Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1271-1283.doi: 10.3864/j.issn.0578-1752.2022.07.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China

ZHU DaWei(),ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang()   

  1. China National Rice Research Institute/Rice Products Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, Hangzhou 311400
  • Received:2021-10-26 Accepted:2021-12-10 Online:2022-04-01 Published:2022-04-18
  • Contact: YaFang SHAO E-mail:nxyzdw@163.com;yafang_shao@126.com

Abstract:

【Objective】In order to clarify the quality characteristics of high quality japonica rice in north and south China and high quality indica rice, and explore the physical and chemical indexes related to rice taste quality, this study investigated the differences of quality and taste sensory evaluation value of high quality rice in China. It would provide theoretical basis for quality evaluation and improvement of high quality rice varieties in China. 【Method】 A total of 122 high quality rice grain varieties from 30 provinces of China in the third national high-quality rice variety taste quality evaluation activities were used as materials. According to suitable planting area, all the samples were divided into three types as northern japonica, southern japonica and indica rice with the sample numbers of 38, 15 and 69, respectively. To clarify the relationship between physical chemical parameters and taste sensory evaluation value, rice appearance quality, rice flour pasting properties, protein content and taste sensory evaluation value were measured. According to the taste sensory evaluation value, each type of rice was divided into three categories as high (≥90), medium (80-90) and low taste (<80). The differences of rice qualities among different types and taste categories were analyzed. 【Result】Northern japonica rice could be divided into high and medium taste categories. The length-width ratio, protein content, setback viscosity and hardness of high taste category rice were lower than those of medium taste category rice, by 0.2, 0.32 g/100 g, 134 cP, 16 g, respectively (P<0.05). However, the peak viscosity, stickiness and spring value of high taste category rice were higher than those of medium taste category rice, by 145 cP, 70 g and 0.04%, respectively (P<0.05). Southern japonica rice could be divided into high, medium and low taste categories. The chalkiness degree, peak, and breakdown viscosity, and stickiness of high taste category rice were higher than those of low taste category rice, by 0.65%, 314 cP, 259 cP, 261 g, respectively (P<0.05). However, the apparent amylose content, protein content, final and setback viscosity of high taste category rice were lower than those of low taste category rice, by 4.0 g/100 g, 9.2 g/100 g, 260 cP and 574 cP, respectively (P<0.05). Indica rice could be divided into high, medium and low taste categories. The high taste category rice had a longer and thinner grain shape and a better appearance quality than the low taste category rice (P<0.05). The protein content, setback viscosity and hardness of high taste category rice were higher than those of low taste category rice, by 0.45 g/100 g, 157 cP, 46 g, respectively (P<0.05). However, the breakdown viscosity and stickiness of high taste category rice were lower than those of low taste category rice, by 115 cP and 107 g, respectively (P<0.05). 【Conclusion】Northern japonica rice type with high taste sensory evaluation value had a crystal-clear appearance (chalkiness degree was less than 1%), low protein content (about 6 g/100 g), moderate hardness, and high elasticity (about 0.6%). Southern japonica rice type with high taste sensory evaluation value had a good appearance quality, low apparent amylose content (about 13 g/100 g) and setback viscosity (about -250 cP), and high cooked rice stickiness (about -1200 g). Indica rice type with high taste sensory evaluation value had a long and thin grain (length-width ratio about 4.0) and crystal-clear appearance, and low ratio of hardness to stickiness (about 0.25).

Key words: high quality rice, quality evaluation, taste sensory evaluation value, northern japonica rice, southern japonica rice, indica rice

Fig. 1

The proportion distribution of different taste categories in northern japonica, southern japonica and indica rice HTC: High taste category; MTC: Medium taste category; LTC: Low taste category; NJR: Northern japonica rice; SJR: Southern japonica rice; IR: Indica rice. The same as below"

Table 1

Differences in appearance quality of different taste types among NJR, SJR and IR"

品种类型
Variety type
食味类型
Taste category
粒长
GL (mm)
长宽比
LR
垩白度
CD (%)
透明度(级)
Transparency
北方粳稻
NJR

Medium
5.62±0.81a 2.20±0.42a 0.66±0.57a 1±0.00a
14.41% 19.09% 86.36% 0.00
(4.40—7.10) (1.60—3.00) (0.00—2.40) (1—1)

