M, XU X H, MAO C Y, TANG Y H, ZHANG Y F, YE K, GU S L, PAN X B. Identification of japonica rice varieties released in Jiangsu province by SSR markers. Journal of Yangzhou University (Agricultural and Life Science Edition), 2014, 35(4): 46-51. (in Chinese)
[18] 龚红兵, 余波, 盛生兰, 潘学彪, 曾生元, 李闯, 左世敏, 景德道, 林添资, 陈宗祥. 江苏主栽粳稻品种的遗传与食味结构分析. 作物学报, 2016, 42(7): 1083-1093.
doi: 10.3724/SP.J.1006.2016.01083
GONG H B, YU B, SHENG S L, PAN X B, ZENG S Y, LI C, ZUO S M, JING D D, LIN T Z, CHEN Z X. Genetic analysis and taste quality of main conventional japonica rice varieties grown in Jiangsu province. Acta Agronomica Sinica, 2016, 42(7): 1083-1093. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01083
[19] 贾裕, 王道一, 沈秋萍, 孙海燕, 罗兵. 太湖地区水稻育种亲本遗传多样性分析及指纹图谱构建. 常熟理工学院学报, 2020, 34(5): 80-85.
JIA Y, WANG D Y, SHEN Q P, SUN H Y, LUO B. Genetic diversity analysis and fingerprint construction of rice breeding parents in the Taihu lake region. Journal of Changshu Institute of Technology, 2020, 34(5): 80-85. (in Chinese)
[20] LI Y, XIAO J H, CHEN L L, HUANG X H, CHENG Z K, HAN B, ZHANG Q F, WU C Y. Rice functional genomics research: Past decade and future. Molecular Plant, 2018, 11: 359-380.
doi: S1674-2052(18)30027-3 pmid: 29409893
[21] 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展. 遗传, 2021, 43(5): 425-441.
ZHANG C Q, FENG L H, GU M H, LIU Q Q. Progress on inheritance and gene cloning for rice grain quality in Jiangsu province. Hereditas, 2021, 43(5): 425-441. (in Chinese)
[22] 田志喜, 刘巧泉, 汤述翥, 李家洋, 顾铭洪, 严长杰, 钱前, 严松, 谢会兰, 王芳. 水稻淀粉合成相关基因分子标记的建立. 科学通报, 2010, 55(26): 2591-2601.
TIAN Z X, LIU Q Q, TANG S Z, LI J Y, GU M H, YAN C J, QIAN Q, YAN S, XIE H L, WANG F. Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Chinese Science Bulletin, 2010, 55(26): 2591-2601. (in Chinese)
[23] YAN C, TIAN Z, FANG Y, YANG Y, LI J, ZENG S, GU S, XU C, TANG S, GU M. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 122: 63-76.
doi: 10.1007/s00122-010-1423-5
[24] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nuclear Acids Research, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321
[25] WANG Z, JIA Y, RUTGER J N, XIA Y. Rapid survey for presence of a blast resistance gene Pita in rice cultivars using the dominant DNA markers derived from portions of the Pita gene. Plant Breeding, 2007, 126: 36-42.
doi: 10.1111/j.1439-0523.2007.01304.x
[26] 刘洋, 徐培洲, 张红宇, 徐建第, 吴发强, 吴先军. 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008, 41(1): 9-14.
LIU Y, XU P Z, ZHANG H Y, XU J D, WU F Q, WU X J. Marker-assisted selection and application of blast resistant gene Pib in rice. Scientia Agricultura Sinica, 2008, 41(1): 9-14. (in Chinese)
[27] SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.
doi: 10.1038/ng.169 pmid: 18604208
[28] 王军, 杨杰, 陈志德, 仲维功. 水稻香米基因标记的开发与应用. 分子植物育种, 2008, 6(6): 1209-1212.