High
5.38±0.84b 2.00±0.44b 0.66±0.40a 1±0.00a
15.61% 22.00% 60.61% 0.00
(4.70—6.70) (1.60—2.70) (0.30—1.10) (1—1)
南方粳稻
SJR

Low
5.30±0.00a 2.15±0.07a 0.45±0.07b 1±0.00a
15.61% 3.26% 15.56% 0.00
(5.30—5.30) (2.10—2.20) (0.40—0.50) (1—1)

Medium
5.45±0.70a 2.05±0.45a 1.13±0.66a 1±0.47a
12.84% 21.95% 58.41% 47.00%
(4.90—7.20) (1.70—3.10) (0.30—2.30) (1—2)

High
5.60±0.96a 2.13±0.59a 1.10±1.56a 1±0.58a
17.14% 27.70% 141.82% 58.00%
(4.90—6.70) (1.70—2.80) (0.20—2.90) (1—2)
籼稻
IR

Low
6.97±0.51b 3.42±0.42b 0.70±1.02a 2±0.52a
7.32% 12.28% 145.71% 26.00%
(6.30—7.60) (3.00—4.10) (0.00—2.70) (1—2)

Medium
7.24±0.43a 3.81±0.39a 0.38±0.42b 1±0.13b
5.94% 10.24% 110.53% 13.00%
(6.50—8.30) (3.00—4.80) (0.00—1.50) (1—2)

High
7.47±0.45a 4.07±0.59a 0.11±0.22c 1±0.00b
6.02% 14.50% 200.00% 0.00
(6.80—8.10) (3.00—4.60) (0.00—0.60) (1—1)

Table 2

Differences in physicochemical properties of different taste types among NJR, SJR and IR"

品种类型
Variety type
食味类型
Taste category
碱消值(级)
AEV
胶稠度
GC (mm)
直链淀粉含量
AAC (g/100 g)
蛋白质含量
PC (g/100 g)
北方粳稻
NJR

Medium
7±0.06a 76±7.30a 18.0±1.43a 6.13±0.78a
0.86% 9.61% 7.94% 12.72%
(7—7) (62—88) (15.3—20.0) (4.87—8.30)

High
7±0.00a 78±5.26a 18.3±1.60a 5.81±0.97b
0.00 6.74% 8.74% 16.70%
(7—7) (72—86) (15.7—19.6) (5.31—7.55)
南方粳稻
SJR

Low
7±0.14a 74±8.49b 17.0±0.07a 7.73±0.65a
2.00% 11.47% 0.41% 8.41%
(7—7) (68—80) (16.9—17.0) (7.27—8.19)

Medium
7±0.10a 78±6.10b 14.2±4.26b 6.78±0.69b
1.43% 7.82% 30.00% 10.18%
(7—7) (61—82) (9.2—18.8) (5.92—8.60)

High
7±0.12a 83±4.36a 13.0±6.14b 6.81±0.17b
1.71% 5.25% 47.23% 2.50%
(7—7) (80—88) (8.5—20.0) (6.70—7.00)
籼稻
IR

Low
7±0.73a 61±7.40b 17.0±1.48a 7.37±0.76a
10.43% 12.13% 8.71% 10.31%
(5—7) (51—72) (14.3—18.4) (6.14—8.24)

Medium
7±0.65a 69±7.85a 17.5±1.45a 7.14±0.71b
9.29% 11.38% 8.29% 9.94%
(4—7) (54—86) (14.4—20.6) (5.94—8.43)

High
7±0.37a 72±5.73a 17.8±1.18a 6.92±0.91b
5.29% 7.96% 6.63% 13.15%
(6—7) (62—81) (15.5—19.2) (6.01—8.30)

Table 3

Differences in RVA profile characteristic values of different taste types among NJR, SJR and IR"

品种类型
Variety type
食味类型
Taste category
峰值黏度
PV (cP)
热浆黏度
TV (cP)
崩解值
BD (cP)
最终黏度
FV (cP)
消减值
SB (cP)
峰值时间
PT (min)
糊化温度
GT (℃)
北方粳稻
NJR

Medium
2537±290.42b 1746±171.75b 791±206.80a 3020±189.91a 483±217.68a 6.0±0.16a 88.5±1.20a
11.45% 9.84% 26.14% 6.29% 45.07% 2.67% 1.36%
(1906—3153) (1408—2177) (361—1167) (2583—3481) (101—956) (5.8—6.5) (86.1—90.9)

High
2682±193.00a 1881±207.13a 802±182.32a 3031±212.03a 349±204.58b 6.2±0.20a 87.7±1.26b
7.20% 11.01% 22.73% 7.00% 58.62% 3.23% 1.44%
(2380—2875) (1623—2150) (668—1117) (2794—3264) (8—542) (5.9—6.4) (86.1—89.3)
南方粳稻
SJR

Low
2545±485.08b 1673±69.30b 872±554.37c 2873±33.94a 328±519.02a 5.9±0.38a 88.2±0.53a
19.06% 4.14% 63.57% 1.18% 158.24% 6.44% 0.60%
(2202—2888) (1624—1722) (480—1264) (2849—2897) (-39—695) (5.7—6.2) (87.8—88.6)

Medium
2765±395.71a 1759±198.18a 1007±302.10b 2797±321.69a 32±527.41b 5.9±0.13a 86.6±1.78b
14.31% 11.27% 30.00% 11.50% 1648.16% 2.20% 2.06%
(2029—3135) (1461—2109) (496—1423) (2400—3421) (-638—803) (5.7—6.1) (83.8—87.8)

High
2859±575.85a 1728±125.77a 1131±498.14a 2613±298.44b -246±873.50c 5.8±0.19a 84.6±4.38c
20.14% 7.28% 44.04% 11.42% 355.08% 3.28% 5.18%
(2205—3290) (1611—1861) (594—1578) (2367—2945) (-923—740) (5.6—5.9) (79.9—88.5)
籼稻
IR

Low
2506±380.99a 1705±156.72a 801±257.84b 3148±136.13a 642±360.71a 5.8±0.11a 89.9±1.74a
15.20% 9.19% 32.19% 4.32% 56.19% 1.90% 1.94%
(1845—2760) (1440—1890) (405—1083) (2974—3317) (285—1129) (5.6—5.9) (87.9—88.6)

Medium
2590±301.10a 1736±127.60a 854±224.14a 3145±183.00a 555±335.76a 5.8±0.12a 89.2±1.53a
11.63% 7.35% 26.25% 5.82% 60.50% 2.07% 1.72%
(2007—3237) (1532—2096) (452—1390) (2808—3737) (-305—2760) (5.5—6.1) (85.4—91.7)

High
2651±192.79a 1734±68.00a 916±157.92a 3135±159.79a 485±295.35b 5.8±0.12a 88.8±0.89b
7.27% 3.92% 17.24% 5.10% 60.90% 2.07% 1.00%
(2280—2801) (1653—1847) (627—1090) (2880—3327) (79—1047) (5.7—6.0) (87.8—90.2)

Table 4

Differences in rice texture characteristics of different taste types among NJR, SJR and IR"

品种类型
Variety type
食味类型
Taste category
硬度
Hardness (g)
黏度
Stickiness (g)
平衡度
Balance (%)
硬度/黏度
Hardness/Stickiness
弹性
Springing (%)
北方粳稻
NJR

Medium
198±31.64a -994±115.04a -0.18±0.03a 0.20±0.05a 0.56±0.02b
15.98% 11.57% 16.67% 25.00% 3.57%
(145—271) (-1139—-584) (-0.22—-0.10) (0.14—0.35) (0.50—0.60)

High
182±25.76b -1064±84.43b -0.20±0.01b 0.17±0.01b 0.60±0.01a
14.15% 7.94% 5.00% 5.88% 1.67%
(140—235) (-1194—-982) (-0.21—-0.18) (0.16—0.20) (0.57—0.63)
南方粳稻
SJR

Low
197±29.04a -973±43.95a -0.18±0.00a 0.20±0.02a 0.57±0.01a
14.74% 4.52% 0.00 10.00% 1.75%
(161—222) (-1022—-960) (-0.18—-0.18) (0.17—0.22) (0.56—0.58)