WANG J, YANG J, CHEN Z D, ZHONG W G. Development and application of fragrance gene markers in rice. Molecular Plant Breeding, 2008, 6(6): 1209-1212. (in Chinese)
[29] MYAKISHEV M V, KHRIPIN Y, HU S, HAMER D H. High throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Research, 2001, 11(1): 163-169.
doi: 10.1101/gr.157901
[30] 王明湖, 张孝天, 吴国林, 蒋琪, 施勇烽. SSR标记在宁波地区水稻品种DNA指纹图谱构建及纯度鉴定中的应用. 中国稻米, 2009, 25(6): 50-54.
WANG M H, ZHANG X T, WU G L, JIANG Q, SHI Y F. DNA fingerprints construction and purity identification based on SSR markers for rice varieties in Ningbo city. China Rice, 2009, 25(6): 50-54. (in Chinese)
[31] 田铮, 赵春芳, 张亚东, 赵庆勇, 朱镇, 赵凌, 陈涛, 姚姝, 周丽慧, 梁文化, 路凯, 王才林, 张红生. 江苏省半糯型粳稻蒸煮食味品质性状的差异分析. 中国水稻科学, 2021, 35(3): 249-258.
doi: 10.16819/j.1001-7216.2021.01103
TIAN Z, ZHAO C F, ZHANG Y D, ZHAO Q Y, ZHU Z, ZHAO L, CHEN T, YAO S, ZHOU L H, LIANG W H, LU K, WANG C L, ZHANG H S. Differences in eating and cooking quality traits of semi-waxy japonica rice cultivars in Jiangsu province. Chinese Journal of Rice Science, 2021, 35(3): 249-258. (in Chinese)
doi: 10.16819/j.1001-7216.2021.01103
[32] LU B R, CAI X X, XIN J. Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Progress in Nature Science, 2009, 19: 1241-1252.
[33] EBANA K, YONEMARU J, FUKUOKA S, IWATA H, KANAMORI H, NAMIKI N, NAGASAKI H, YANO M. Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.). Breeding Science, 2010, 60: 390-397.
doi: 10.1270/jsbbs.60.390
[34] WANG C H, ZHENG X M, XU Q, YUAN X P, HUANG L, ZHOU H F, WEI X H, GE S. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity, 2014, 112: 489-496.
doi: 10.1038/hdy.2013.130
[1] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[2] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[3] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[4] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[5] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[6] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[7] REN ZhiJie,LI Qian,SUN YuJia,KONG DongDong,LIU LiangYu,HOU CongCong,LI LeGong. OsCSC11 Mediates Dry-Hot Wind/Drought-Induced Ca2+ Signal to Regulate Stamen Development in Rice [J]. Scientia Agricultura Sinica, 2021, 54(10): 2039-2052.
[8] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[9] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[10] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[11] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[12] Mu ZHANG, ShuanHu TANG, QiaoYi HUANG, YuWan PANG, Qiong YI, Xu HUANG, Ping LI, HongTing FU. The Nutrient Supply Characteristics of Co-Application of Slow-Release Urea and Common Urea in Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2018, 51(20): 3985-3995.
[13] LI Yi, MA XianFeng, TANG Hao, LI Na, JIANG Dong, LONG GuiYou, LI DaZhi, NIU Ying, HAN RuiXi, DENG ZiNiu. SSR Markers Screening for Identification of Citrus Cultivar and Construction of DNA Fingerprinting Library [J]. Scientia Agricultura Sinica, 2018, 51(15): 2969-2979.
[14] GAO Rui, LI ChunLin, TONG XiaoLing, CAO MingYa, SHI MeiNing, XU AnYing, LU Cheng, DAI FangYin. Insight into Genetic Basis of Bombyx mori Resistant Strains with Resistance to BmNPV by Molecular Linkage Analysis [J]. Scientia Agricultura Sinica, 2017, 50(1): 195-204.
[15] LI Chen-xu, LIU Zhi-tao, ZHUANG Li-fang, QI Zeng-jun. Development and Application of Specific Molecular Markers of Thinopyrum bessarabicum Löve Based on RNA-seq [J]. Scientia Agricultura Sinica, 2015, 48(6): 1052-1062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!