Medium
192±23.84a -1102±190.53b -0.20±0.03b 0.17±0.04b 0.55±0.02b
12.42% 17.29% 15.00% 23.53% 3.64%
(149—221) (-1275—-808) (-0.26—-0.15) (0.12—0.26) (0.51—0.59)

High
160±14.39b -1234±51.50c -0.22±0.02c 0.13±0.02c 0.52±0.03c
8.99% 4.17% 9.09% 15.38% 5.77%
(146—213) (-1450—-977) (-0.26—-0.17) (0.10—0.22) (0.51—0.56)
籼稻
IR

Low
237±32.19a -659±197.66a -0.14±0.04a 0.36±0.11a 0.54±0.03a
13.58% 29.99% 28.57% 30.56% 5.56%
(155—253) (-1000—-550) (-0.19—-0.08) (0.17—0.45) (0.51—0.58)

Medium
216±31.86b -717±117.95b -0.16±0.03b 0.30±0.06b 0.53±0.02a
14.75% 16.45% 18.75% 20.00% 3.77%
(154—266) (-1065—-579) (-0.22—-0.10) (0.15—0.54) (0.49—0.59)

High
191±30.92b -766±70.15c -0.18±0.01c 0.25±0.04c 0.52±0.01b
16.19% 9.16% 5.56% 16.00% 1.92%
(173—267) (-816—-600) (-0.19—-0.14) (0.21—0.36) (0.51—0.55)

Table 5

Correlation analysis between rice quality, starch physicochemical properties and taste sensory evaluation value"

性状指标 Property 北方粳稻 NJR 南方粳稻 SJR 籼稻 IR
粒长GL -0.1364 0.0949 0.3220**
长宽比LR -0.1745 0.0406 0.3335**
垩白度CD -0.0159 0.2383 -0.2032
透明度Transparency 0.0843 0.2802 -0.4314**
碱消值AEV -0.1343 -0.1877 -0.0967
胶稠度GC 0.2718 0.3402 0.4086**
直链淀粉含量AAC 0.0677 -0.3113 0.0995
蛋白质含量PC -0.3029* -0.4001* -0.0928
峰值黏度PV 0.4614** 0.3467* -0.003
热浆黏度TV 0.3880* 0.0533 -0.0898
崩解值BD 0.2986 0.3894* 0.0468
最终黏度FV 0.1857 -0.2929 -0.2828*
消减值SB -0.4339** -0.4005* -0.1471
峰值时间PT 0.1538 -0.3848 0.0048
糊化温度GT -0.3007* -0.5162* -0.2226*
硬度Hardness -0.1435 0.0599 0.1196
黏度Stickiness -0.4201** 0.1081 -0.1262
平衡度Balance -0.4001* 0.1144 -0.198
硬度/黏度Hardness/Stickiness -0.3825* 0.1283 -0.0563
弹性Springing 0.0568 -0.4785* -0.1175
[1] SHI Y S, WEI H, HONG X L. Identification of QTLs for cooking and eating quality of rice grain. Rice Science, 2006, 13(3):161-169.
[2] 徐正进, 韩勇, 邵国军, 张学军, 全成哲, 潘国君, 闫平, 陈温福. 东北三省水稻品质性状比较研究. 中国水稻科学, 2010, 24(5):531-534.
XU Z J, HAN Y, SHAO G J, ZHANG X J, QUAN C Z, PAN G J, YAN P, CHEN W F. Comparison of rice quality characters in northeast region of China. Chinese Journal of Rice Science, 2010, 24(5):531-534. (in Chinese)
[3] 赵春芳, 岳红亮, 田铮, 顾明超, 赵凌, 赵庆勇, 朱镇, 陈涛, 周丽慧, 姚姝, 梁文化, 路凯, 张亚东, 王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析. 作物学报, 2020, 46(6):878-888.
doi: 10.3724/SP.J.1006.2020.92043
ZHAO C F, YUE H L, TIAN Z, GU M C, ZHAO L, ZHAO Q Y, ZHU Z, CHEN T, ZHOU L H, YAO S, LIANG W H, LU K, ZHANG Y D, WANG C L. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu Province and northeast of China. Acta Agronomica Sinica, 2020, 46(6):878-888. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92043
[4] GUO L N, CHEN W L, TAO L, HU B H, QU G L, TU B, YUAN H, MA B T, WANG Y P, ZHU X B, QIN P, LI S G. GWC1 is essential for high grain quality in rice. Plant Science, 2020, 296:110497.
doi: 10.1016/j.plantsci.2020.110497
[5] 徐富贤, 周兴兵, 张林, 蒋鹏, 刘茂, 朱永川, 郭晓艺, 熊洪. 四川盆地东南部气象因子对杂交中稻产量的影响. 作物学报, 2018, 44(4):601-613.
doi: 10.3724/SP.J.1006.2018.00601
XU F X, ZHOU X B, ZHANG L, JIANG P, LIU M, ZHU Y C, GUO X Y, XIONG H. Effects of climatic factors in the southeast of Sichuan basin on grain yield of mid-season hybrid rice. Acta Agronomica Sinica, 2018, 44(4):601-613. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00601
[6] 花劲, 周年兵, 张洪程, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 戴其根, 张军, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁. 南方粳稻生产与发展研究及对策. 中国稻米, 2014, 20(1):5-11.
HUA J, ZHOU N B, ZHANG H C, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, DAI Q G, ZHANG J, ZHOU P J, CHENG F H, HUANG D S, CHEN Z P, CHEN G L. Situation and strategies of japonica rice production and development in southern China. China Rice, 2014, 20(1):5-11. (in Chinese)
[7] ZHANG C Q, ZHOU L H, ZHU Z B, LU H W, ZHOU X Z, QIAN Y T, LI Q F, LU Y, GU M H, LIU Q Q. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) varieties with good sensory properties at different temperatures during the filling stage. Journal of Agriculture and Food Chemistry, 2016, 64:4048-4057.
doi: 10.1021/acs.jafc.6b00083
[8] 肖鹏, 邵雅芳, 包劲松. 稻米糊化温度的遗传与分子机理研究进展. 中国农业科技导报, 2010, 12(1):23-30.
XIAO P, SHAO Y F, BAO J S. Research progress on genetics and molecular mechanism of starch gelatinization temperature of rice grain. Journal of Agricultural Science and Technology, 2010, 12(1):23-30. (in Chinese)
[9] YANG Y H, SHEN Z Y, XU C D, GUO M, LI Y G, ZHANG Y X, ZHONG C Y, SUN S Y, YAN C J. Genetic improvement of panicle-erectness japonica rice toward both yield and eating and cooking quality. Molecular Breeding, 2020, 40(5):51.
doi: 10.1007/s11032-020-01127-7
[10] 朱满山, 汤述翥, 顾铭洪. RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005, 8(8):59-64.
ZHU M S, TANG S Z, GU M H. Progresses in study on the assessing, genetic and breeding of the rice starch RVA profile in rice eating quality. Chinese Agricultural Science Bulletin, 2005, 8(8):59-64. (in Chinese)
[11] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38(4):657-663.
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica, 2005, 38(4):657-663. (in Chinese)
[12] 战旭梅, 郑铁松, 陶锦鸿. 质构仪在大米品质评价中的应用. 食品科学, 2007, 28(9):62-65.
ZHAN X M, ZHENG T S, TAO J H. Study on application of texture analyzer in quality evaluation of rice. Food Science, 2007, 28(9):62-65. (in Chinese)
[13] 杨忠义, 曹永生, 苏艳, 刘晓利, 奎丽梅, 李华惠, 辜琼瑶, 卢义宣. 中国地方粳稻资源特征特性评价及多样性分布. 西南农业学报, 2007(5):875-882.
YANG Z Y, CAO Y S, SU Y, LIU X L, KUI L M, LI H H, GU Q Y, LU Y X. Diversity distributing and appraise of characteristics of local japonica rice germplasm in China. Southwest China Journal of Agricultural Sciences, 2007(5):875-882. (in Chinese)
[14] 段晓亮, 洪宇, 常柳, 商博, 邢晓婷, 孙辉. 我国粳稻主要品种品质概况分析. 粮油食品科技, 2019, 27(6):31-34, 10.
DUAN X L, HONG Y, CHANG L, SHANG B, XING X T, SUN H. Quality analysis of main japonica rice varieties in China. Science and Technology of Cereals, Oils and Foods, 2019, 27(6):31-34, 10. (in Chinese)
[15] 陈培峰, 顾俊荣, 乔中英, 赵步洪, 季红娟, 董明辉. 江苏省主要粳稻品种稻米品质研究. 西南农业学报, 2018, 31(5):877-883.
CHEN P F, GU J R, QIAO Z Y, ZHAO B H, JI H J, DONG M H. Study on rice quality of main japonica rice varieties in Jiangsu Province. Southwest China Journal of Agricultural Sciences, 2018, 31(5):877-883. (in Chinese)
[16] 岳红亮, 赵庆勇, 赵春芳, 田铮, 陈涛, 梁文化, 张亚东, 王忠红, 王才林. 江苏省半糯粳稻食味品质特征及其与感官评价的关系. 中国粮油学报, 2020, 35(6):7-14, 22.
YUE H L, ZHAO Q Y, ZHAO C F, TIAN Z, CHEN T, LIANG W H, ZHANG Y D, WANG Z H, WANG C L. Characteristics of edible quality and their relationship with sensory evaluation of semi-waxy japonica rice varieties from Jiangsu Province. Journal of the Chinese Cereals and Oils Association, 2020, 35(6):7-14, 22. (in Chinese)
[17] 杨远柱, 王凯, 符辰建, 秦鹏, 谢志梅, 胡小淳, 刘珊珊, 陈蕾, 黄雨晴. 中国杂交籼稻品质改良现状分析. 杂交水稻, 2020, 35(3):1-7.
YANG Y Z, WANG K, FU C J, QIN P, XIE Z M, HU X C, LIU S S, CHEN L, HUANG Y Q. Analysis on grain quality improvement of indica hybrid rice in China. Hybrid Rice, 2020, 35(3):1-7. (in Chinese)
[18] 周治宝, 王晓玲, 余传元, 雷建国, 胡培松, 王智权, 李马忠, 朱昌兰. 籼稻米饭食味与品质性状的相关性分析. 中国粮油学报, 2012, 27(1):1-5.
ZHOU Z B, WANG X L, YU C Y, LEI J G, HU P S, WANG Z Q, LI M Z, ZHU C L. Correlation analysis of eating quality with quality characters of indica rice. Journal of the Chinese Cereals and Oils Association, 2012, 27(1):1-5. (in Chinese)
[19] 孟庆虹, 潘国君, 李霞辉, 张瑞英, 姚鑫淼, 王伟威, 关海涛, 黄晓群, 王翠. 粳稻品种的粒厚特征及其对食味品质的影响. 中国水稻科学, 2009, 23(4):427-432.
MENG Q H, PAN G J, LI X H, ZHANG R Y, YAO X M, WANG W W, GUAN H T, HUANG X Q, WANG C. Grain thickness of japonica rice varieties and it's influence on eating quality. Chinese Journal of Rice Science, 2009, 23(4):427-432. (in Chinese)
[20] 王琦. 粳稻食味品质形成的理化基础研究[D]. 南京: 南京农业大学, 2016.
WANG Q. Physical and chemical foundation for cooking and eating quality of japonica rice[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[21] LIU Q H, ZHOU X B, YANG L Q, TIAN L. Effects of chalkiness on cooking, eating and nutritional qualities of rice in two indica varieties. Rice Science, 2009, 16(2):161-164.
doi: 10.1016/S1672-6308(08)60074-8
[22] SINGH N, SODHI N S, KAUR M, SAXENA S K. Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chemistry, 2003, 82(3):433-439.
doi: 10.1016/S0308-8146(03)00007-4
[23] 周倩兰, 李怡, 肖枫, 徐宏发, 李刚华, 王绍华, 丁艳锋, 刘正辉. 水稻植株温度的研究进展与展望. 杂交水稻, 2019, 34(5):1-6.
ZHOU Q L, LI Y, XIAO F, XU H F, LI G H, WANG S H, DING Y F, LIU Z H. Advances in and future prospect of researches on rice plant temperature. Hybrid Rice, 2019, 34(5):1-6. (in Chinese)
[24] 陈能, 罗玉坤, 谢黎虹, 朱智伟, 段彬伍, 章林平. 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报, 2006, 32:1193-1196.
CHEN N, LUO Y K, XIE L H, ZHU Z W, DUAN B W, ZHANG L P. Protein content and its correlation with other quality parameters of rice in China. Acta Agronomica Sinica, 2006, 32:1193-1196. (in Chinese)
[25] 韩展誉, 管弦悦, 赵倩, 吴春艳, 黄福灯, 潘刚, 程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响. 作物学报, 2020, 46(7):1087-1098.
doi: 10.3724/SP.J.1006.2020.92062
HAN Z Y, GUAN X Y, ZHAO Q, WU C Y, HUANG F D, PAN G, CHENG F M. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains. Acta Agronomica Sinica, 2020, 46(7):1087-1098. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92062
[26] LI H Y, GILBERT R G. Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018, 195:9-17.
doi: 10.1016/j.carbpol.2018.04.065
[27] 田铮, 赵春芳, 张亚东, 赵庆勇, 朱镇, 赵凌, 陈涛, 姚姝, 周丽慧, 梁文化, 路凯, 王才林, 张红生. 江苏省半糯型粳稻食味品质性状的差异分析. 中国水稻科学, 2021, 35(3):249-258.
TIAN Z, ZHAO C F, ZHANG Y D, ZHAO Q Y, ZHU Z, ZHAO L, CHEN T, YAO S, ZHOU L H, LIANG W H, LU K, WANG C L, ZHANG H S. Differences in eating and cooking quality traits of semi-waxy japonica rice cultivars in Jiangsu Province. Chinese Journal of Rice Science, 2021, 35(3):249-258. (in Chinese)
[28] 钱春荣, 冯延江, 杨静, 刘海英, 金正勋. 水稻籽粒蛋白质含量选择对杂种早代食味品质的影响. 中国水稻科学, 2007, 21(3):323-326.
QIAN C R, FENG Y J, YANG J, LIU H Y, JIN Z X. Effects of protein content selection on cooking and eating properties of rice in early generation of crosses. Chinese Journal of Rice Science, 2007, 21(3):323-326. (in Chinese)
[29] 李刚, 邓其明, 李双成, 王世全, 李平. 稻米淀粉RVA 谱特征与品质性状的相关性. 中国水稻科学, 2009, 23(1):99-102.
LI G, DENG Q M, LI S C, WANG S Q, LI P. Correlation analysis between RVA profile characteristics and quality in rice. China Journal of Rice Science, 2009, 23(1):99-102. (in Chinese)
[30] 石吕, 张新月, 孙惠艳, 曹先梅, 刘建, 张祖建. 不同类型水稻品种稻米蛋白质含量与食味品质的关系及后期氮肥的效应. 中国水稻科学, 2019, 33(6):541-552.
SHI L, ZHANG X Y, SUN H Y, CAO X M, LIU J, ZHANG Z J. Relationship of grain protein content with cooking and eating quality as affected by nitrogen fertilizer at late growth stage for different types of rice varieties. Chinese Journal of Rice Science, 2019, 33(6):541-552. (in Chinese)
[31] 孙忠. 科学研判粮食安全形势促进区域经济协同发展. 中国发展, 2016(6):44-50.
SUN Z. Scientifically evaluate the situation of food security and promote the coordinated development of regional economy. China Development, 2016(6):44-50. (in Chinese)
[32] 杨帆, 胡文彬, 周政, 刘烨, 赵正洪. 杂交籼稻与常规籼稻食味品质的比较分析. 杂交水稻, 2021, 36(3):71-78.
YANG F, HU W B, ZHOU Z, LIU Y, ZHAO Z H. Comparison of eating quality between indica hybrid rice and conventional indica rice. Hybrid Rice, 2021, 36(3):71-78. (in Chinese)
[33] 何秀英, 程永盛, 刘志霞, 陈钊明, 刘维, 卢东柏, 陈粤汉, 廖耀平. 国标优质籼稻的稻米品质与淀粉RVA谱特征研究. 华南农业大学学报, 2015, 36(3):37-44.
HE X Y, CHENG Y S, LIU Z X, CHEN Z M, LIU W, LU D B, CHEN Y H, LIAO Y P. Studies on the rice quality and starch RVA profile characteristics of indica rice varieties with national high-quality. Journal of South China Agriculture University, 2015, 36(3):37-44. (in Chinese)
[34] 李传国. 广东育成无垩白软型优质籼稻不育系粤丰A. 杂交水稻, 2001(1):57.
LI C G. A chalkiless indica cms line Yuefeng A developed in Guangdong. Hybrid Rice, 2001(1):57. (in Chinese)
[35] 赵冰, 陈佩, 庞宇辰, 李远志. 不同直链淀粉含量大米淀粉性质的研究. 食品工业科技, 2015, 36(9):72-75.
ZHAO B, CHEN P, PANG Y C, LI Y Z. Study on properties of rice starches with different amylose content. Science and Technology of Food Industry, 2015, 36(9):72-75. (in Chinese)
[36] 赵庆勇, 朱镇, 张亚东, 陈涛, 姚姝, 周丽慧, 于新, 赵凌, 王才林. 播期和地点对不同生态类型粳稻稻米品质性状的影响. 中国水稻科学, 2013, 27(3):297-304.
ZHAO Q Y, ZHU Z, ZHANG Y D, CHEN T, YAO S, ZHOU L H, YU X, ZHAO L, WANG C L. Effects of sowing date and site on grain quality of rice cultivars planted in different ecologica1 types. Chinese Journal of Rice Science, 2013, 27(3):297-304. (in Chinese)
[37] 卢慧, 袁玉洁, 张丝琪, 陈虹, 陈多, 钟晓媛, 李博, 邓飞, 陈勇, 李贵勇, 任万军. 基于3种方法的西南杂交籼稻稻米食味评价及品种优选. 中国农业科学, 2021, 54(6):1243-1257.
LU H, YUAN Y J, ZHANG S Q, CHEN H, CHEN D, ZHONG X Y, LI B, DENG F, CHEN Y, LI G Y, REN W J. Evaluation of rice eating quality and optimization of varieties of southwest indica hybrid rice based on three taste evaluation methods. Scientia Agricultura Sinica, 2021, 54(6):1243-1257. (in Chinese)
[1] KUANG LiXue,NIE JiYun,LI YinPing,CHENG Yang,SHEN YouMing. Quality Evaluation of ‘Fuji’ Apples Cultivated in Different Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263.
[2] ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices [J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
[3] JIA MengKe,WU Zhong,ZHAO WuQi,LU Dan,ZHANG QingAn,ZHANG BaoShan,SONG ShuJie. Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement [J]. Scientia Agricultura Sinica, 2019, 52(15): 2695-2705.
[4] YI YanHong,WANG WenXia,ZENG YongJun,TAN XueMing,WU ZiMing,CHEN XiongFei,PAN XiaoHua,SHI QingHua,ZENG YanHua. Artificial Simulation of Hill-Drop Drilling Mechanical Technology to Improve Yield and Lodging Resistance of Early Season Indica Rice [J]. Scientia Agricultura Sinica, 2019, 52(15): 2729-2742.
[5] ZHANG Jia, NIE JiYun, ZHANG Hui, LI Jing, LI Ye. Evaluation Indexes for Blueberry Quality [J]. Scientia Agricultura Sinica, 2019, 52(12): 2128-2139.
[6] WU XuanYi, CAO HongXia, WANG HuBing, HAO ShuXue. Effect of Planting Row Spacing and Irrigation Amount on Comprehensive Quality of Short-Season Cultivation Tomato in Solar Greenhouse in Northwest China [J]. Scientia Agricultura Sinica, 2018, 51(5): 940-951.
[7] Lü Jian, LIU Xuan, BI Jin-feng, ZHOU Lin-yan, WU Xin-ye. Research on the Quality Evaluation for Peach and Nectarine Chips by Explosion Puffing Drying [J]. Scientia Agricultura Sinica, 2016, 49(4): 802-812.
[8] LI Hong-zheng, CAO Hong-xia, GUO Li-jie, WU Xuan-yi. Effect of Furrow Irrigation Pattern and Irrigation Amount on Comprehensive Quality and Yield of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2016, 49(21): 4179-4191.
[9] NING Geng-zhe,WEI Yi-min,ZHANG Bo,SHI Jun-ling,HU Xin-zhong,ZHANG Bing-hu
. Analysis on Quality Properties of Product Evaluation Extruded from Whole Oat Flour
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1017-1022 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!